
DNA Strings on Disk: Memory Manager Project

In this project you will implement a simple database system for DNA sequences. Your database
system will include an in-memory index structure to support searches by sequence identifier. The
bulk of the database will be stored in a binary file on disk, with a simple memory manager used to
keep track of where to put the DNA sequences.

As with Project 2, define DNA sequences to be strings on the alphabet A, C, G, and T. In this
project, you will store data records consisting of two parts. The first part will be the identifier,
called the sequenceID. The sequenceID is a relatively short string of characters from the A, C,
G, T alphabet. The second part is the sequence. The sequence is a relatively long string (could
be thousands of characters) from the A, C, G, T alphabet. The sequenceID’s will be stored in
the in-memory index structure (this will be either a DNA tree from Project 2 or a BST tree). The
main DNA sequences themselves are stored in a disk file, with placement of the strings within the
file controlled by a memory manager.

Input and Output:
The program will be invoked from the command-line as:
P3 <command-file>

The name of the program is P3. Parameter command-file is the name of the input file that
holds the commands to be processed by the program. Output from the commands will be written
to standard output. The program should terminate after reading the EOF mark.

The input for this project will consist of a series of commands (some with associated parameters,
separated by spaces), with no more than one command on a line. A blank line may appear
anywhere in the command file (except within the insert command, see below), and any number
of spaces may separate parameters. You need not worry about checking for syntactic errors. That
is, only the specified commands will appear in the file, and the specified parameters will always
appear. However, you must check for logical errors. Every command that is processed should
generate some sort of output message to indicate whether the command was successful
or not.

The commands will be as follows (in general, they are similar in spirit to those of Project 2).
The insert command consists of two lines (no blank lines will come between these two lines).

The first line will have the format:
insert sequenceId length
The sequenceId is a string (from A, C, G, T) that is used as the sequence identifier. The

length field indicates how long the sequence itself will be. The sequence itself appears on the line
immediately following the insert command. The sequence line will contain no spaces, nor will the
sequence be preceded or followed by spaces. The sequence consists only of the letters A, C, G,
T. The sequence can (and often will) be thousands of characters long. The sequenceIDs will be
stored in a search tree (DNA tree or BST). The long sequences are stored in the disk file. It is
an error to insert strings with duplicate sequenceID values. Such an error should be reported in
the output, and no changes to the tree structure, memory pool, or file contents should take place.
For each insert command, you should output a message that includes the sequenceID and which
indicates whether the insert operation was successful or not.

remove sequenceID
Remove the sequence associated with sequenceID from the DNA tree and from the memory

manager, if it exists. (You do not actually need to modify the disk file when removing the sequence.)
Print a suitable message if sequenceID is not in the tree. If a sequence is removed, then print the
complete sequence. Removing the sequence makes that space in the file available for reuse later.

1



print
Print out a list of all sequenceIDs in the database. Also, print out a listing of the free blocks

currently in the file. For each such free block, indicate its starting byte position and its size. Such
blocks should be listed from lowest to highest in order of byte position (the same order that they
are stored on the freelist).

search sequenceDescriptor
Print both the sequenceID and the complete sequence for each record whose sequenceID

matches sequenceDescriptor. The sequenceDescriptor can come in two forms. The first form is
simply as a sequence containing letters from the alphabet A, C, G, and T. If this form is given,
then print all sequences stored in the database whose sequenceID has sequenceDescriptor as a
prefix (including exact matches). The second form is a sequence from the letters A, C, G, and T,
followed by a $ symbol. If this form is given, then only an exact match of a sequenceID (without
the $ symbol) would be printed if it exists in the database, along with the associated string.

Implementation:
Your database system will consist of three main parts: An indexing structure to support the

searches, etc., the binary file that stores the large sequences, and a linked list used by the memory
manager to track the free blocks within the disk file.

For the indexing structure, you have two choices: the DNA tree from Project 2, or a standard
BST. In general, if you successfully completed implementation of the DNA tree, you should reuse
it for this project. No changes to the DNA tree should be necessary, all that should change for this
project is the contents of the data records. However, if you had trouble completing Project 2, then
you may use a BST instead for the index.

The main implementation component for this project is support for storing the large sequences.
You will store sequences on disk in a binary file. The name of this binary file will be biofile.out.
A major consideration is deciding where to store a given sequence in the binary file. This will be
controlled by a memory manager implementing First Fit. See Section 12.3 of the textbook for a
description of how this works. You will use a linked list to keep track of the free sections of the
binary file. Initially the binary file will be empty (have no size). Whenever a new sequence is
to be inserted, it should be inserted into a free section within the existing bounds of the file if
possible. When this is not possible, the size of the file should grow as necessary to accommodate
the new sequence. Whenever a sequence is removed from the file, the memory manager should
merge together adjacent free sections into a single larger section if possible.

Within the binary file you will not store the sequences as ASCII characters. Instead, you will
store each letter of the sequence as two-bit code values, where A has code 00, C has code 01, G has
code 10, and T has code 11. Four letters of the sequence will be packed into a single byte of the
file. Space for sequences will always be allocated as full bytes. If the length of a sequence is not a
multiple of 4, then the last few bits of the last byte storing the sequence will be unused.

Your memory manager should operate by receiving a sequence to store, and returning a “handle”
to its caller. The caller stores the handle so that it can later retrieve the sequence. You may
implement handles as you wish, but typically they will store the starting byte position of that
sequence in the file and the length of the sequence. Your indexing structure (the DNA tree or
BST) will store data records consisting of the sequenceId and the handle for the sequence.

Be careful about allocating space for storing sequences. When reading in the sequence for the
insert command, you are given the sequence length. You can use this to allocate a buffer into
which the sequence can be read. Likewise, when requesting a sequence from the memory manager,
a buffer will be created in which to place the sequence.

2


