
Allocating Objects with a Variable-Length Field

class Rec {
private:
 Rec(int id, double gpa, short sal) {
 ID = id;
 GPA = gpa;
 salary = sal;
 }

 ~Rec() { }

public:
 static Rec* construct(int id, double gpa, short sal, int stuffLen)

{
 char* space = new char[sizeof(Rec) + stuffLen];
 Rec* rec = new(space) Rec(id, gpa, sal);
 return rec;
 }

 void destroy()

{
 this->~Rec();
 delete[] reinterpret_cast<char*>(this);
 }

 int ID;
 double GPA;
 int salary;
 char major[4];
 char stuff[];
};

Caveat: Not quite standards-compliant C++.

Private constructor/destructor
prevents code from allocating
these objects directly (which
would prevent us from controlling
the size of the variable-length
field).

The construct method allocates a memory buffer
equal to the size of the defined fields in the class plus
the amount of space for the variable-length array
that the user requests. The parameterized version of
new is used to initialize the object.

We cannot delete directly an object allocated in this
fashion. Instead, we call the destructor explicitly and
then free the original buffer used to hold the object.

The variable-length field occurs at the
end of the class so that it occupies the
extra memory that was allocated.

Using the Variable-Length Object

const int STUFF_LENGTH = 36;

char major[4] = { 'C', 'S', 'E', 'D' };

char stuff[STUFF_LENGTH] = { 0 };
strncpy(stuff, "John Doe:1002 Anywhere Street", STUFF_LENGTH);

Rec* myrecord = Rec::construct(111223333, 2.345, 2222, STUFF_LENGTH);
memcpy(&(myrecord->major), major, 4 * sizeof(char));
memcpy(&(myrecord->stuff), stuff, STUFF_LENGTH * sizeof(char));

ofstream myFile("data4.bin", ios::out | ios::binary);
myFile.write((char*)myrecord, sizeof(Rec) + STUFF_LENGTH);

...

ifstream myRead("data4.bin",ios::in | ios::binary);
Rec* readRecord = Rec::construct(0, 0, 0, STUFF_LENGTH);
myRead.read((char*)readRecord, sizeof(Rec) + STUFF_LENGTH);

...

myrecord->destroy();
readRecord->destroy();

Record Layout In Memory and On Disk

0000: 25 22 A1 06 00 00 00 00 C3 F5 28 5C 8F C2 02 40 %"........(\...@

0010: AE 08 00 00 43 53 45 44 4A 6F 68 6E 20 44 6F 65 CSEDJohn Doe

0020: 3A 31 30 30 32 20 41 6E 79 77 68 65 72 65 20 53 :1002 Anywhere S

0030: 74 72 65 65 74 00 00 00 00 00 00 00 treet.......

int ID double GPA int salary char major[4] char stuff[]

Question: Where did the four 0-bytes occupying addresses 4-7
come from?

Advantages to Using Variable-Length Objects

• Relatively little boilerplate code had to be written to manage
object allocation/deallocation

• The object can still be read/written in a single operation by

passing the pointer to and size of the object to the appropriate
function

Disadvantages to Using Variable-Length Objects

• Still only works for the most basic of objects – none of the fields

can be pointers, or objects that contain pointers

• Only one variable-length field can be used

• Classes with virtual functions are also out – the hidden virtual

function table (vtable) pointer would be written to disk as part
of the object; reading it back would be disastrous

More Advanced Object Serialization

class Serializable {
public:
 virtual MemHandle writeObject(MemManager* manager) = 0;
 virtual void readObject(MemManager* manager, MemHandle handle) = 0;
};

class Contact : public Serializable {
public:
string name;
list<int> phoneNumbers;

MemHandle writeObject(MemManager* manager)
{
 int strLength = name.length() + 1;
 int phoneCount = phoneNumbers.size();

 int objLength =
 sizeof(int) // length of string
 + strLength // chars in string + final NULL
 + sizeof(int) // # of phone numbers
 + phoneCount * sizeof(int); // phone numbers in sequence

 char* objData = new char[objLength];
 char* temp = objData;

 memcpy(temp, &strLength, sizeof(int)); temp += sizeof(int);
 memcpy(temp, name.c_str(), strLength); temp += strLength;
 memcpy(temp, &phoneCount, sizeof(int)); temp += sizeof(int);

 for(list<int>::iterator it = phoneNumbers.begin();

it != phoneNumbers.end(); ++it)
{

 int phoneNum = *it;
 memcpy(temp, &phoneNum, sizeof(int)); temp += sizeof(int);
 }

 MemHandle handle = manager->insert(objData, objLength);
 delete[] objData;

 return handle;
}

Need to precalculate the
amount of space the object
will require in its serialized
representation before we can
allocate the buffer to pass to
the memory manager.

Copy any data about the
object into the buffer, in
any format that we see fit.

Send the buffer with the serialized
object to the memory manager,
free the buffer, and return the
handle to the object on disk.

More Advanced Object Serialization

void readObject(MemManager* manager, MemHandle handle)
{
 int objLength = manager->get(0, handle);

 char* objData = new char[objLength];
 char* temp = objData;

 manager->get(objData, handle);

 int strLength, phoneCount;

 memcpy(&strLength, temp, sizeof(int)); temp += sizeof(int);

 // This is kind of a trick -- since temp has been advanced to the first
 // character of the null-terminated name in the buffer, we can just
 // pass the char* to the string constructor and it will pull in the
 // entire string, stopping when it reaches the null char.
 name = string(temp); temp += strLength;

 memcpy(&phoneCount, temp, sizeof(int)); temp += sizeof(int);

 phoneNumbers.clear();
 for(int i = 0; i < phoneCount; i++)
 {
 int phoneNum;
 memcpy(&phoneNum, temp, sizeof(int)); temp += sizeof(int);
 phoneNumbers.push_back(phoneNum);
 }

 delete[] objData;
}

Modified get() method
just returns size of block if
passed a null pointer.

Read the data back out of the buffer
and into the fields of the object,
assuming the format used by the
writeObject() method.

Don’t forget to delete the
temporary buffer after the
object is loaded.

Using the Serialization Methods

MemManager* manager = /* pointer to a memory manager */;

Contact* contact1 = new Contact();
contact1->name = "Vincent Schiavelli";
contact1->phoneNumbers.push_back(5551234);
contact1->phoneNumbers.push_back(9876543);

MemHandle contact1Handle = contact1->writeObject(manager);

// Later in the program...

Contact* contact1Read = new Contact();
contact1Read->readObject(&manager, contact1Handle);

 Record Layout In Memory

Record Layout On Disk

0000: 13 00 00 00 56 69 6E 63 65 6E 74 20 53 63 68 69 Vincent Schi

0010: 61 76 65 6C 6C 69 00 02 00 00 00 82 B4 54 00 3F avelli.......T.?

0020: B4 96 00 ...

Length of name
Characters of
name, including

final null

Number of
elements in
phoneNumbers

Elements of
phoneNumbers

Contact

string name

list<int> phoneNumbers

char* data

Node* head

Vincent Schiavel...

Node* tail

5551234 9876543

Simplifying the Copying of Data into the Buffer

• Previous approach forced us to keep track of a pointer that
“walks across” the buffer so that we can copy each item of
data one after the other, or to read items from the buffer

• This, along with the memcpy() calls, is very error-prone; user

could forget to advance the pointer, pass in the wrong data
size, etc.

• Pre-calculating the size that the object will require on disk can

be non-trivial if the structure of the object is complex

Creating a “Binary Stream” Class

• Consider the stringstream classes – users can “push” and
“pull” data to/from them in a sequence

• The output stream maintains a pointer to its current position

and automatically grows the buffer as needed to fit more data

• The input stream takes an existing string and reads data from

it, also maintaining a pointer to the current position in the
buffer

• We can write some basic stream classes that mimic this

functionality, but with binary data instead of strings

Binary Output Stream Class

class obinarystream {
private:
 char* _data;
 char* _currentPtr;
 int _size;
 int _capacity;

 void growBuffer();

public:
 obinarystream() {
 _capacity = 16;
 _size = 0;
 _data = new char[_capacity];
 _currentPtr = _data;
 }

 ~obinarystream() { delete[] _data; }

 char* data() const { return _data; }

 int size() const { return _size; }

 template <typename Elem>
 friend obinarystream& operator<<(obinarystream& stream, const Elem& e);
};

template <typename Elem>
obinarystream& operator<<(obinarystream& stream, const Elem& e)
{
 while(stream._size + sizeof(Elem) > stream._capacity)
 stream.growBuffer();

 stream._size += sizeof(Elem);
 memcpy(stream._currentPtr, &e, sizeof(Elem));
 stream._currentPtr += sizeof(Elem);

 return stream;
}

We need to be able to get
a pointer to the internal
buffer and its size to pass
to the memory manager.

A templated operator<< lets us copy
just about anything into the memory
buffer. The implementation simply does
a direct memcpy() of the data in the
object passed in.

As before, we keep track of the
current position in the buffer.
Instead of pre-calculating the size,
we increase it as data is pushed in.

Binary Input Stream Class

class ibinarystream
{
private:
 char* _data;
 char* _currentPtr;
 int _size;

public:
 ibinarystream(int sz) {
 _size = sz;
 _data = new char[_size];
 _currentPtr = _data;
 }

 ~ibinarystream() { delete[] _data; }

 char* data() const { return _data; }

 int size() const { return _size; }

 template <typename Elem>
 friend ibinarystream& operator>>(ibinarystream& stream, Elem& e);
};

template <typename Elem>
ibinarystream& operator>>(ibinarystream& stream, Elem& e)
{
 memcpy(&e, stream._currentPtr, sizeof(Elem));
 stream._currentPtr += sizeof(Elem);

 return stream;
}

The implementation of operator>> is
even simpler because there is no need to
resize the buffer. We merely copy
sizeof(Elem) bytes into the element
reference passed in as an argument, then
advance the current position that far.

We let the ibinarystream allocate and
manage the buffer for us. We can use the
data() function to get a pointer to the
internal buffer that we can pass to the
memory manager’s get() function,
which will fill the buffer with data.

Using the Binary Stream Classes

MemHandle writeObject(MemManager* manager) {
 obinarystream os;
 os << name.length() + 1;

 for(int i = 0; i < name.length(); i++)
 os << name[i];
 os << '\0';

 os << phoneNumbers.size();
 for(list<int>::iterator it = phoneNumbers.begin();

it != phoneNumbers.end(); ++it) {
 int phoneNum = *it;
 os << phoneNum;
 }

 MemHandle handle = manager->insert(os.data(), os.size());
 return handle;
}

void readObject(MemManager* manager, MemHandle handle) {
 int objLength = manager->get(0, handle);
 ibinarystream is(objLength);
 manager->get(is.data(), handle);

 int nameLength, phoneCount;
 char ch;

 is >> nameLength;

 name.clear();
 for(int i = 0; i < nameLength - 1; i++) {
 is >> ch;
 name += ch;
 }
 is >> ch;

 is >> phoneCount;
 phoneNumbers.clear();
 for(int i = 0; i < phoneCount; i++) {
 int phoneNum;
 is >> phoneNum;
 phoneNumbers.push_back(phoneNum);
 }
}

We write the string character-by-
character, because passing a
string object to obinarystream
would write the pointers inside
the string object rather than the
character data.

Likewise, we have to read the
string back a character at a time,
remembering to also pull the
final null character out of the
stream before moving on.

