
Scheduling GIS 4: B+ Tree

Assignment:

For this project, you will implement a moderately large database of seminar records. Users
will be able to insert and delete seminar records from the database, and search for seminars by ID
or range of IDs. You will implement a B+-tree, mediated by a buffer pool, to store the seminar
records and support the search queries.

Input and Output

There will be two input parameters to the program. The first will be the name of a file that
will be used to store the B+-tree. The second parameter will be the number of buffers in the buffer
pool.

Your program will also read a command file from standard input (stdin) and write responses to
the commands to standard output (stdout). The input command file conains a series of commands
(some with associated parameters, separated by spaces), one command for each line. No command
line will require more than 120 characters. Commands are free format in that an arbitrary number
of additional spaces may be interspersed between parameters, and blank lines may appear between
commands. You do not need to check for syntax errors in the command lines.

Each input command should result in meaningful feedback in terms of an output message. Each
input command should be echo’ed to the output.

Commands and their syntax are as follows.

insert ID title date length cost
A seminar record contains the following fields:

• ID: An integer that uniquely identifies the seminar.

• Title: A string, beginning with a letter, and may contain letters, underscores, and digits.

• Date/Time: A string in the format YYMMDDHHmm where YY is the last two digits of
the year, MM is the month, DD is the date, HH is the hour (24-hour clock) and mm is the
minutes.

• Length: An integer representing the seminar length in minutes.

• Cost: An integer representing the seminar cost in whole dollars.

It is an error to attempt to insert a seminar with the same ID as a seminar already in the
database.

dump

The B+-tree is printed out, one node printed on each line. (Note that these output lines could
get rather long.) Internal nodes should print (1) the block number for the node, (2) the count of
the number of children for that node, and (3) a series of key values and block numbers for the
children as stored in the internal node’s child array. Leaf nodes should print (1) the block number
for the node, (2) the count of the number of records stored in that node, and (3) for each record,
the key value and the length of that record.

1



search flag ID [ID ]

The first parameter for the search routine is the debug print flag. This will take the form of
either a ‘+’ or a ‘-’. If the flag is ‘+’, then each node visited during the search (both internal and
leaf nodes) will be printed using the format described for the dump command, with one node per
line. If the flag is ‘-’ then these nodes will not be printed. Search may take two forms. It either has
one integer parameter, or two. If it has only one parameter, then the seminar record (if any) with
that ID is printed. If the search command has two parameters, than all records with IDs within
that range will be printed out, one record per line. If there are two parameters, the first ID value
will be less than the second.

delete ID

Remove the record (if any) which matches the ID.

Implementation:

Your database will be stored in a B+-tree, indexed by ID value. This B+-tree will reside in a
disk file, mediated by a buffer pool using the LRU buffer replacement scheme. Blocks in the file
will be 512 bytes long, and thus, nodes of the B+-tree will also be 512 bytes long (each block of
the file will correspond exactly to one node in the B+-tree). You B+-tree’s internal nodes and leaf
nodes should be implemented as separate subclasses derived from an abstract B+-tree node class.

The bulk of the space in an internal node will be taken up by an array of key/pointer pairs.
In this case, the “pointer” that you store will actually be the block number for the child node,
since each B+-tree node corresponds to a disk block. Internal nodes must also store additional
information, such as a flag to indicate that it is an internal node, its block number, and how many
children it currently has. You have some flexibility in exactly what is stored in the internal nodes,
but since the key/pointer pairs should require 8 bytes each, and since the node is 512 bytes in
length, your internal node should be storing an array of about 60 key/pointer pairs. This means
that the B+-tree has branching factor of around 60. Thus, every internal node (except possibly the
root node) has between 30 and 60 children.

Seminar records are variable length. Leaf nodes of the B+-tree store the actual seminar records.
Thus, you will need to take the various fields of the seminar record and package them up as a series
of bytes to be stored in some B+-tree leaf node. When a record is found to match a search query,
you will need to unpack this series of bytes to get the various fields back for printing out. Note that
some fields in the seminar record are integers (and must be stored as such in the database) and
others are ASCII (and must be stored as such). Be careful about how you deal with terminating
ASCII strings. You could choose to store a string with a length field, or terminated by a null
character.

Since the records are variable length, there is not a particular number of records that can be
stored in a leaf node. Rather, the insertion operation would place a new record into a given leaf
node when there are enough free bytes in that node to store it, and otherwise split the node so that
the resulting two nodes are as close as possible to being balanced (and thus roughly half full).

Along with each seminar record stored in the leaf node, you should store the key value for that
seminar, and a length value (in bytes) for the seminar record. The records stored in a leaf node
should be in ascending order by key value (record ID). They should simply be arranged, in order,
adjacent to each other in the node. Search within a leaf node will be done by sequentially moving
through the records stored on that leaf node. When inserting a new record into the node, you will
simply shift to the right any necessary records in order to make room.

2



When your program has completed reading all commands from the command file, before it
terminates, it should flush to disk any dirty buffers and then close the database file. This will allow
you and the GTAs to examine the database file to help with debugging and grading. Your program
should also keep counters for the number of times you read a block from disk, and write a block to
disk. These counts should be output at the end of your program.

3


