COGNITIVE SCIENCE 13, 467-505 (1989)

Skill Acquisition and the LISP Tutor

JOHN R. ANDERSON
FREDERICK G. CONRAD
ALBERT T. CORBETT

Carnegie-Mellon University

An analysis of student learning with the LISP tutor indicates that while LISP is
complex, learning it is simple. The key o factoring out the complexity of LISP is to
monitor the learning of the 500 productions in the LISP tutor which describe the
programming skill. The learning of these productions follows the power-law
learning curve typical of skill acquisition. There is transfer from other program-
ming experience to the extent that this programming experience involves the
same productions. Subjects appear to differ only on the general dimensions of
how well they acquire the productions and how well they retain the productions.
Instructional manipulations such as remediation, content of feedback, and timing
of feedback are effective to the extent they give students more practice program-
ming, and explain to students why correct solutions work.

INTRODUCTION

If one observes a student learning LISP, the first impression one gets is of a
very complex and perhaps chaotic phenomenon. It certainly stands as a
challenge to a theory of skill acquisition to make sense of that behavior. An
interesting possibility is that the apparent complexity is simply in the eyes of
the beholder. Just as the random dot stereograms (Julesz, 1971), which en-
code simple geometric objects seem complex, so it might be that behind the
complexity in LISP learning there is a very simple pattern of learning. All
one would need would be the right filter to bring that pattern into focus.
From early studies of LISP programming (Anderson, Farrell & Sauers,
1984), it seemed that this might be true. It was possible to argue, in specific
cases of students solving a particular problem, that the complexity of LISP
learning reflected the complexity of LISP itself and the complexity of the
student’s experiences with LISP, while the actual learning processes were
simple. The argument took the form of simulating the learning that occurred
in a specific coding episode. Unfortunately, such simulations of protocol

Correspondence and requests for reprints should be sent to John R. Anderson, Department
of Psychology, Carnegie-Mellon University, Pittsburgh, PA 15213-3890

467

468 ANDERSON, CONRAD, AND CORBETT

studies only examine a small fraction of the curriculum by a few students.
In order to confirm the hypotheses about how complex skills are acquired, a
methodology facilitating the study of many students mastering the whole of
a complex skill would be required.

The development of a computer-based tutor for teaching introductory pro-
gramming was partly motivated by the desire to place LISP learning under
systematic analyses. The tutor has been in use teaching undergraduates at
Carnegie-Mellon University since the fall of 1984. The tutor provides stu-
dents with a series of programming exercises and gives help when needed as
the students generate solutions. The tutor has been shown to produce signifi-
cant performance enhancement. In two evaluation studies, students com-
pleted the exercises with the tutor in one-third to three-quarters the time
required by control groups who completed the exercises on their own. In
addition, students using the tutor scored at least as well on tests as the con-
trol group, and in one of the studies scored about one letter grade higher on
the final test. There is evidence from the lab, however, that the tutor is not
as effective as a human tutor. Thus, while the LISP tutor is effective, it is by
no means utopian.

The major motivation for developing the tutor was to shed light on issues
concerning the nature of cognition. At the heart of the tutor is a cognitive
model of the knowledge an ideal student would employ in doing the coding
exercises. As described below, this knowledge is represented in the form of
if-then rules (productions) for code generation. When provided problem
descriptions analogous to those given the student, the model can generate a
step-by-step solution to the exercises required of the students. The model
also contains incorrect coding rules that generate errors which actual stu-
dents are likely to make in various contexts. The tutor provides assistance to
students essentially by running the model in synchrony with the student,
comparing the student’s response at each step to the relevant correct and
incorrect rules and responding accordingly. Elsewhere (Anderson, Boyle,
Corbett, & Lewis, in press; Anderson & Reiser, 1985; Corbett & Anderson,
in press) the LISP tutor has been described in detail, including the philoso-
phy of its design, and assessments of its instructional effectiveness. This
article is concerned with examining its contributions as a tool for cognitive
science research. Qur goal is to assess the adequacy of the ACT* theory
(Anderson, 1983), as embodied in the student model, in describing the be-
havior of students learning LISP. The basic instructional strategy of the
tutor is to get the student to mimic the steps of the ideal production model.
It was by no means obvious that such an instructional strategy would work,
and its success serves as a general confirmation of the ACT* theory. The
goal of this article is to provide a more specific accounting of the behavior
of students with the tutor, and determine if these behavioral details corre-
spond to the ACT* theory.

SKILL ACQUISITION AND THE LISP TUTOR 469

Define a function called "create-list" that accepts one
argument, which must be a positive integer. This function
returns a list of all the integers between 1 and the value of
the argument, in ascending order. For example,

(create-list 8) retums (1 23 45 6 7 8).

You should count down in this function, so that you can just
insert each new number into the front of the result variable.

CODE for create-list

(defun create-list <parameters>
<process>)

Figure 1. The appearance of the tutor screen at the beginning of a coding problem

An Example Interaction with the LISP Tutor

While it is not the intention of this article to go into the details of the tutor’s
implementation, it will be useful to display one sample of what it is like to
interact with the tutor. Figure 1 depicts the terminal screen at the beginning
of an exercise. The screen is divided into two windows, and the problem
description appears in the “‘tutor window”’ at the top of the screen. As the
student types, the code appears in the ‘‘code window’’ at the bottom of the
screen. This exercise is drawn from Lesson 6, in which iteration is being
introduced. Students are familiar with the structure of function defini-
tions by this point, so the tutor has put up the template for a definition, fill-
ing in defun and the function name for the student. The symbols in angle
brackets represent code components remaining for the student to supply.
The tutor places the cursor over the first symbol the student needs to ex-
pand, <PARAMETERS>.

470 ANDERSON, CONRAD, AND CORBETT

As the student works on an exercise, the tutor monitors the student’s
input, essentially on a symbol-by-symbol basis. As long as the student is on
some reasonable solution path, the tutor remains in the background and the
interface behaves much like a structured editor. The tutor expands templates
for function calls, provides balancing right-parentheses for students, and
advances the cursor over the remaining symbols which must be expanded. If
the student makes a mistake, however, the tutor immediately provides feed-
back and gives the student another opportunity to type a correct symbol.
‘When the student types another response, the feedback is replaced either by
the problem description (if the response is correct) or another feedback
message (if the student makes another error). The tutor will also provide a
correct next step in a solution, along with an explanation if the student
appears to be floundering,' or if the student requests an explanation.

Table 1 contains a record of a hypothetical student completing the code
for the exercise. This table does not attempt to show the terminal screen as it
actually appears at each step in the exercise. Instead, it shows an abbreviated
“‘teletype’’ version of the interaction. As described above, while the student
is working, the problem description generally remains in the tutor window,
while the code window is being updated on a symbol-by-symbol basis. In-
stead of portraying each update to the code window in the interaction, the
table portrays nine key ‘‘cycles’’ in which the tutor interrupts to communi-
cate with the student. At each of these enumerated cycles the complete con-
tents of the code window are shown, along with the tutor’s response. The
tutor’s response is shown below the code to capture the temporal sequence
of events; on the terminal screen, the tutor’s communications would appear
in the tutor window above the code. In each cycle all the code which the
student has typed since the preceding key cycle is shown in boldface. How-
ever, in each case, the tutor is responding specifically to the last symbol the
student typed.

In the first of the cycles displayed, the student has typed in the parameter
list and has called loop in order to iterate. The tutor reminds the student
that it is necessary to create some local variables before entering the loop.

In the second cycle, the student has called let and is about to create a
local variable. The template for numeric iteration calls for two local vari-
ables in this function, so the tutor puts up a menu to clarify which variable
the student is going to declare first.

In the third cycle, the student has coded an initial value which would be
correct if the function were going to count up. However, this exercise is
intended to give the student practice in counting down, so the tutor inter-
rupts the student.

' A student is judged to be floundering at a step in the solution if he/she repeats the same
type of error three times or makes two mistakes that the tutor does not recognize.

TABLE 1
A Teletype Depiction of a Hypothetical Student Completing the Code
for the Function create-list with the Tutor

The Problem Description

Define a function called “create-list” that accepts one argument, which must be a positive
integer. This function returns a list of all the integers between 1 and the value of the argu-
ment, in ascending order. For example,

(create-list 8) returns (1234567 8).

You should count down in this function, so that you can just insert each new number into the
front of the result variable.

Cycles in which the tutor communicates with the student
1. (defun creaote-list (num)
(loop)
You will need loca! variables in this function. So before you code anything else, there is a
particular LISP operator you need fo code.

2. (defun creat-list (num)

(let ({)

<BODY>))

Which of the following do youv want to do?

PRESS: IF YOU WANT TO

1 Initialize o variable to hold the list of digits between
1 and the value of the parameter.

2 Initialize o counter variable to keep track of how
many times we go around the loop.

3 Have the tutor choose.

Menu choice: 2

3. (defun create-list (num)
(let {(count 1)
<OTHER-INITALIZATIONS >)
<BODY>))

In this problem we won't want to start counting at the some value each time we call the

function, so we can't initialize the counter to a constant like 1. How is the starting value
being communicated to the function?

4, (defun create-list (num)
(let ({count num)
(numlist {list num)))
(lop))

Did you mean loop (y or n)? y

5. (defun create-list (num)
(let {count num)
(numlist (list num)))
(loop
{cond ((equal count 1) numlist))
<LOOP-ACTIONS2>)))

You do want to retumn the variable “numlist” here, but just typing it into the code won't
accomplish that. What LISP operator will allow you to return something from a LOOP?

(continued)
47

472 ANDERSON, CONRAD, AND CORBETT

TABLE 1 (Continued)

6. (defun create-list (num)
(let ({count num)
(numlist (list num)))
(loop
(cond ((equal count 1) (return numlist)))
<LOOP-ACTIONS2>)))

In numeric iteration the first thing you should do after the exit test is update the counter
variable. You can use the function SETQ to do this.

7. (defun create-list (num)
(let ({count num)
(numlist (list num)))
(loop
(cond ((equal count 1) (return numlist)))
(setq count (1- count))
(cons)))

You've got the right ideaq, since you'll need to use the function "cons”, but remem-
ber you are trying to insert the new value of the counter into the list. What LISP
function allows you to assign the results of this function call to a local variable?

8. (defun create-list (num)
(let {count num)
(numlist (list num)))
(loop

(cond ((equal count 1) (return numlist)))

(setq count (1- count))

(setq numlist (list)))
if you LIST together arguments like 7 and (8) you get (7 (8)). What you want is (7 8). Try
another function that combines things together.

9. (defun create-list (num)
(let {count num)
{numlist (list num)))
(loop
(cond ((equal count 1) (return numlist)))
(setq count (1 count)
(setq numlist (cons count numlist)))))

——— YOU ARE DONE. TYPE NEXT TO GO ON AFTER ———
——— TESTING THE FUNCTION YOU HAVE DEFINED — ——

THE LiISP WINDOW

=> (create-list 10)
(12345678910)

=> next

In the fourth cycle, the student has made a typing error which the tutor
recognizes, and in the fifth cycle the student is attempting to return the cor-
rect value from the loop, but has forgotten to call return.

SKILL ACQUISITION AND THE LISP TUTOR 473

In the sixth cycle, the cursor is on the symbol < LOOP-ACTIONS2>
and the student has asked the tutor for an explanation of what to do next.
The tutor tells the student what the current goal is and what symbol to type
next in order to accomplish the goal. In addition, the tutor puts the symbol,
setq, into the code for the student.

In the seventh cycle, the tutor recognizes that the student is computing
the new value for the resuit variable, but has forgotten that the new value
must be assigned to the variable with setq. In the eighth cycle, the student
has gotten mixed up on the appropriate combiner function to use in updating
the result variable. The tutor tries to show, by means of an example, why list
doesn’t perform quite the right operation and another combiner is needed.

Finally, in the ninth cycle, the student has completed the code. Note that,
for illustration sake, this interaction shows students making rather more
errors than they usually do. Typically, the error rate is about 15% while it is
approximately 30% in this dialogue.

After each exercise, the student enters a standard LISP environment called
the LISP window. Students can experiment in the LISP window as they
choose; the only constraint is that they successfully call the function they
have just defined (which the tutor has loaded into the environment for them).

ACT* AND TUTORING

The focus in analyzing student interactions with the LISP tutor here will be
on their implications for the ACT* theory (Anderson, 1983, 1987b). While
the ACT* theory is quite complex, there are basically three claims in it that
are significant in the instruction of a skill like LISP programming. These
assumptions are discussed in this section, along with their consequences for
instruction.

1. Production Rule Representation of a Skill

According to the ACT* theory, a skill like LISP programming can be repre-
sented as a set of independent production rules. So, for instance, consider
the following piece of LISP code which creates a function that inserts the se-
cond element of one list at the beginning of another list:

(defun insert-second (lisl lis2)
(cons (car (cdr lis1)) lis2))

The following are the production rules that would apply in coding this
function:

p-defun
IF the goal is to define a function

THEN code defun and set subgoals
1. To code the name of the function.

474 ANDERSON, CONRAD, AND CORBETT

2. To code the parameters of the function
3. To code the relation calculated by the function

p-name
IF the goal is to code the name of the function
and =name is the name
THEN code =name

p-params
IF the goal is to code the parameters of the function
and the function accepts one or more arguments
THEN create a variable for each member of the set
and code them as a list within parentheses

p-insert
IF the goal is to insert one element into a list
THEN code cons and set subgoals
1. To code the element
2. To code the list

p-second
IF the goal is to get the second element of a list
THEN code car and set a subgoal
1. To code the tail of the list

p-tail
IF the goal is to code the tail of a list
THEN code cdr and set a subgoal
1. To code the list

p-var
IF the goal is to code an expression
and a function parameter has the expression as a value
and =name is the name assigned to that parameter
THEN code =name

About 500 such production rules have been created to encode the skill of
programming in LISP. The 500 rules define a prescriptive model of how the
student should solve programming problems. It is called the ideal student
model. A major fraction of tutor development has gone into developing
such rules. It is a difficult task to define a set of rules that will solve a large
class of problems. It amounts to solving a subset of the automatic program-
ming problem (Barr & Feigenbaum, 1982) with the added constraint that the
solution be in a form that can be realized in the human head.

2., Declarative Origins of Knowledge

Although the theory holds that the skill knowledge of an experlenced stu-
dent is represented as a set of production rules, it is not the case that the skill
begins in this form. According to the theory, one cannot present these pro-
duction rules to the student and expect the student to encode them directly

SKILL ACQUISITION AND THE LISP TUTOR 475

TABLE 2
Function Calls Value Returned Operation
(car '(c d f)) c Return the first element in the list
(cdr'(c d f)) (df) Return the list with the first element removed
(cons ‘c'(d f)) (cdf) Insert the first argument at the beginning of
the second argument
(list ‘¢ '(d f)) {c(df)) Make a list out of the arguments

as production rules. Instead, relevant information must be initially encoded
in declarative knowledge structures by the student. Here, for instance, is the
instruction presented in Anderson, Corbett, and Reiser (1987) relevant to
the production rule p-tail above:

The function cdr accepts one argument, which must be a list, and returns the
tail of the list. That is, it returns a version of the list with the first element
deleted. (p. 10)

Table 2, also drawn from Anderson, Corbett, and Reiser, summarizes
the English description and provides an example function call for edr and
three other elementary list-processing functions. An informal observation is
that students refer to the examples in this table a great deal more than they
do to the English instruction.

In any case, students must encode such information in a declarative repre-
sentation of what a function does and use it to guide their programming. In
the ACT* theory there is a process called knowledge compilation which con-
verts the initial interpretive use of declarative knowledge into a procedural
production-rule form. Thus, the ACT* theory of learning is one of learning
by doing—the only way one gets knowledge into its ultimate procedural form
is by practicing the operations which these production rules will implement.

There are clear pedagogical implications of this initial stage of using
declarative knowledge. One is that one should carefully fashion it so that
the target productions will be compiled. One method of accomplishing this
goal would be to guide carefully the students’ interpretation of the instruc-
tion and extrapolation of this instruction to the target problem. A tutor
which would do this might look much like the Socratic WHY tutor of Stevens
and Collins (1977). However, developing such tutorial interactions is not
what this project has focused on, and it remains a future research goal. In-
stead of engaging the student in a dialogue, the tutor gives the student the
opportunity to practice coding and comments on the understanding which
the student demonstrates. This approach has proven successful.

Part of the reason for ignoring the acquisition of declarative knowledge
is the intimate connection of this with comprehension of natural language
which would raise a host of complexities. It certainly is possible that careful
fashioning of the instruction that precedes practice might have substantial
pedagogical benefit. The working assumption here is simply that the student

476 ANDERSON, CONRAD, AND CORBETT

emerges from this instruction with & probability of having extracted the cor-
rect information and the tutor takes it from there.

3. Tuning of the Skill

One’s instructional objectives are not completed when the student has formed
production rules to embody the skill. It could be the case that these rules
are incorrect, overly specific, or overly general. Thus, one has to monitor
the student’s performance to determine if the rules are correct and show the
student what is correct if the student is in error, It is also the case that as
these productions are practiced they can increase in strength so that they
will apply more readily and rapidly. Thus, the tutor tries to monitor how
well students are doing on individual productions and selects problems to
practice rules on which the tutor judges a student to be weak. Much of the
effectiveness of the LISP tutor appears to be because of its ability to moni-
tor student performance on specific productions, which allows it to respond
immediately to specific errors and to give individualized practice.

Skill Acquisition is Simple

Perhaps the most interesting point about the ACT* theory of skill acquisi-
tion is that there is nothing more to skill acquisition than envisioned under
assumptions 1-3 above. Thus according to the ACT* theory, the process of
acquiring a complex skill like LISP programming is very simple in and of
itself. All the complexity is due to the structure of the domain, reflected in
the structure of the productions, and not in the learning process. If it can be
confirmed that the theory is accurate in its analysis of the learning of LISP,
this would provide very substantial support for the ACT* theory generally.

The research to be reported in this article is aimed at putting to test
assumptions 1 and 3 above; by its structure, the tutor does not permit the
analysis of assumption 2. The absence of any analysis of part 2 necessarily
limits conclusions of simplicity. It will be argued that learning is simple,
after the initial declarative information is incorporated.

Although much of the data will be presented in summary form only, an
attempt has been made to be exhaustive in presenting all the features of stu-
dent behavior with the LISP tutor that have been identified in this project.
This has the cost of not focusing on just the most interesting results. How-
ever, if one wants to conclude that skill learning is simple, all the known
trends should at least be mentioned with nothing held back from the reader.
It is only in the context of an extensive effort to identify complexity in learn-
ing, that the conclusion of simplicity becomes compelling.

PRODUCTION RULES AS THE UNITS OF SKILL

In this section, a number of analyses of student interactions with the LISP
tutor will be detailed. It is worth identifying at the outset how this data was

SKILL ACQUISITION AND THE LISP TUTOR 477

analyzed in order to shed light on the purported production rules. The data
from the LISP tutor comes in as a stream of keystrokes and responses by the
tutor. This data can be partitioned into cycles in which (1) the tutor sets a
coding goal (i.e., places a cursor over goal symbol on the screen); (2) the
student types a unit of code corresponding to a production firing (generally
a single atom or “‘word”’ of code); and, (3) the tutor categorizes the input as
correct or incorrect (or as a request for help) and responds accordingly. If
the response is correct, the tutor will set a new goal in the next cycle. If it is
incorrect, the tutor provides feedback and resets the same goal in the next
cycle. If the student asks for an explanation or appears to be floundering at
the goal, the tutor will provide the correct answer and set a new goal in the
next cycle.

Thus, consider the example of insert-second above, and imagine that the
student has just typed cons. At this point the screen would look like this:

(defun insert-second (lis1 lis2)
(cons <eleml> <elem2>))

In the following cycle the tutor would place the cursor over the goal sym-
bol <eleml>, the student would type code, for example, ‘‘(car’’ and when
the student has typed the final space after car, the tutor would evaluate the
input and respond. It is of interest here to extract two measures of produc-
tion firings from this data: time and accuracy. Firing time is measured only
for goals in which the student’s first response is correct. The measure of
firing time is the time from when the tutor is ready to accept input (cursor
over <eleml> in the above example) to when the student has completed
input (the final space bar in the above example). Two measures of firing
accuracy have been extracted: (1) the probability that a student responds
correctly in his/her first attempt at a goal, and (2) the number of extra at-
tempts (cycles) required to achieve a correct answer at a goal. The second
measure will be largely used since it proves to be more sensitive (often initial
errors are just slips while repeated errors are signs of real difficulty). As a
rule of thumb, the number of extra attempts is about one and a half times
the number of errors.

What is happening during the period of time attributed to a production?
It is clearly not just a single correct production rule firing. There must be
the setting of subgoals to type the individual characters, and the actual
typing of these characters. Moreover, students can delete characters in order
to correct mistypings, or even change their minds about the correct code unit
to type. The tutor will also intervene to block syntactically illegal charac-
ters. Thus, the time for these segments will involve much more than simply
the time for the target production to fire. The target production just sets the
top level organization for the episode. However, it is the rule of interest,
because it represents the new chunk the student must learn. Also, since
typing and interacting with the tutor presumably represent skills at a rela-

478 ANDERSON, CONRAD, AND CORBETT

tively high asymptotic level of proficiency, learning the coding rules ac-
counts for much of the variation in performance across segments.

Having segmented the student protocol into such production units, one
can then begin to analyze various statistics associated with each unit. This
requires aggregating events involving the same production. When all pro-
duction firings in an exercise are collapsed, the data does not appear partic-
ularly systematic. As an example, Figure 2 plots the average coding time
and error rate for each of the first six coding problems in Lesson 3 from
data collected in the academic year 1985-1986. As can be seen, there is not
much of a systematic trend, consistent with one’s first impression that the
LISP data is chaotic. The critical question is whether one begins to see
systematic trends when the data is partitioned not by exercise, but by coding
opportunity for the individual production rules. Figure 2 plots average times
for the first occurrence of each production, the second occurrence, and so
on. As can be seen, there is now a very systematic learning curve, To the
extent that such systematic trends are seen and to the extent they are inter-
pretable, this will be evidence for the psychological reality of production
rules. A further issue which will be discussed in a later section is whether
this level of aggregation, across all production rules, hides any systematic
trends. If it does, and if these trends are not predicted by the ACT* theory,
this would be important evidence against the theory.

Learning
One of the first analyses completed looked for learning trends within the
LISP tutor. This question was first examined in data collected from 34 stu-
dents who learned LISP from the tutor in the spring of 1985. Figures 3 and 4
present one relevant analysis for Lessons 2, 3, and 5, from that course. For
each lesson, the fate of new production rules has been examined as they are
practiced across opportunities in the lesson (i.e., rules which had not
appeared in earlier lessions).? Figure 3 plots the number of errors the stu-
dent makes per goal (this measure is bounded above by three in the LISP
tutor), and in Figure 4 firing time has been plotted. Both dependent mea-
sures in the figures are plotted on a log scale. Along the abscissa of each
graph is log practice. Most production rules do not have as many as eight
opportunities for practice, which is why later trials have been aggregated.
The individual lessons show some variability but the overall trend is quite
clear. There is a linear relationship between log performance and log practice,
at least for the second, and following opportunities. Such linear functions
on log-log scales imply a power function relationship between performance
and practice—a relation which is typically found in learning research (Newell
& Rosenbloom, 1981). There is some indication that the first point may be

¥ Lesson 1 is excluded because students received special help with their first few problems,
and Lesson 4 is excluded because there are very few new productions.

Seconds

20.0 -
nth occurrence
of productions
across exercise
15.0
all productions in
problem n
10.0 |-
1 | | 1 1 |
1 2 3 4 5 €
.50 |- n
40
all productions in
2 problem n
e
e
w
Y=
© 30 |
™
2
E
3
z
20 [~
nth occurrence
of productions
across exercise
A0
] | | 1 | 1
1 2 3 4 5 6

Flgure 2, Mean time per production (part a} and mean error rate (part b) in Lesson 3 as
function of serial position. The contrast is the regularity of the data when it is aggregate
over productions that appear in the nth problem versus productions that appear for th
nth time

480 ANDERSON, CONRAD, AND CORBETT

1.00
s
g 50
w . —
Lesson 5
k]
!
3
S
Average
Lesson 2
20 Lesson 3
| | |]
2 3&4 5-8
Opportunities

Figure 3. The number of errors per production made by students as a function of the
amount of practice in the lesson in which the productions are introduced

off the linear relationship. It appears that the improvement from first to
second trial may be greater than would be predicted extrapolating back-
wards from the rest of the curve.® According to ACT*, the large improve-
ment from the first to second opportunity reflects the compilation of the
production rule following the first opportunity.

Whereas Figures 3 and 4 provide an analysis of how learning progresses
within a lesson, Figure 5 provides an analysis of what happens to production
rules across lessons. This figure tracks performance on production rules in
the lesson in which they are introduced (referred to as the *“original’’ lesson)
and in the immediately subsequent lesson (referred to as the ‘‘subsequent’’
lesson). (Productions are included in this analysis only if they occur at least
twice in each of the respective lessons). In this figure, students’ performances
(time and errors) were plotted the first and last times they coded a produc-

* One can raise questions about just how to place the first trial on these graphs. The issue is
how to assign a measure of prior practice to the first trial (and subsequent trials). One might
argue that it has 0 trials prior experience, not 1. On the other hand, one might argue that prior
study gives it a prior practice greater than 1.

SKILL ACQUISITION AND THE LISP TUTOR 48

20 |-
'§ Lesson §
o 10 |-
(1]
3 Average
Lesson 2
Lesson 3
5 -
L | | |
1 2 344 5-8
Opportunities

Flgure 4. Time for correct coding per production as a function of the amount of practice in
the lesson in which the productions are introduced

tion in the original lesson, and the first and last times they coded the pro-
duction in the subsequent lesson. Rapid improvement is seen in the original
lesson, some forgetting between lessons (which average a week apart), and
further learning within the subsequent lesson.

The regularity of the data in Figures 3 through 5 is remarkable. Except
for the possibility of a discontinuity from the first performance to later per-
formances, there is nothing in the data that would not be expected from
what is known about human learning in general. The learning trends are
exactly what would be expected from an ACT* analysis. Of course such
regularity and predictability supports the proposition that the production
rules are the right units of analysis.

One might wonder if a production rule analysis is required to bring out
the trends in the data. Perhaps these learning regularities are not defined on
production rules but rather on something correlated with production rules.
An obvious hypothesis is surface code. Thus, it might not be p-insert that is
improving in performance but rather simply the typing of the LISP function
cons that corresponds to it. Fortunately, the LISP tutor offers some oppor-
tunities to separate out these two possible explanations. This is because in

482

20

Seconds
°

.80

N
(=]

Number of Errors
o
o

.10

ANDERSON, CONRAD, AND CORBETY

B 3&4

2&3
Average

5&6

1 l | |

First Last First Last
Original Original Subsequent Subesequent
Lesson Lesson Lesson Lesson

(a) time per production

First Last First Last
Original Original Subsequent Subesequent
Lesson Lesson Lesson Lesson

(b) errors per production

Figure 5. Transfer of productions from one lesson to the next

some cases there is a many-to-one relationship between production rules
and surface LISP code. For instance, the rule p-first codes car when trying
to get the first element of a list, but there is a different rule, p-second, that

SKILL ACQUISITION AND THE LISP TUTOR 483

codes car when trying to get the second element of the list. It turns out that
the simpler p-first is introduced earlier in the curriculum. After it occurs a
number of times, the first opportunity for p-second to fire is introduced.
The error rate on the last time p-first was used, before p-second was intro-
duced, was .41. The error rate on the first opportunity for p-second was
.68. This trend for increased error is opposite the general trend of fewer
errors with more practice.

A number of other situations were considered in the early lessons in
which two productions generated the same surface code. For instance, stu-
dents are introduced to cond in Lesson 3 to code a main function body while
in Lesson 6 cond is used for the first time to terminate iteration. The last
time cond is used for a function body in Lesson 4 the error rate was .32 per
opportunity, while it is 1.05 the first time cond is used for terminating itera-
tion. The last time subjects have to code a number as a function argument,
their error rate is .24. The first time they have to code a number to initialize
a variable their error rate is 1.64. Subjects first use setq to initialize global
variables and then to initialize local variables. Their error rate on the global
variable setq production is .24 the last time before the local variable produc-
tion. Their error rate on the local variable setq production is .84 the first
time. Variables are coded by three separate productions in these early lessons:
first for global variables, then for parameters of a function, and then for
local variables. Their error rates drop to .38 for the global variable, jump to
2.18 for the first parameter, then decrease to .03 for parameters (which
receive a lot of practice), and then jump to .84 for the first local variables.
Thus, it is seen that there are sharp discontinuities in the overall learning if
surface code is considered, but not if production rules are considered.

Regression Analysis
A more exhaustive analysis was performed on the data from the fall 1985
and spring 1986 semesters; while there were more students in these classes,
only 42 had complete data sets and these were used for this analysis. There
were 12 lessons in the tutor at that time. Regression analyses were performed
in which an attempt was made to find best predictor equations for log coding
times and errors separately for productions new to the particular lesson,
and productions introduced in an earlier lesson. We collapsed into a single
number all observations where a subject applied the same production (ac-
cording to the tutor’s analysis) in the same serial position on the same LISP
function in a particular lesson (in order to fit the size constraints of our
regression program). This meant there were 6409 observations of coding old
productions, and 3350 observations of coding new productions.

The following regression equations were determined as the best fitting
function for new productions:

log(time) = 1.35 — .03(lesson number) — .31 log(within lesson opport.anity)
— .15 log(absolute position in code)

484 ANDERSON, CONRAD, AND CORBETT

mean errors =.23 — .11 log(within lesson opportunity)
—.03 log(absolute position in code)

where “‘lesson number’’ is just the number 1 through 12, ‘‘within lesson
opportunity’’ is the dependent measure plotted in Figures 3 and 4, and *‘ab-
solute position in code’’ is the serial position of the code in the function
definition. A rather similar best fitting production was obtained for the old
productions:

log(time) =1.31 - .01(lesson number) —.25log(within lesson opportunity)
—.26 log(absolute position in code)

mean errors =.16— .09 log(within lesson opportunity)
— .02 log(absolute position in code)

Each of these predictor variables is statistically significant. Their appear-
ance in these equations is particularly interesting when one considers the
predictor variables which did not prove significant when placed in competi-
tion with these variables. They included: depth of embedding of the code
which was being written, number of pending goals (or unexpanded symbols
to the right), left-to-right position in the pretty-printing of the code, famili-
arity of the concept behind the production (as rated by a panel of four
judges), and number of keystrokes in typing the symbol. It is also the case
that the logarithm of lesson opportunity and the logarithm of absolute posi-
tion are better predictors than are untransformed scores.

The effect of lesson number is quite significant for reaction times. It may
just reflect an increased familiarity with the tutor interface. The fact that
the same variable shows up for old productions as for new productions sug-
gests that at least part of the phenomenon is a matter of general interface
learning. It is also the case that lesson number is not significantly related to
error rate. This is further evidence that the effect may be an interface effect
and not reflect any real proficiency in coding.

The within-lesson opportunity effect is just the learning factor illustrated
in Figures 3 and 4 for the spring 1985 data. Figure 6 shows the average coding
times over the first six opportunities in a lesson separately for old and new
productions for this data. Again, in the new productions, a marked improve-
ment is seen from the first opportunity to later opportunities, and much
slower improvement thereafter.

The effect of absolute serial position in the code is interesting because it
has been established that the effect is logarithmic, not linear, and not a
result of potentially confounded variables such as depth of embedding,
number of pending goals, or left-to-right position in a pretty-printing. It is
also the case that absolute serial position is a better predictor than relative
serial position or a total length of the function. Figure 7 illustrates the aver-
age serial position effect over the first 33 positions. The initial long pause is

SKILL ACQUISITION AND THE LISP TUTOR 485
16

ST = new productions
14+ - old productions

13

11
10

T v 7T

Coding Time {In seconds)
~ ®» ©

1 @
T

Opportunity

Figure 6. Mean coding time for old and new productions as a function of coding opportunity

undoubtedly due to reading the problem specifications and planning.* The
subsequent speed up is thought to be attributable to subjects using, and
hence practicing, their problem understanding as they go through the prob-
lem. This would strengthen their declarative representation and so speed
their access to it. Anderson (1982), in providing an analysis of the power
law relationship between practice and performance, noted that according to
the ACT™* theory there should be an effect both of procedural practice and
declarative practice, and the overall performance improvement should be
the product of two power practice functions.

It should be noted that such within-problem practice effects have also
been documented in the data collected from the geometry tutor (Anderson,
Boyle, & Yost, 1985). The time to fire a production in ACT* is basically the
time to match the condition of the production to a declarative representation
of the problem. The time to do this is both a function of the strength of the
production and the level of activation of the declarative information. The
level of activation of the declarative information is in turn a function of its

4 There is a minor peak at Position 4 which occurs exclusively in Lessons 2 and 3 where
some subjects will pause after typing ‘‘/(defun <name> (<parameters>>). ..’ before the func-
tion body. In later lessons ‘‘(defun <name> ' is automatically presented and they do not have
to type this stereotypic beginning.

486 ANDERSON, CONRAD, AND CORBETT

251

15}

10}~

in (Ume)

1 \ 1 1 1 1 | 1 |
1 2 4 6 8 10 15 20 25

In (position In cocde)

Figure 7. The effect of serial position in code on production time in Lessons 2 and 3

strength. It is also noteworthy that the ACT* theory (see Equation 4.1 in
Anderson, 1983) implies that the effect of declarative activation and produc-
tion strength should be superadditive. That is, there should be a greater effect
of the same difference in production strength at lower declarative levels.
The relationship is multiplicative. The additive relationships found among
log serial position, log practice, and log time are consistent with the predic-
tion of a multiplicative relationship among the untransformed variables.

A more direct test of the proposed superadditivity was attempted. Pro-
ductions were broken into two categories which were above or below the
median use. Serial positions were similarly broken into above and below the
median. Data were then classified into a 2 X 2 matrix according to whether
the production involved was above or below the median frequency, and that
serial position above or below the median frequency. This analysis was done
separately for each subject. Then an analysis of variance (ANOVA) was
done where the factors were subject, (43 values), production frequency, (2
values), and serial position, (2 values). Separate ANOVAs were performed
for old and new productions on mean coding time. These data, as well as
mean frequency and mean serial position, are reported in Table 3.

There are main effects for both factors, but critically there is an interac-
tion between the two of them (F1, 42=9.09; p< .0l for new; F1, 2=21.75;

SKILL ACQUISITION AND THE LISP TUTOR 487

TABLE 3
Results of Superadditivity Analyses

Reported in Each Cell are Mean Time, Mean Frequency, and Mean Serial Position

New Productions
Serial Position

Low High
17.3 sec 10.1 sec
Low 1.0 21
6.2 16.1
Opportunity
13.8 sec 8.5 sec
High 7.9 8.9
6.3 20.4
Old Productions
Serial Position
Low High
13.5 sec 8.9 sec
Low 2.0 2.1
6.8 18.2
Opportunity
: 9.6 sec 6.1 sec
High 10.1 133
7.8 20.6

p<.001 for old). In both cases, the effect of production frequency is greater
at lower values of serial position. The same interaction between declarative
activation and procedural practice has been noted by Carlson, Sullivan, and
Schneider (1989); (see also Anderson, 1989). This is a relatively unique pre-
diction of ACT*, and is not true of other production systems including the
earlier versions of ACT, SOAR, (Rosenbloom & Newell, 1987) and its
predecessors.

Use-Specificity of Production Rules

One of the peculiar features of a production rule analysis is that it predicts
that the knowledge encoded in a particular production rule will be specific
to that use. For instance, consider the following two production rules, the
first, which encodes knowledge about the LISP function car for purposes of
coding, and the second, which encodes the same knowledge for purposes of
evaluation:

p-code-car
IF the goal is to get an element
and the element is the first member of =list
THEN code car and set a subgoal
1. to code =list

488 ANDERSON, CONRAD, AND CORBETT

TABLE 4
Kessler (1988) Dissertation Results—Mean Time to
Complete a Function and Mean Number of Errors*

Target Task

Prior Experience Coding Evaluation
Coding 163 (2.0) 358 (8.6)
Evaluation 304 (4.3) 231 (5.1)
Nothing 412 (4.9) 376 (7.2)

* Time per problem and errors n parentheses

p-evaluate-car
IF the goal is to evaluate (car =lis)
and =term is the first element of =lis
THEN the value is =term

The important observation is that correcting or strengthening the proce-
dural knowledge embodied in one rule should have no effect on its encoding
in the other rule. Both sorts of knowledge might have arisen from the same
declarative representation of car but once production rules have been formed,
the future course of the knowledge becomes specific to the individual rules.
This leads to the prediction that practice in one use of the knowledge should
not transfer to another use of the knowledge.

There has been some indication that this prediction might in fact be true
for LISP programming skills. For instance, Pirolli & Anderson (1984) showed
that teaching subjects about how LISP evaluates recursive code did not
seem to help them in writing recursive code. Again, McKendree & Anderson
(1987) found some evidence that training subjects on the evaluation of simple
LISP functions had no positive transfer to their ability to generate code.

Kessler (1988) performed a fairly thorough analysis of the transfer between
coding and evaluation for simple LISP functions (such as insert-second
earlier). Table 4 shows the results from one of these experiments. Kessler
gave subjects either prior practice coding functions, or evaluating them, or
no prior practice, and then transfered them to coding or evaluating. The
coding experience occurred within the LISP tutor while the evaluation prac-
tice occurred through an evaluation tutor that required students to simulate
the flow of control of the LISP evaluator. The statistics reported are mean
time to code or evaluate a function and total number of errors over three
test functions.

It is apparent in Table 4 that subjects show considerable learning. Their
performance is much better the second time they code, and the same pattern
holds for evaluation. However, the startling result is how little transfer there
is from one activity to the other. While evaluation appears to produce some
advantage for coding, the difference between the evaluation condition and
the baseline control in coding performance is not statistically significant for

SKILL ACQUISITION AND THE LISP TUTOR 489

TABLE §
Class Results
Evaluation No Evaluation

Tutor Tutor
Time per coding production 12.49 12.03
Number of errors per coding production .229 .232

(%) (%)
Percent correct on evaluation problems 66 56
Percent correct on debugging problem 61 65
Percent correct on coding problems 60 62

either dependent measure. There is no difference at all, apparent or statisti-
cally significant, between the performance of the coding-practice condition
and the baseline control in evaluation performance.

This issue of transfer between coding and evaluation was pursued more
extensively with the student population who used the LISP tutor in the fall
of 1985. Half of the students practiced evaluating code with an evaluation
tutor prior to each section of coding exercises, while the other half only did
coding exercises. This continued through the 12 lessons of the course. Table
5 presents some comparisons between the two populations. First, we looked
at time to code correct productions and mean number of coding errors per
production in the LISP tutor. There was no statistically significant differ-
ence although subjects who did not have exposure to the evaluation tour did
show a slight time advantage.

More interesting were the results obtained in the final paper-and-pencil
exam. The questions on this exam could be divided into those that involved
evaluation, those that involved debugging, and those that involved coding.
As can be seen there is a substantial advantage for subjects exposed to the
evaluation tutor on evaluation problems, but if anything, a disadvantage on
the other problems. A statistical analysis was performed on the percent cor-
rect data to test for an interaction of evaluation experience and evaluation
versus nonevaluation test problems. The test reached marginal significance
(F1, 21=4.12; p~ .05) although the pairwise comparisons did not. It should
be recognized that students know the makeup of the final exam and are
motivated to study for it outside of the tutor. Still there is enough of an
effect left of their tutor experiences to produce this interaction.

Individual Differences

The analyses to date serve to indicate that the improvements seen with the
LISP tutor are quite regular and fit quite nicely with the ACT* production
analysis. Next consider the interesting question of the individual differences
noticed in the LISP tutor. One possible source of individual differences is
past experience. The two courses taught over the fall of 1985 and the spring

490 ANDERSON, CONRAD, AND CORBETT

of 1986 permitted an opportunity to assess this effect. There were 38 stu-
dents in the fall of 1985 who had no prior college-level programming course.
There were 14 students in the spring of 1986 and all had taken the introduc-
tory Pascal course taught by the computer science department at Carnegie-
Mellon University. All students were in the college of humanities and social
sciences, and so had similar educational backgrounds, although as it turned
out, the spring students had somewhat higher verbal and math SAT scores
(fall had verbal SAT of 547 and math SAT of 566; spring had verbal SAT of
571 and math SAT of 613). These SAT differences were covaried out in a
statistical test that confirmed the spring students did better than the fall
students. Finally, both groups of students had the same experiences in the
LISP course itself.

In analyzing the data, productions for each lession were grouped into
two to four categories of rules that seemed thematically similar. Table 6 lists
these various groups and indicates for which groups the spring students en-
joyed a statistically significant advantage. Most of these are components
which they should have been able to transfer from Pascal. It should be
noted that their Pascal course emphasized data structures and implementa-
tions of lists. It might seem surprising that the only aspect of iteration for
which there is transfer is Do’s in Lession 11. However, the major chapter on
iteration, Chapter 6, was not available for analysis because students were
recruited into an experiment on debugging for that material. It is noteworthy
that two other types of productions never proved a source of significant dif-
ferences. First there nver were any significant differences on arthmetic func-
tions where presurnably both groups had equivalent background experience.
Second, there was no significant difference with respect to recursion. While
the spring students had been exposed to the concept of recursion in their
earlier Pascal course, they had never done any programming using it.

This result is predicted by the identical elements model of transfer
(Polson, Muncher, & Kieras, in press; Singley & Anderson, 1989). Ac-
cording to that model, transfer between domains can be understood in
terms of shared production rules. For instance, the rule for coding the func-
tion AND is:

p-and
IF the goal is to determine if testl and test2 are true
THEN code AND and set subgoals
1. to code testl
2. to code test2

This is a high-level rule and is not specific to the syntax or the ordering of
the arguments. Such lower level details would be taken care of by produc-
tions that embody knowledge about the syntax of LISP or Pascal. It is a
high-level production rule of this sort that could transfer whole cloth from

TABLE 6

Comparison of Students with a Prior Pascal Class (Spring) and Without (Fall)—

Mean Number of Errors per Production

Production Type Fall Spring Difference
Lesson 1

arithmetic .20 .20 .00

list operation .66 46 .20*

variables .22 .09 13
Lesson 2

arithmetic A5 19 —.04

list operation .32 .20 12

function definition .33 .22 .1
Lesson 3

function definition .13 .10 .03

list operation .80 .65 a5

logical functions .43 25 .18*
Lesson 4

helping functions and

function definition .33 .23 .10

list operation .43 .36 .07

logical functions .29 13 16"
Lesson §

local variables)| .20 a1

function structure a7 .20 —-.03
Lessons 7 & 8

recursion 36 32 04

args & params 19 .16 .03
Lesson 9

prog structure .14 16 -.02

list operations .24 .26 —.02
Lesson 10

recursion .24 21 .03
Lesson 11

Do's 16 .06 .10*

mapcars .24 .30 —.06
Lesson 12

arrays .31 .20 RA

property lists .61 .43 a8

Do's 35 A7 .18*

* Denotes a statistically significant difference

4N

492 ANDERSON, CONRAD, AND CORBETT

one language to another. This high-level production is represented in a form
independent of the syntax of the language. One could imagine students con-
flating the syntax of the language with rules of using logic, but apparently
they do not use such a surface representation. Singley & Anderson (1989)
found a similar abstract representation of text editor commands.

Even holding prior experience constant, there are substantial differences
among students in their performance with the LISP tutor. The question is
whether there is anything more involved than some raw, undifferentiated
factor of ability. One attempt to answer this was to see if certain groups of
subjects found certain sets of productions difficult. A factor analysis was
performed on the data from the spring of 1985; a second factor analysis was
then performed on the combined data for fall of 1985 and spring of 1986.
Two separate analyses were performed because the spring 1985 subjects
worked with a different version of the tutor. In these factor analyses it was
of interest to see which patterns of individual differences might appear
when prior experience was not a particularly relevant factor. Specifically, it
was of interest to learn whether a subset of students would have difficulty
with a subset of the productions. The details of the factor analysis of the
spring 1985 data and the details of the methodology are reported in Ander-
son (in press). Essentially, the student performance was taken (as measured
in mean number of errors) on each production for each lesson and examined
for patterns that would emerge. In the spring 1985 data, and more clearly in
the combined fall 1985 data and spring 1986 data, factors emerged which
loaded on thematically related productions. For instance, in Lesson 1 a fac-
tor emerged which loaded on arithmetic operations, and a factor emerged in
Lesson 3 that loaded on logical operations. This meant, for instance, that in
Lesson 1, one group of students tended to do relatively poorly on all arith-
metic productions while another group of students tended to do well.

The initially frustrating feature of these within-lesson factors is that they
did not show any across-lesson consistency. Thus, productions which loaded
on one factor in one lesson would split up and load on different factorsin a
later lesson. To help organize these within-lesson factors, a meta-factor
analysis was done, That is, students’ factor scores from particular lessons
were taken and a factor analysis of these was performed. Two meta-factors
emerged fairly strongly in the spring 1985 data and in the combined 1985-
1986 data. When the spring 1985 data was examined, it was noticed that
most of the productions which loaded on factors which loaded on one of the
meta-factors were new to that lesson (22 out of 34), while most of the pro-
ductions that loaded on the second meta-factor were old (20 out of 23). This
led to a labelling of the first meta-factor as an acquisition factor and the sec-
ond meta-factor as a retention factor. A similar analysis was done on the
1985-1986 data. Most of the productions associated with one meta-factor
were new to that lesson (18 out of 23), while most of the productions associ-
ated with the other meta-factors were old (23 out of 31).

SKILL ACQUISITION AND THE LISP TUTOR 493

Thus, what seems stable across lessons are only very general learning at-
tributes, acquisition and retention. We think we understand why thematic
clusters of new productions appeared in individual lessons but disappeared
thereafter. These thematically related productions were discussed in the text
in close proximity. If one imagines a subject’s attention waxes and wanes
while reading the text, then this will produce a local correlation among
thematically related productions. This also suggests that the acquisition fac-
tor may reflect how well students extracted instruction from text.

There was some external validation of these two meta-factors. Although
both were defined on behavior internal to the LISP tutor, both were strong
predictors of performance on paper-and-pencil midterms and final exams.
These factors were also associated with math SATs but not verbal SATs.
The correlation of the retention factor with math SATs was — .62 for spring
1985 and —.38 for 1985-1986. The correlation of the acquisition factor
with math SATs was — .03 for spring 1985 and — .60 for 1985-1986. Except
for the 1985 correlation coefficient for the acquisition factor, all coeffi-
cients are significant.

In summary, the patterns of individual differences identified to date are
quite simple. Prior programming experience is beneficial to the extent it
overlaps with what students have to do in LISP. In addition to this, subjects
seem to differ in some general factors of acquisition and retention. The
analyses here do not really shed light on what might be involved in the ac-
quisition and retention factors.

The Psychological Reality of Production Rules: A Summary

These data provide strong evidence for the production rule as the right unit
of analysis in understanding the acquisition of a skill. The data confirm all
the features thought to be critical to the concept of a production rule. The
learning curves and individual differences data support the modularity of
production rules: the claim that they are separate pieces of knowledge which
are acquired independently. The data on across-language and across-lesson
transfer support the abstract character of production rules—that they are
not tied to the surface features of the behavior. The evidence for lack of
transfer from evaluation to generation supports the condition-action asym-
metry of production rules. While separate production system theories may
involve additional claims (such as the declarative-procedural distinction of
ACT®*) and all production systems involve many notational conventions,
the central features associated with a production are modularity, abstract-
ness, and conditional asymmetry.

One might wonder about circularity in this conclusion in favor of pro-
duction rules. After all the tutor was designed around a production system
and treated the students as if they were acquiring production rules. Is it
possible that this caused their behavior to have a production-rule-like char-
acter? It is not at all obvious that the mind could even learn with such a tutor

494 ANDERSON, CONRAD, AND CORBETT

if it were not organized like a production system. Thus, the success of the
tutor is regarded as further evidence for the production rule analysis. How-
ever, it is possible that a different style of instruction may have produced
different regularities than those noticed here. As for this possibility, it will
be necesssary to wait and see if such a type of instruction is forthcoming.

REMEDIATION AND FEEDBACK

Now, turn to the issue of what evidence can be brought to bear on how
tutorial interactions will affect learning rate. As the tutor goes along, it is
trying to interpret both what the student is doing in the immediate problem
state, and trying to build up a general picture of what the student’s knowl-
edge state is. At the problem level, the tutor is trying to find some sequence
of productions, correct and buggy, which would generate the behavior
observed by the student. This is what is called the model-tracing methodol-
ogy and is a form of analysis by synthesis. When the student generates an
incorrect piece of code the tutor will immediately notify the student and in-
sist that the student go back on path. If the tutor can recognize the type of
error made, it will also present a remedial message explaining why the code
does not satisfy the current goal. There are two features of this interaction
which deserve comment. First, the student can be asked about the benefit of
the feedback messages he or she has been presented with. For instance,
when the student confuses the LISP function list for cons in Table 1, he got
the following message:

““If you LIST together arguments like 7 and (8) you get (7 (8)). What you want
is (7 8). Try another function that combines things together.”

What benefit does the student gain from an explanation of why list won’t
work, instead of simply being told that it is not correct? This will be one of
the major focuses in this section.

A second question concerns the benefit or harm of providing feedback
immediately upon error. This is a topic that will be analysed in some detail
in a later section. For now it is worth noting that one consequence of such
immediate feedback is that the student is forced to keep on a correct path,
which substantially simplifies the task of interpreting the behavior.

In addition to monitoring and providing feedback to the student as he or
she progresses along a particular solution, the tutor tries to monitor the stu-
dent’s general knowledge. It does this by a variation on what is known as an
overlay model (Goldstein, 1982). We use a statistical model which is also a
variation in the procedure used by Atkinson (1972). For each production,
the tutor maintains an estimate of the probability that the student knows the
production. In doing this, the following probabilistic model of production
learning is used: Each production is assumed to be either in the state of being
learned or not. Each production is assigned a probability @ of being in the

SKILL ACQUISITION AND THE LISP TUTOR 495

learned state initially. This reflects the probability that the appropriate
declarative knowledge has been learned, and will be applied at the first op-
portunity. If so, the knowledge-compilation process will produce a correct
production. There is also a probability b that, if a production is not in the
learned state on one trial, it will transit to the learned state on the next trial
as a function of the tutorial interaction.

Monitoring the student’s knowledge state would be trivial if external
behavior were a perfect reflector of internal knowledge. However, it clearly
is not; sometimes students get things right by Iucky guesses, and sometimes
students slip and get things wrong when they know better. Therefore, for
each production a probability g is also estimated that students will perform
the right behavior even when they do not know the production, and a prob-
ability s is estimated that students will slip and get the production wrong
even when they do know it. ’

Earlier student performences were used to come up with an estimate of
these probabilities for each production. The average probabilities were ap-
proximately a=.6; b= .4; £<.05; and s< .05. With these parameters in place
one can then use Bayesian estimation procedures to derive from the students’
performance on a production, an estimate of the probability that the stu-
dent knows a particular production.

These estimated probabilities drive a remediation procedure. The goal of
the tutor is to achieve a state where all productions have an estimated prob-
ability greater than .95. The tutor has a set of required problems which all
students must do. These problems expose students to all productions and if
the students make no errors on these problems, all of the estimated proba-
bilities would be above .95. However, if the productions for a particular
lesson are below .95 for any production, the tutor selects remedial prob-
lems. It chooses remedial problems that come closest to having 10% of their
productions below threshold. It continues presenting remedial problems until
all the probabilities surpass .95. Typically when a subject leaves a lesson,
most of the probabilities are above .99.

Predicted Effects of Remediation and Feedback

Now that the tutor’s remediation and feedback policies have been described,
the question of what their consequences are expected to be can be consid-
ered. Clearly the beneficial effect of remediation would be predicted since it
serves to tune and practice the procedures. This is not a particularly surpris-
ing prediction and it is not thought to be particularly unique to the ACT*
theory.

The predictions of the ACT* theory about the effect of feedback mes-
sages are a bit more surprising. Unfortunately, the tutor is not well designed
to put them to the test. Nonetheless, it is worth going through these predic-
tions: It proves important to make a discrimination among the information
contents of the various messages. Some messages explain what is wrong with

496 ANDERSON, CONRAD, AND CORBETT

the answer the student gave. These will be called error diagnoses. Other mes-
sages provide an explanation of the correct answer. As these latter messages
are necessarily redundant with the text these will be called reteaching (in line
with the usage of Sleeman, Kelly, Marinak, Ward, & Moore, 1989). These
two types of messages are partially correlated with what are called bug
messages, and ‘‘explanations’’ in the tutor. Bug messages are given upon
the occurrence of a recognized bug, and tend to include error explanations
although many also include reteaching. Tutor explanations are given when
the tutor provides the correct code—either at the request of the student or
because the student has made more than three errors. These are exclusively
reteaching.

There is no reason in the ACT* theory to expect an advantage of error
diagnoses. This is a rather startling realization because a major part of the
philosophy in design of intelligent tutors is that it is important to give in-
dividualized explanations of errors. However, in the ACT* theory there is
nothing to be gained by belaboring an error state. What is needed is reteach-
ing that will establish in the student’s head the declarative information suf-
ficient to compile the correct production. The incorrect production must
simply be weakened and abandoned—there is no concept in ACT* of a re-
pair. The only benefit of an error explanation is to convince the students
they are wrong, so that they will listen to the explanation of what is correct.

This naturally raises the question of why the messages in the LISP
tutor involve error diagnosis. In part, the answer is practical in that is seems
socially appropriate to explain errors. In part, it reflects the fact that the
LISP tutor was designed while there was a discrimination-learning process
in the ACT* theory. As discussed in Anderson (1987b), this has been aban-
doned. A discrimination process could be guided by pointing out what was
wrong about an error. There is no role for such information in the current
theory with its emphasis in learning by analogy from positive examples.

Recently, Sleeman, et al. (1989) have found evidence that this prediction
of ACT* may in fact be correct. They contrasted error diagnosis plus re-
teaching with just reteaching and found no difference, although both condi-
tions were superior to a control that involved no reteaching. McKendree
(1986) also found that focusing students on the correct answer is more effec-
tive than explaining the error in interactions with the geometry tutor.

Unfortunately, a clean test in the LISP tutor is not available because the
error messages reflect a mixture of reteaching and diagnosis. To the extent
they do the former, they should be beneficial. Thus, the only prediction
here is the relatively weak prediction that error messages should help.

An Experiment on Remediation and Feedback

In the fall of 1987 an experiment was performed in which each student in
the class was presented one of four versions of the LISP tutor defined by
two dimensions: (1) whether the remediation feature was turned on or not,

SKILL ACQUISITION AND THE LISP TUTOR 497

TABLE 7
Fall, 1987 Experiment
Feedback No Feedback
(a) Performance Internal to the Tutor
Remediation 10.4 sec 11.1 sec
.13 errors .18 errors
No Remediation 12.4 sec 10.6 sec
.18 errors .26 errors
(b) Effectiveness of Feedback
Remediation 37% repeat errors 60% repeat errors
No Remediation 33% repeat errors 64% repeat errors
(c) Performance External to the Tutor
Remediation 95% quiz 94% quiz
87% exam 82% exam
No Remediation 86% quiz 88% quiz
65% exam 79% exam

and (2) whether the tutor provided any explanatory text when notifying the
student of errors or providing correct answers. In conditions with remedia-
tion turned off, all students went through the minimal required problems.
In conditions with feedback turned off, students were simply told they were
wrong when they made an error and, if the tutor provided a correct answer at
any step (either at the student’s request or because the student seemed to be
floundering), it just provided the correct code without explanatory comment.

The results are shown in Table 7. Section (a) reports execution time per
production and errors per production in completing the exercises. There are
no significant time effects, but there are marginally significant effects of
remediation on errors (F1, 20 =2.99) and of feedback on errors (F1, 20 =3.08).
Section (b) of Table 7 presents a different analysis of feedback effective-
ness. This is a measure of the probability of another error at the same goal
after the first error. As can be seen, students make almost twice as many re-
peat errors when only told they have made a mistake, as when given a diag-
nostic message about the nature of the mistake.

Section (c) of Table 7 presents an analysis of performance on two post-
test assessments of the tutor manipulations. After every second lesson
students were given a computer-administered quiz that required them to
write two function definitions and debug two others in an hour’s time.
Average scores for these six quizzes are reported, along with average scores
on paper-and-pencil midterms and final exams. Both measures show a sub-
stantial effect of remediation and no effect of feedback explanation. The
remediation effect on quiz scores is significant, F), 20 =6.48 and the effect
on the paper-and-pencil tests is of marginal significance, F1, 20=2.9. In the
case of the quiz scores, students with remediation are essentially perfect.
This is a gratifying confirmation of the remediation algorithm which is sup-

498 ANDERSON, CONRAD, AND CORBETT

posed to help students achieve a near perfect command of the individual
production rules.

Thus, it appears there is a remediation effect. As noted earlier, almost
any theory would predict this. The situation with respect to a feedback ef-
fect is interesting. The strongest contrast is between Parts (b) and (c) of
Table 7 where substantial immediate impact of feedback without any long-
term consequences was seen. The fact that a remediation effect was able to
be shown, indicates that the problem is not lack of sensitivity of our long-
term dependent measure. Overall, the results of this experiment suggest that
well-designed feedback can minimize the time and pain of learning but has
no effect on final instructional outcome.

This is not what was predicted from the ACT* theory. One would expect
feedback to be effective to the extent it was effective immediately. The best
post-hoc explanation available is that subjects were able to generate their
own explanations of answers once these answers were provided by the tutor.
Thus, feedback from the tutor helped subjects self-correct as seen in Part (b)
of Table 7, but once subjects saw the correct answer they were able to under-
stand it, and so there was no long-term benefit as seen in Part (c) of Table 7.
There is an interesting generalization that characterizes the results in Part (c)
of Table 7. Subjects’ final learning achievement is determined by what
problems they solve, and not by the manner in which they solve them. The
next experiment will reinforce this generalization.

Delay of Feedback

As noted earlier, some of the motivation for giving feedback immediately in
the LISP tutor is technical. This makes it easy to trace where the student is
at any point in time. In addition to making tutoring easier, it also makes
data analysis a good bit simpler because one can easily segment the student
interactions into pieces that can be attributed to individual production
rules. However, it is certainly not the case that immediate feedback is uni-
formly popular with students. While some students claim to like it, other
students complain that they could correct their errors if given a chance. This
is a complaint that occurs much more often in students with prior program-
ming experience. They remark that they often want to use the terminal as a
scratch pad to try out various ideas and edit them, but the tutor will not per-
mit them to do this.

In addition to the technical reasons there are two pedagogical motiva-
tions for immediate feedback. First, it is a simple observation that a good
fraction of student time is spent floundering about trying to diagnose and
recover from errors. There is no reason in this framework to suppose that
such time contributes to anything but student frustration. Second, when
students finally do repair their errors, they may have gone through such a
confusing trajectory to reach the correct solution that they do not under-

SKILL ACQUISITION AND THE LISP TUTOR 499

stand why it works. Certainly we have seen students outside of the tutor
who got some code to work after 20 patches, but had the code in such a con-
fused state they could not understand it.

The original formulation of this immediate feedback principle (Ander-
son, Boyle, Farrell, & Reiser, 1987) stressed another aspect to the confusion
point. According to the 1983 ACT* theory, for a new rule to be compiled
from an error episode, one had to hold in working memory the whole epi-
sode involved in applying the wrong production, apply a sequence of other
productions predicated on the wrong production, hit an impasse, eventually
find the difficulty, and correct it. Immediate feedback was thought impor-
tant because it eliminated the working memory burden of holding all of this
information. In the current ACT* theory (Anderson, 1987b), with its em-
phasis on analogy, this is not a critical issue. One can simply learn the cor-
rect production from analogy to the final correct solution and ignore all of
the intermediate-state information.

The research of Lewis & Anderson (1985) has been cited in support of the
original rendition of the immediate feedback principle. There it was shown,
in a dungeon-and-dragons-like game, that subjects suffered substantial con-
fusion with delayed feedback. However, that was a situation where the total
correct solution was never laid out before subjects and they had to integrate
a sequence of moves in memory. By contrast, in the LISP domain, students
ultimately have a working LISP function in front of them to study. Provided
that code is not confusing, one should be able to learn from the final product
of an extended, self-correcting, delayed-feedback episode. One would learn
from it in the same way one learns by analogy from other examples. Students
might take longer to achieve the final state with delay of feedback but should
learn as much from it.

In summary, it seemed that in coding LISP function definitions, subjects
who receive delayed feedback on errors should have neither an advantage
nor a disadvantage in terms of final achievement—a contrast to Lewis and
Anderson (1985). This was tested by providing a version of the tutor more
like the one the advanced students requested—one that allowed them to
play around with the code and control when the tutor evaluated it and pro-
vided help. This is called the demand-feedback tutor. The technical issues
involved in creating such a tutor are described in Corbett, Anderson, and
Patterson (in press); here, just its behavior will be described. As the student
types code, the tutor acts as a structured editor, ensuring that the code is
syntactically correct. The interface does not restrict the order in which the
code is entered, so students can deviate from top-down, left-to-right coding.
At any point students can press a key to request the tutor to examine what-
ever they have written. The tutor then progresses through the code step-by-
step, skipping over any goal symbols the student has not filled in yet. The
tutor stops at the first error it encounters, provides the same feedback mes-

500 ANDERSON, CONRAD, AND CORBETT

TABLE 8
Study of Student Controlled Feedback*
Standord Tutor Student Control
Time to complete problem 5.7 min 8.6 min
Percent correct on quiz 83 83
Number of errors per problem caught by tutor 1.15 .83

* Corbett, Anderson, & Patterson (in press).

sage as the immediate feedback tutor, and moves the remaining unanalyzed
code into a buffer from which the students can retrieve it if they wish.

In the fall of 1987, a first comparison of the demand feedback tutor and
the immediate feedback tutor on the first two lessons of the curriculum was
made with subjects who participated in the experiment for pay. Some rele-
vant statistics from the study are displayed in Table 8. Students spent con-
siderably longer per programming problem with the delayed feedback tutor,
thus reflecting the extra effort in hunting down their own mistakes and the
cost of having to abandon large pieces of code which proved to be erroneous.
However, there was no difference in performance across the two groups on
a quiz that followed. Thus, in contrast to Lewis and Anderson, who found
an effect of delay of feedback on both learning time and final achievement,
only an effect on learning time was found here. ‘A similar result is reported
by Lewis & Anderson (1989) in the domains of geometry proofs and formal
logic proofs. In both of these domains, like LISP, the final solution is repre-
sented on the screen, so students do not have to call upon memories for
solution steps.

Also examined were the number of errors the tutor caught per problem.
As can be seen from Table 8, the tutor caught about a third of an error less
per exercise in the demand feedback condition. This corroborated students’
claims that some errors could be self-corrected.

The analysis of student self-correction is quite interesting. Students at-
tempted to correct 34% of all the errors they made but were successful only
just a little over half the time (57%), resulting in a 19% net reduction in the
number of errors the tutor had to correct. These attempted error corrections
accounted for 80% of the code changes students made. The remaining 20%
of the students’ changes involved code that was already correct. Of these
modifications, 43% changed the code to another correct form while the re-
maining 57% changed it to an incorrect form. Thus, of all the revision stu-
dents made, 46% were successful error corrections, advancing the students
toward a correct solution.

Some other interesting statistics were gathered about student performance
in the demand feedback tutor condition. When they did ask for evaluation
of their code, 88% of the time they had written a complete answer. The
problems in these first two lessons are short (not getting much longer than
insert-second) but this result does indicate that students are not willing to

SKitL ACQUISITION AND THE LISP TUTOR 50

ask for anything like constant and immediate feedback. Of the 12% of the
cases where they asked for feedback on partial code it was never the case
that the partial code had any ‘‘holes’’ in it. That is to say, in every case of
partial code, what was missing was at the end of the function. Also there
were very few deviations (6 out of 850 opportunities) from top-down, left-
to-right coding anywhere. This suggests that students are not being restricted
by the requirement in the immediate feedback tutor to write their code in
the top-down, left-to-right order.

In summary, it seems that subjects do take longer with delayed feedback,
reflecting the cost of pursuing wrong paths. However, there is no evidence
that they suffer any learning deficit. Apparently, subjects are able to learn
from their final solutions independent of whether the feedback is immediate
or not. As in the previous study it seems that learning achievements are deter-
mined by what problems they solve and not by how they reach the solution.

CONCLUSIONS

This article presents a fairly complete summary of efforts made to analyze
student learning with the LISP tutor, and the search for evidence about how
a complex skill is learned. When the production system model is used to factor
out the complexity of the skill, it is found that the actual learning process is
quite simple; there are no surprising phenomena with respect to basic learn-
ing, transfer, or individual differences. One could hardly claim that the im-
pact of the various tutorial interventions poses a complex picture. So far,
the only instructional effects observed are

1. Remedial practice produces long-term learning benefits;

2. Explanation helps students immediately correct their code; and

3. Delayed feedback means students will take longer to get through
problems.

These three outcomes perhaps deserve the label obvious. We have not found
any evidence for complex instructional effects and we have found evidence
that learning can be very successful in simple instructional situations.

The inability to find substantial effects of instructional manipulations
such as feedback content raises an interesting question: What is the basis of
the achievement gains reported in earlier work for the LISP tutor? We
think there are two substantial benefits. One is that some sort of immediate
feedback tutor serves to cut down on total time in going through the
material. It may not be necessary for the tutor to take away control from
the student to achieve this economy. Rather than forcing the student to cor-
rect an error immediately, one might imagine a tutor which signals the error
but allows the student to continue to code and returns to correct the error
when the student wants to. Such a version of the LISP tutor (Corbett &
Anderson, 1989) has recently been completed. Certainly for purposes of

502 ANDERSON, CONRAD, AND CORBETT

student acceptance, it would be desirable to have a version of the tutor
which combines the time-savings benefit of immediate feedback with a
sense of control for the student.

The second benefit in the tutoring work here is the careful task analysis
that went into developing production system models of programming skills.
This led to a more rational curriculum development and instruction. Some
of the major benefits involve the reanalysis of recursive programming
(Pirolli, 1986). It is not clear how important the tutors are in conveying this
benefit. Perhaps it is sufficient simply to have students read the textual ex-
planation and solve the problems on their own. Solving on their own would
lead to longer programming times, but it may have no impact on eventual
achievement.

Evalusation of ACT*

In view of the findings, a reassessment of the theoretical issues mentioned in
the introduction would be beneficial. To what extent do these data support
the ACT* conception of a production, and the ACT* conception of how
productions are learned? (This data does not really shed any light on the ini-
tial declarative stage of learning.) Also, reviewers have asked how this data
separates ACT* from alternative theories. This is a difficult enterprise
because other theories have not been applied to learning LISP. However,
given the request, we believe we have some license to speculate. The data
support a number of production rule features as conceived of in ACT*,

(a) A production rule is a modular unit of knowledge learned indepen-
dently from other units of knowledge. This is shown in the regular learn-
ing curves defined on production rules, and their independence from
similar rules in the factor analysis. This feature seems contrary to sche-
ma-like theories which would emphasize larger units of knowledge.

(b) The rules are abstract and not tied to specific content. Evidence for this
was the transfer of production rules across contents and languages.
This seems contrary to connectionist approaches which deny the exis-
tence of abstract rules.

(c) The application of knowledge is specific to use. This was seen in the evi-
dence that the same concept had different learning histories depending
upon its use. Similar results have been reported in Singley and Ander-
son (1989). This seems contrary to schema-like approaches which em-
phasize more flexible execution of knowledge.

(d) Theinteraction between practice of the problem and practice of the rules
is evidence for the procedural-declarative distinction and for the ACT*
conception of it. Again, there is other evidence for such declarative-
procedural interaction (Carlson et al., 1989). This would seem contrary
to SOAR (Rosenbloom & Newell, 1986) and other production systems,
which do not make a procedural-declarative distinction.

SKILL ACQUISITION AND THE LISP TUTOR 503

There were a number of results which supported the ACT* theory of pro-
duction learning:

(a) The power functions are as predicted by ACT*. Besides ACT*, there are
a number of other theories that predict power law learning (Crossman,
1959; Lewis, 1978; Logan, 1988; Mackay, 1982; Newell & Rosenbloom,
1981) but power-law learning does not seem predicted by connectionist or
schema-based theories. Although we are leery of the statistical dilemmas
encountered in establishing a discontinuity, the apparent extra drop off
from Trial 1 to Trial 2 is uniquely predicted by ACT*.

(b) The research indicated that the final solution was what was critical to
learning, and not the trajectory to that final solution. This is what was
predicted by the 1987 version of ACT*, which, unlike the 1983 version,
emphasized learning by analogy to example solutions. Again, it is a result
that does not seem to be predicted by SOAR, another production system
model of learning,

More important than the implications of this data for specific theories of
skill acquisition is the result that skill acquisition is simple under appropriate
factoring out of the structure of the domain. Should this conclusion general-
ize to other skills acquired under other circumstances, it implies that the key
to understanding skill acquisition is a careful analysis of the structure of the
domain. Once the units of knowledge are identified, acquisition of the skill
can be predicted by composing simple learning functions for these units.

B Original Submission Date: August 15, 1988

REFERENCES

Anderson, J.R. (1982). Acquisition of proof skills in geometry. In J.G. Carbonell, R. Michal-
ski, & T. Mitchell (Eds.), Machine learning, An artificial inteligence approach. Palo
Alto, CA: Tioga Press, 191-220.

Anderson, J.R. (1983) The architecture of cognition. Cambridge, MA: Harvard University
Press.

Anderson, J.R. (1987a). Production systems, learning, and tutoring. In D. Klahr, P. Langley,
& R. Neches (Eds.), Production system models of learning and development (pp.
437-458). Cambridge, MA: MIT Press.

Anderson, J.R. (1987b). Skill acquisition: Compilation of weak-method problem solutins.
Psychological Review 94, 192-210.

Anderson, J.R. (1989). Practice, working memory, and the ACT theory of skill acquisition: A
comment on Carlson, Sullivan, & Schneider. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 15, 527-530.

Anderson, J.R. (in press). Analysis of student performance with the LISP tutor. In N. Frederk-
sen, R. Glaser, A. Lesgold, & M. Shafto (Eds.), Diagnostic monitoring of skill and
knowledge acquisition. Hillsdale, NJ: Erlbaum.

Anderson, J.R., Boyle, C.F., Corbett, A.T., & Lewis, M.W. (in press). Cognitive modeling
and intelligent tutoring. Art{ficial Intelligence.

504 ANDERSON, CONRAD, AND CORBETT

Anderson, J.R., Boyle, C.F., Farrell, R., & Reiser, B.J. (1987). Cognitive principles in the
design of computer tutors. In P. Morris (Ed.), Modelling cognition (pp. 93-134). New
York: Wiley.

Anderson, J.R., Boyle, C.F., & Yost, G. (1985). The geometry tutor. In Proceedings of IJCAI-
85. Los Angeles, CA: 1JCAIL

Anderson, J.R., Corbett, A.T., & Reiser, B.J. (1987). Essential LISP. Reading, MA: Addison-
Wesley.

Anderson, J.R., Farrell, R., & Sauers, R. (1984). Learning to program in LISP. Cognitive
Science, 8, 87-129.

Anderson, J.R., & Reiser, B.J. (1985). The LISP tutor. Byte, 10, 159-175.

Atkinson, R.C. (1972). Optimizing the learning of second-language vocabulary. Journal of
Experimental Psychology, 96, 124-129.

Barr, A., & Feigenbaum, E. A. (1982). Automatic programming. In Artificial Intelligence
Handbook. Los Altos, CA: Kaufmann.

Carlson, R.A., Sullivan, M.A., & Schneider W. (1989). Practice and working memory effects
in building procedural skill. Journal of Experimental Psychology: Learning, Memory,
and Cognition, 15, 517-526.

Corbett, A.T., & Anderson, J.R. (1989, May). The LISP intelligent tutoring system: Research
in skill acquisition. In Proceedings of the 4th International Conference in Artificial In-
telligence in Education (pp. 64-72). Amsterdam.

Corbett, A.T., Anderson, J.R., & Patterson, E.J. (in press). Student modeling and tutoring
flexibility in the LISP tutor. In C. Frasson & G. Gauthier (Eds.), Intelligent tutoring
systems: At the crossroads of artificial intelligence and education. Norwood, NJ:
Ablex. .

Crossman, E.R.F. (1959). A theory of the acquisition of speed-skill. Ergonomics, 2, 153-166.

Goldstein, 1.P. (1982). The genetic graph: A representation for the evolution of procedural
knowledge. In D. Sleeman & J.S. Brown (Eds.), Intelligent Tutoring Systems (pp.
51-77). New York: Academic.

Julesz, B. (1971). Foundations of Cyclopean perception. Chicago: University of Chicago Press.

Kessler, K. (1988). Transfer of programming skills in novice LISP learners. Unpublished
doctoral dissertatioan, Carnegie-Mellon University, Pittsburgh, PA.

Lewis, C.H. (1978). Production system models of practice effects. Unpublished doctoral dis-
sertation. University of Michigan, Ann Arbor.

Lewis, M.W., & Anderson, J.R. (1985). Discrimination of operator schemata in problem solv-
ing: Learning from examples. Cognitive Psychology, 17, 26-65.

Lewis, M.W., & Anderson, J.R. (1989). Effects of immediacy of feedback on learning proof
skills. Manuscript in preparation.

Logan, G.D. (1988). Toward an instance theory of automatization. Psychological Review, 95,
492-5217.

Mackay, D.G. (1982). The problem of flexibility, fluency, and speed-accuracy trade-off in
skilled behavior. Psychological Review, 89, 483-506.

McKendree, J.E. (1986). Impact of feedback during complex skill acquisition. Unpublished
doctoral dissertation, Carnegie-Mellon University, Pittsburgh, PA.

McKendree, J.E., & Anderson, J.R. (1987). Frequency and practice effects on the composition
on knowledge in LISP evaluation (pp. 236-259). In J.M. Carroll (Ed.), Cognitive
aspects of human-computer interaction. Cambridge, MA: MIT Press.

Newell, A., & Rosenbloom, P. (1981). Mechanisms of skill acquisition and the law of practice.
In J.R. Anderson (Ed.), Cognitive skills and their acqusition (pp. 1-55). Hillsdale, NJ:
Erlbaum,

Pirolli, P. (1986). A cognitive model and computer tutor for programming recursion. Human-
Computer Interaction, 2, 319-355.

Pirolli, P.L., & Anderson, J.R. (1984). Learning to program recursion. In Sixth Annual Cog-
nitive Science Meetings (pp. 277-280). Boulder, CO.

SKILL ACQUISITION AND THE LISP TUTOR 505

Polson, P.G., Muncher, E., & Kieras, D.E. (in press). Transfer of skills between inconsistent
editors. Human-Computer Interaction.

Rosenbloom, P.S, & Newell, A. (1986). The chunking of goal hierarchies: A generalized model
of practice. In R.S. Michalski, J.G. Carbonell, & T.M. Mitchell (Eds.), Machine Learn-
ing (Vol. II, pp. 247-288). Los Altos, CA: Morgan Kaufmann.

Rosenbloom, P., & Newell, A. (1987). Learning by chunking: A production system model of
practice. In D. Klahr, P. Langley, & R. Neches, (Eds.), Production System Models of
Learning and Development. Cambridge, MA: MIT Press.

Singley, K., & Anderson, J.R. (1989). The transfer of cognitive skills. Cambridge, MA:
Harvard Press.

Sleeman, D., Kelly, A.E., Martinak, R., Ward, R.D., & Moore, J.L. (1989). Studies of diag-
nosis and remediation with high school algebra students. Cognitive Science, 13, 551-568.

Stevens, A., & Collins, A. (1977). The goal structure of a socratic tutor. In Proceedings of the
Association for Computing Machinery Annual Conference. Association for Computing
Machinery.

