k-d tree Project

Assignment:

The projects for this semester will build upon each other to form a scheduling system for
training sessions. Eventually, it will be possible to enter records for training sessions, delete them,
and search by keyword, time, cost, or location. To get some idea of what the final goal will be, see
http://www.findaseminar.com/. Of course, your implementation will focus on the relevant data
structures to support (a simplified version of) such a system, without the graphical user interface.
And your implementation will support true spatial queries, which the FindaSeminar site does not!

For this project, you will be building the spatial indexing component to support queries by
location. Your implementation will be fairly “vanilla” in that you will be implementing a spatial
data structure without a lot of bells and whistles directed at the eventual training scheduling
system. The context for this project is different as well: a database of city records.

While you will reuse the k-d tree later, that will be in the context of the training scheduling
system, not the city GIS of this project. Therefore, flexibility, clarity, and good documentation will
be important to your future survival in this class!

The k-d tree:

A binary search tree gives O(log n) performance for insert, delete, and search operations (if
you ignore the possibility that it is unbalanced). This would allow you to insert and delete cities,
and locate them by name. However, the BST does not help when doing a coordinate search. You
could combine the (z, y) coordinates into a single key and store cities using this key in a second
BST. That would allow search by coordinate, but would not allow for efficient range queries —
searching for cities within a given distance of a point. The problem is that the BST only works
well for one-dimensional keys, while a coordinate is a two-dimensional key.

The k-d tree (see Section 13.3.1 of the textbook, pp. 436-441) is one of many hierarchical
data structures commonly used to store data such as city coordinates. It allows for efficient
insertion, deletion and search queries.

Input and Output

The name of your executable must be p1. There will be no input parameters to the program.
Your program will read from standard input (stdin) and write to standard output (stdout).
The input for this project will consist of a series of commands (some with associated parameters,
separated by spaces), one command for each line. No command line will require more than 80
characters. Commands are free format in that an arbitrary number of additional spaces may be
interspersed between parameters, and blank lines may appear between commands. You do not
need to check for syntax errors in the command lines (although you do need to check for logical
errors such as duplicate insertions or deletions of non-existent cities).

Each input command should result in meaningful feedback in terms of an output message.
Each input command should be echo’ed to the output. In addition, some indication of success or
error should be reported. Some of the command specifications below indicate particular additional
information that is to be output.

Commands and their syntax are as follows.

insert = y name

A city at coordinate (x, y) with name name is entered into the database. = and y are integers in
the range 0 to 1023. A name must start with a letter, and may contain letters (upper or lower
case), digits, and the underscore character. Names are case sensitive, so new_York is not the same
as New_York. It is an error to insert two cities with identical coordinates, but not an error to insert
two cities with identical names.

delete x y

The city with coordinate (z, y) is deleted from the database (if it exists). If no city exists with
these coordinates, it should be so reported.

delete name

The city with name name is deleted from the database (if it exists). If two or more cities have
this name, then all such cities must be removed. If no city exists with this name, it should be so
reported.

info z y

Display the name of the city at coordinate (x, y) if it exists.

info name

Display the coordinates of all cities with name name if any exist.

search z y radius

All cities within radius distance from location (z, y) are listed. You should also output a count of
the number of k-d tree nodes looked at during the search. x and y are integers with absolute value
less than 16384; radius is a non-negative integer less than 16384.

dump

The BST and the k-d tree are each listed in preorder. All city records are listed for each tree (so
that means each city will be listed twice). Records should be printed one per line, and appropriate
indentation should be used so that the structure of the tree can be deduced from the listing.

makenull

Initialize the database to be empty.

Example: Note: in this example, statements enclosed in {} are comments to help you under the

example; comments do NOT appear in the data file!

insert 900 500 Blacksburg
insert 500 140 Roanoke
insert 910 510 New_York
dump { print coords, name for 3 cities }
delete 500 140 its there to delete }
search 901 501 5 print info for one city }
info 500 140 it shouldn’t be there }
info 900 500 print coordinates and name }
makenull reinitialize }

P

Implementation:

You must maintain two tree structures to support access to the database. A BST will store the cities
indexed by name. A k-d tree will store the cities indexed by (X,Y’) coordinate. We recommend that each
tree store nodes whose data field is a pointer to a city record. Thus, each city has a single city record pointed
to by a node in each tree. You may store parent pointers in one or both trees if you feel that parent pointers
will make programming easier. Nodes deleted from the trees, as well as the city records, are to be placed on
a freelist.

Insert, delete and makenull operations affect both the BST and the k-d tree. The list operation
should perform a preorder traversal of both the BST and the k-d tree. First, traverse the BST, listing all
the cities in the order found. Then, traverse the k-d tree, again listing the cities in the order found. Info
with a name parameter should search the BST. Info with coordinate parameters should search the k-d tree.
The search command should search the k-d tree. Search should also output a count of the number of
k-d treenodes visited.

