
Huffman Coding Trees

Assignment:
You will write a pair of file compression programs based on Huffman coding trees. Typical

encoding schemes like ASCII use fixed-length coding schemes with each character represented by a
fixed number of bits. Instead, Huffman coding trees define variable length codes, where more fre-
quently occurring characters are encoded with fewer bits than characters that occur less frequently.
As a result, files encoded using Huffman coding trees often require significantly less space than
those that use fixed-length coding schemes.

Invocation and I/O:
The programs are invoked as huffencode infile outfile and huffdecode infile outfile

huffencode infile outfile encodes the contents of infile using a Huffman coding tree and
stores the tree and the encoded file in outfile. A Huffman coding tree should be created based
on the contents of infile. The file must first be opened, its contents read, and a frequency count
generated. The frequency count must then be used to generate a Huffman tree in memory. The
basic encoding unit is a single byte. The input file might be, but need not be, an ASCII file. Thus,
it will be necessary to represent all characters, including spaces, tabs, and non-printing characters.
For verification purposes, your program should print to standard output the code and frequency
for each character in the Huffman coding tree in ascending order by code value.

Upon completion, the output file outfile should contain a representation of the code list as well
as the encoded input file. The encoded output should be stored in binary format to make use of
the space gains from the encoding.

huffdecode infile outfile decodes the contents of infile and stores the decoded file in
outfile. The format of infile will be the same as the format of outfile for huffencode: it will
consist of the Huffman code list and the encoded version of the message. This program will first
reconstruct in main memory the Huffman tree based on the code list in the file, then will decode
the encoded information using the tree.

Upon completion, the output file should contain the decoded information. Of course, running
huffdecode on the output file from huffencode should result in the original file.

Design and Implementation Considerations:
Before implementing Huffman coding trees, it would be wise to read Section 5.6 of the textbook.

You may use the code from the textbook, though there is no requirement to do so.
Your Huffman coding trees should support binary data input, with the basic unit a single byte

of data. In writing to disk, your program must store the encoded data in binary format as well.
That is, don’t store each 0 or 1 as a separate character.

To ensure that your program can decode files encoded by other programs (including the test
files), the following standard ordering will be used for the output files:

• the number of codes (in decimal)

• the code values and their lengths

• the codes themselves (in binary)

• the number of coded characters (in decimal)

1



• the encoded message (in binary)

Note that the codes and the encoded message may overlap byte boundaries. Only the final byte
should be padded with extra zeros.

You should use a four-byte integer to store the number of coded characters. For any condition
where this is inadequate, an error message should be presented. The number of coded characters
will be byte aligned, not word aligned.

See the sample input files and explanations for more details.

2


