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Abstract-Mathematics is highly structured and underpins most of science and engineering. For this 
reason it has proved a very suitable test domain for intelligent tutoring system (ITS) research with the 
result that probably more tutoring systems have been structured for the domain than for any othw. 
However, there still exists no consensus on any approach for the design of such systems. Consequently, 
existing ITSs in the domain suffer from a considerable number of shortcomings which render them 
‘unintelligent’. 

This paper after rigorously examining the shortcomings of existing approaches, presents an alternative 
approach to constructing ITSs in mathematics which has been demonstrated to have improved on at least 
some of the shortcomings of existing approaches. It also provides a flavour of how this approach has been 
implemented in the FITS system. 

INTRODUCTION 

Current approaches to the construction of intelligent tutoring systems (ITSs) in mathematics can 
be grouped under two main headings: 

(1) The mal-rule approach 
(2) The model-tracing approach. 

This paper critiques both these approaches and lists some of their example systems. In the light 
of these analyses and others, another approach designed to produce ITSs to improve on at least 
some of the shortcomings of the above-mentioned is presented. 

THE MAL-RULE APPROACH 

Mal-rules (or bugs) represent the student’s misunderstandings of the domain. They are central 
to this approach. Systems based on mal-rules have the characteristic of being diagnostic in nature: 
they end up diagnosing the student’s misconception or give up. According to West, the rationales 
for the approach are two-fold: firstly, that “there is hardly a skill in the teacher’s repertoire that 
is more important than the ability to identify pupils’ errors and to prescribe appropriate remedial 
procedures”, and secondly, that errors may be “springboards” for students to understand 
mathematics (quoted in [l]). 

However, a more accurate distinction between this and the second approach mentioned above 
is made by answering Vanlehn’s[2] bandwidth question: how much of the learner’s activity is 
available to the diagnostic program? Most ITSs in mathematics work on the low end of the 
information band where only the final state is available to the system, i.e. only the student’s answer 
to a question is available to the system [3]. Such tutors are henceforth referred to in this paper as 
mal-rule tutors. Sleeman [4] notes that implementors of such ITSs frequently perform the following 
steps: 

(1) Analyse protocols from students in the target population solving typical tests and codify their 
difficulties/misunderstandings. (This may sometimes involve detailed ‘clinical’ interviews with 
students.) 

(2) Create databases which include codings of the mal-rules (bugs) observed in Step (1). 
(3) Implement and use the ITS with students and in particular note student errors which are not 

spotted by the system. 
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(4) Carry out detailed interviews to determine the nature of these errors and code them as 
additional mal-rules. Steps (3) and (4) are repeated until the system captures the majority of the 
bugs which occur with the target population. 

Some examples of mal-rule ITSs in mathematics 

Table 1 lists examples of mal-rule ITSs in mathematics that have been developed to date. It is 
reasonably representative. It is also important to highlight the fact that most of these were 
developed as prototypes and largely remain so. Hence, hardly any have been tested on more than 
a few people. These ITSs do a lot less than the domain indicated suggests. 

Critique of the mal-rule approach 

The concept of ‘debugging’ is the major device used in most mal-rule systems to achieve the 
diagnosis of errors; DEBUGGY is perhaps the most obvious example. Some of the criticisms 
levelled at such systems are [I 3-l 51: 

(1) The knowledge involved in debugging algorithms reveals rich interconnections between 
different domains of mathematics. This restricts the value of single domain systems. 

(2) Some researchers have argued that debugging is an intellectual task which might have great 
educational value [ 151 and hence pupils should be major agents of the debugging process, since they 
are the ones who have most to gain from it. 

(3) There are a variety of idiosyncratic methods and approaches that can be used successfully 
to solve most mathematical problems. Systems such as DEBUGGY neither know about such 
methods nor can they learn them, because they have no access to how pupils solve problems in 
the first place. Thus if a range of pupil solutions to subtraction problems is considered, DEBUGGY 
fares no better than a human teacher, since it will completely fail to debug errors in idiosyncratic 
methods [ 151. 

(4) Many systems seem to support a split between an algorithm and its applications. Divorcing 
these two, it is argued in [15], “is a device of very doubtful pedagogical value. Subtraction should 
not be viewed as a self-contained topic which is separate from ‘mathematical thinking’. It should 
be viewed as an integral part of mathematics and mathematical thinking and teaching should focus 
on extending and strengthening links and other areas of mathematics”. O’Shea et al. [16] argue 
that it is this very divorce that brings about the systematic errors that children make in 

mathematics. 
(5) There is still a very high percentage of unexplained errors (N 3@40%)[16]. 
(6) This approach presumes that the novice (student) deviates from the expert (tutor) in 

some simple way. This is a very common misconception. For example, the student might be 
viewed as having too few routines, and needs to add more to his/her repertoire; or may be 
viewed as having some bugs or mal-rules. It is argued in [15] that both these simplistic views are 
wrong and that there are major differences between novices and experts that are not so readily 
remedied. 

(7) The premise that students’ errors are systematic is a basic one, but the nature of the 
systematicity is difficult to define. This leads to the question of bug stability. Are children’s errors 
transient in nature? Children can be seen to employ two different buggy procedures in solving 
almost identical problems within a single session [17]. Therefore, classifying student’s behaviour 
on some single occasion as being due to various types of buggy behaviour may be woefully 
misleading. 

Table I. Some examples of mal-rule IT% in mathematics 

BUGGY [5] Diagnosis in basic subtraction 
DEBUGGY [6] Diagnosis in basic subtraction 
IDEBUGGY (61 Diagnosis in basic subtraction 
ATDSE 171 Diaenosis in basic subtraction 
EDSMB[8] 
HELPERR[9] 
LMS[IO] 
PIXIE[l I] 
WEST[IZ] 

Diagnosis in basic multiplication 
Diagnosis in basic addition 
Diagnosis in basic algebra 
Diagnosis/tutoring in basic algebra 
Coaching in basic arithmetic 
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THE MODEL-TRACING APPROACH 

Model-tracing approaches have been around-faf severalyezcrsnow with its foremost protagonist 
being the Carnegie Mellon psychologist John Anderson. However, other researchers had earlier 
suggested such approaches. The technique (model-tracing) is so termed to express the fact that the 
student is made to follow the system’s model quite closely [ 181. These tutors guide students through 
a problem trying to make their steps correspond to those of the ideal student model. 

Model-tracing tutors use the expertise of their problem solver to predict the steps the students 
will take while working on a problem. The problem solver generates all the possible next steps, 
both correct and incorrect according to the database of rules. They are compared to the student’s 
step and the rule that matches is selected as an interpretation of the actions. If the tutor cannot 
provide a model-driven interpretation of the student’s steps, the tutor signals that it does not 
understand the last input and after a pre-determined number of trials, it simply suggests the next 
best step according to the ideal model. 

The main difference between model-tracing tutors and mal-rule tutors lies in the answer to 
Vanlehn’s[2] bandwidth question noted earlier. These ITSs have access to intermediate states: 
hence, they work with more information (larger bandwidth) than mal-rule tutors. Because the 
diagnostic module needs as much reliable information as possible about the learner’s mental state, 
bandwidth is critical in designing IT%. However, the main features of model-tracing are the 
following [ 19,201: 

(1) The tutor constantly monitors the student’s problem solving and provides direction wherever 
the student wanders off path. 

(2) The tutor tries to provide help with both the overt parts of the problem solution and the 
planning. However to address the planning, a mechanism had to be introduced in the interface (in 
this case menus) to allow the student to communicate the steps of the planning. 

(3) The interface tries to eliminate aspects like syntax checking which are irrelevant to the 
problem solving skill being tutored. 

(4) The interface is highly reactive in that it does make some response to every symbol the student 
enters. 

Some examples of model-tracing ITSs in mathematics 

GEOMETRY Tutor [2 1,221 Geometry proofs tool 
ALGEBRA Tutor [22] Algebraic proof tools 
INTEGRATION Tutor [23] Basic integral calculus 
ALGEBRALAND[24] Algebraic proofs tool 

Critique of the model-tracing approach 

There appear to be several ‘brands’ of model-tracing, e.g. the discovery-learning type as 
exemplified in ALGEBRALAND or the more rigid approach in the GEOMETRY tutor. Anyway, 
as previously noted, Anderson’s [ 181 is by far the most popular. This is supported by recent attempts 
at using model-tracing approaches which have produced systems (intermediate systems) more 
towards the Andersonian types, e.g. [25]. Furthermore, the work of Anderson’s team is also 
amongst the most principled and documented of current ITS research. As a consequence, in listing 
some of the shortcomings of this approach, there is an obvious bias towards his ‘brand’ of 
model-tracing. Model-tracing tutors’ drawbacks include: 

(1) “They seem to incorporate a very dogmatic and authoritarian approach to education”[26]. 
This is because the main driving force behind such tutors is the detection of deviation from the 
ideal student model (expert problem solver). This has obvious dangers in that the system will reject 
any other correct approach to solving the problem if it differs from the path in the system. The 
model-tracing approach currently keeps the student on one of the correct solution paths in the 
problem; normally the optimal path [27]. It is a common misconception to talk about the ‘correct’ 
way an expert solves the problem. Ridgway[l5] notes that a major characteristic of experts is that 
they can solve the same problem in a variety of ways. In short, such tutors are incapable of 
supporting the variety of idiosyncratic methods that can be used to solve most problems. 
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(2) They feign omniscience[28]. But the student could possess strategies that are equally as good 
or even better than the ‘hard-wired’ strategy in the ideal student model. Many researchers have 
called for a more collaborative approach, e.g.[29]. However, it is not always clear that the 
mechanisms for implementing this have been available. 

(3) It is argued in[30] that ITSs often have the advantage of an explicit set of tutorial strategies. 
In model-tracing IT%, these strategies are often ‘hard-wired’ in these tutors. Therefore, there is 
really no explicit representation of knowledge, i.e. the domain-independent and the domain-depen- 
dent parts are not clearly delineated. This also leaves no room for improvement by the system itself, 
though the progress of the student does provide feedback on the teaching process. In brief, such 
systems cannot be easily adapted to tutor another domain [20]: to do so basically requires a total 
reconstruction of the new system; neither can they learn or improve their strategies over time. There 
are thus undisputably more benefits to be reaped by constructing systems which have their 
knowledge explicitly represented. To be fair, this issue is non-trivial: in fact, knowledge represen- 

tation still remains one of AI’s unsolved problems. However, some researchers have had some 
success, albeit limited, at building self-improving tutors [23, 311, largely as a result of explicit 
knowledge representation. 

(4) The important educational activity of debugging is taken away by such tutors since this 
approach, in principle, does not allow for floundering. It may be therefore deemed by some students 
as being very intrusive and definitely of limited value at teaching debugging skills, i.e. such systems 
may destroy the student’s personal motivation or sense of discovery. This limitation also applies 
to the mal-rule approach. This is the central criticism that Papert and his supporters rightly level 
against ITSs. They claim the approach they champion fully addresses this problem, but there are 
still many questions about their LOGO technique that requires answering. Indeed, this is a difficult 
problem; tutoring involves so many subtle skills, e.g. when is it the right time to interrupt?, which 
good human teachers are gifted with. It is still a major research endeavour how to articulate the 
knowledge behind such subtle tutoring decisions into ITSs. 

(5) The style of teaching never changes in such tutors. This is because the rules and mal-rules 
have merely been ‘hardwired’ into the system and such designs generally tend to lead to inflexible 
systems[32]. Many researchers, e.g.[33], have stressed the importance of a more flexible style of 
tutoring, though they seldom indicate how to go about implementing this. 

(6) The success of such tutors depends heavily on the number of correct rules in the ideal student 
model as well as the number of mal-rules in the bug catalogue. For instance, the LISP tutor now 
contains more than 1200 rules [20], more than half of which are mal-rules [19]. Initially, it had 325 
production rules for planning and encoding LISP programs and 475 faulty versions[20]. There are 
so many rules because of the attempt to encode all the possible paths the student could possibly 
take. These rules are obtained after painstakingly analysing numerous problem-solving protocols 
and considerable theoretical analysis of the problem solving domain. One questions how much time 
and effort ought to go into this analysis phase considering that a handful of mal-rules tend to 
account for a large percentage of the errors in the domain. Also, the time spent by such systems 
in diagnosing students’ misconceptions could certainly be reduced if students were made to specify 
what they intended to do next. The uncertainty in what path a student would take is then reduced. 
Efficiency would also be enhanced with increased flexibility. 

(7) The main limitations of earlier CA1 systems were that they provided neither feedback nor 
individualization. Systems such as the Geometry tutor definitely do provide feedback mostly in the 
form of interrupting either to give advice or for diagnosis when the student wanders off the ‘correct’ 
path. However, the system lacks adequate individualization. This is probably the most severe of 
all the limitations of the model-tracing approach, at least as exemplified in systems like the LISP 
and Geometry tutors. This approach neither supports nor maintains any student models or student 
history files. Consequently, these tutors do not learn in any way about the student as human tutors 
do. Therefore such systems would not tutor a weak student any differently from another weak 
student though their levels of understanding might be significantly different. Self[28] strongly 
argues in favour of the rehabilitation of student models in intelligent tutoring systems. 

(8) Some of these tutors tend to do too much for the student. For instance, in ALGEBRA- 
LAND, students do not even need to type in anything on the keyboard. It performs all the manual 
calculations for the student. In fact, in most cases, a response can be generated by pointing to parts 
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of the existing expressions in the current equation window using the mouse; the idea being to 
concentrate only on aspects that are relevant to the problem-solving skill(s) being tutored. This can 
be viewed as an advantage or disadvantage depending largely on what view of tomorrow’s 
education one holds. If one is of the radical view that the classrooms of today have no place in 
tomorrow’s schools [ 141, then this is certainly an advantage. If one rather holds the conventionalist 
view that present classrooms are here to stay, then many would argue that it is a disadvantage. 
As[27] rightly point out, it raises the ‘training wheels’ issue; what happens when the student leaves 
such a helpful environment that supports problem solving and has to face the realities of today’s 
pencil-and-paper? It is certainly true that many errors would otherwise occur through slips and 
mis-strikes of keys or mis-copying of expressions but such or equivalent errors also in reality when 
using pencil and paper and students must learn how to recover from them. Admittedly, such 
help-systems would be very useful in the very early stages of learning a problem-solving skill when 
otherwise the student may be frustrated into giving up due to irrelevant errors. Perhaps they should 
therefore be used only at this very early stage and then the student should proceed to more lifelike 
systems. In summary, it seems that there is a good case for constructing systems which are closer 
to the reality of the day. 

These are only the main criticisms levelled against the model-tracing approach. In fact, some of 
the shortcomings of the mal-rule approach also apply to this model-tracing one. 

The effect of many of these limitations is to produce a relatively inflexible tutor as the systems 
strive to anticipate all the possible steps the student might make. Therefore, from the ITS 
perspective, the model-tracing approach, as exemplified by Andersonian tutors, tends to produce 
tutors somewhat towards the CAIjCAL end of the spectrum in spite of their apparent cognitive 
foundation. Wenger[34] enforces this view as he notes that “. . . the notion of a compiled ITS 
corroborates the CA1 flavour of this approach to knowledge communication”. Anderson and his 
colleagues have acknowledged the inflexibility in style of this approach and their recent efforts are 
enhancing the paradigm’s flexibility by proposing a new production system, PUPS, to replace 
GRAPES on which the current tutors are based[20]. PUPS is meant to have improved on some 
of the shortcomings of GRAPES, but Anderson and his colleagues have not yet based any ITS 
on it. 

In effect, the two predominant approaches to developing ITSs in mathematics have been 
observed to have numerous shortcomings; this contributes to the lack of consensus on any 
approach for the design of such systems. The next section proposes a novel approach which has 
been demonstrated to have improved on at least some of the shortcomings of the two main existing 
ones. 

THE APPROACH 

The shortcomings of existing approaches listed in this paper, the conclusions which were drawn 
from empirical work with the reasonably complex domain of fractions[35,36], the conclusions 
drawn from a bug theoretical study[37,38] and previous work of other researchers, e.g. [13], all 
contributed to the novel approach to be described. They not only provide ideas on how to approach 
building an ITS for the fractions domain but for other mathematical as well as suitably structured 
ones. The approach like the other two consists of a list of features (principles) which should be 
abided by, along with some justifications where deemed appropriate. In effect, mathematical ITSs 
should be capable of the following: 

(1) Pre-model the student. In our bug theoretical work, it was observed that some errors children 
make result from deficient knowledge. “The major problems in automated tutoring is that the 
system needs to know what the student knows and understands, what his misconceptions are”[33]. 
Pre-modelling should identify these prerequisite skills, concepts and facts that are or are not 
possessed by the student in question as well as coverage of the syllabus. If the student does not 
exhibit enough prerequisite knowledge, then the necessary prerequisite should be presented [39]. 
Besides, it also seems unreasonable to assume that all learners start off with the same structuring 
of space [40]. 

(2) Pre-teaching prerequisite skills. Most of mathematics is considered hierarchical in nature, that 
is certain skills are prerequisites to higher level skills [41]. As mentioned earlier, the empirical study 
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clearly showed that errors resulted due to deficient mastery of prerequisite skills, facts and concepts. 
It is inevitable that if students do not possess the prerequisite skills, they would encounter 
difficulties with the goal topic. For instance, it is pointed out in[42] that if a student consistently 
solves tasks such as 2*3x + 4x = 22 as x = 22/14, then tutors should recognize his consistency in 
making precedence errors and probably switch focus from algebra to arithmetic precedence until 
the student shows signs of understanding precedence in arithmetic, and then resume algebra 
tutoring. Most importantly, this will also strengthen links with other areas of mathematics. It is 
rightly pointed out in[15] that current systems, e.g. BUGGY/Geometry Tutor, support a split 
between algorithm and applications as they view topics they tutor as separate from ‘mathematical 
thinking’. The ITS should then be able to teach or reteach the necessary prerequisites prior to the 
teaching of the goal skills. Another likely advantage is that pre-teaching would also make the 
diagnostics or any information generated by the tutor more meaningful, as the student would better 
understand what to do. 

(3) Provide examples (sequence of examples/lessons) such that Vanlehn’s ,felicity conditions are 

satisfied. The bug theoretical study highlighted that, so often, teachers or books assume too much 
of the students in their examples as well as their lessons. This view is also supported in[32]. 
Vanlehn’s [43] felicity conditions address this issue. 

(4) Monitoring the student step by step. The case for monitoring (or model-tracing) was clearly 
demonstrated in[36,37]. This view is enforced by[44] that “. . . the ideal educational system will 
carefully monitor interaction with the student . . .“. Besides, some systems, e.g. PIXIE, which are 
based on the mal-rule approach have been enhanced to make use of intermediate steps[42], albeit 
in very restricted fashions, to discriminate amongst possible models-a step towards a more 
monitoring-type approach. In summary, the system should then be able to monitor and comment 
upon the student’s actions, recognize optimal, less than optimal, and clearly irrelevant actions. It 
should also offer help, hints, explanations and tutoring advice as appropriate[45]. 

(5) Diagnose in a problem-solving context. Diagnosis becomes easier and more efficient as the 

system has access to intermediate steps. This is because the problems of uncertainty and/or 
combinatorial explosion faced by DEBUGGY and PIXIE when carrying out diagnoses (assigning 
credit/blame) are substantially reduced. Self[28] also stresses that ITSs should avoid guessing and 
that they should get the students to tell them what they need to know. This point is well expressed 
in[40]: “an ICAI system should endeavour to interpret students’ inputs, not merely in terms of 
knowledge understood or not, but as evidence about the student’s goals, i.e. what he is trying to 
achieve”. Diagnosis will be even further enhanced if this is done, for example, if the student specifies 

what operation will be carried out. 
(6) Be capable of getting the student to communicate intensions (plans) prior to executing them. 

This follows from the previous feature. 
(7) Remediate in a problem-solving context. The empirical study observed that systems of the 

“buggy” type print the inferred bug. This has been shown to be of limited value as there is no point 

diagnosing if one cannot remediate[28]. Remediation would also be easier and of more use to the 
student since the system would be monitoring every intermediate step. It should take the form of 
diagnosing the error, providing the correct answer, instructing the student what to do next or giving 

hints [46]. 
(8) Keep information about the student’s ability andprogress (model the user). Student information 

databases, such as student models or student history files, are conspicuously absent from 
model-tracing +&ors, at least as exempli&d in the Geometry and LISP tutors[21]. However most 
researchers seem to agree that to provide truly individualized instruction, which ITSs strive or 
should strive to do, such information is vita1[28,40,47,48]. In brief, the review clearly notes that 
the student model is a key component of an ITS. 

(9) Be capable of testing the student’s understanding. This might be the student’s understanding 
of prerequisite skills, e.g. as in feature (l), or understanding of the goal skill. The results of the 
testing exercise should be used to modify the student model. 

(10) Be capable of supporting various idiosyncratic ways which the student might choose to solve 
the problem. This is contrasted with the ideal problem solver of the LISP and Geometry tutors 
which are ‘hardwired’ with the ‘correct’ way of solving the problem: or mal-rule tutors, which only 
normally request the final answer. Nonetheless, the ITS should be capable of comparing solutions 



Intelligent tutors in mathematics 33 

and indicating to the student if the correct solution is sub-optimal and possibly present the optimal 
solution. It must also be capable of solving the problems it presents to the students[49]. 

(11) Have explicit representations of the knowledge of the student, knowledge of tutoring strategies, 
knowledge to be taught, the curriculum knowledge and the more enduring characteristics to which 
instruction should be sensitive. CAI’s main weaknesses stem from its implicit representation of 
knowledge. It has been argued that a system would be more ‘intelligent’ if such knowledge was 
all made explicit. Woolf[49] dwells on this premise. 

(12) Motivate and support a moreflexible style of tutoring. The empirical study pointed out that 
factors such as boredom and motivation are involved in learning[50]. Suppes[Sl] notes that the 
absence of sustained work on motivation in ITS research is its most serious omission. However, 
it is still extremely difficult to detect or model such phenomenological factors. As a safeguard, ITSs 
should be as motivating as possible to reduce the possibility of the student getting bored. ‘Buggy’ 
tutors were observed to be very boring and uninteresting in their style of tutoring. Model-tracing 
tutors were also observed to be inflexible. They should be more flexible by playing a more 
collaborative/mentor role for the weaker/better students respectively[33]. 

(13) Maintain control over the whole tutoring endeavour and support a more mixed-initiative 
interaction. They should be simple to use, able to detect and report minor/syntactic errors and 
maintain a good level of interaction between it and the student. They should update and maintain 
student models, provide examples, etc. However, it should also support a more mixed-initiative 
interaction. Our empirical study showed that “buggy” tutors mostly limit students to monosyllabic 
answers. Getting the child to interact more with the tutor is also likely to reduce the possibility 
of boredom. 

(14) Provide environments in which the interaction between them and students should be as close 
as possible to the reality of the day. In this era, where traditional classroom instruction is still the 
norm and pencil-and-paper still remains the dominant technology, ITSs should reflect these realities 
if they are to be truly useful. It has been observed out that children experience the ‘training wheels’ 
problem when they leave, sophisticated environments and have to sit, say, our present examinations 
using pen and paper[27]. Nevertheless, one must not become so conservative as not to realize that 
the computer revolution will continue to have fundamental repercussions on the day’s educational 
practices! 

(15) Should be easy to understand and the approach on which it is based should be transparent so 
that it could be applied in other suitable mathematical domains. 

DEMONSTRATION OF APPROACH 

FITS, a Fraction Intelligent Tutoring System, is an example system which has been developed 
and which is underpinned by the above principles. Its details have been extensively discussed in 
other publications including[52-551. Only an appraisal of the system against the above principles 
is provided here. It must be emphasized that this section is not meant to constitute the evaluation 
of the system. It is only meant to provide the reader with a ‘feel’ of how the system improves on 
the shortcomings pointed out. FITS has been appraised against other criteria and it is not without 
its limitations; a much more comprehensive evaluation of the system is provided in[54]. 

Example FITS protocol extract 

A brief annotated and slightly modified example excerpt from an interaction between the tutor 
and an actual student, Rose, is illustrated by a protocol of Fig. Al, like O’Shea does with his classic 
Quadratic tutor [3 11. Comments are in italics. The protocol is also slightly stylized, e.g. the fraction 
‘/4 really appears in FITS as l/4. 

Discussion against principles 

In this section, FITS is appraised against its principles to determine how well it achieves its 
objectives. Each principle is alternately examined by providing an answer to a question that 
concerns it. Where applicable, the reactions of students who have used FITS are also mentioned. 
Comparisons are also made with other tutors in the domain so as to further provide a better 
appreciation of the tutor. 



34 HYACINTH S.NWANA 

(1) Does the system pre-model the student? 
Fits does pre-model its students. It does this when the student logs on to the system for the first 

time. At log in, the following exchange may occur: 

Tutor: Good afternoon. Welcome to FITS. 

Hello. What is your name? 

Student: rose. 

Tutor: Fine Rose. I want to find out how much you know about 
addition of fractions. I need to know this so that I can 
decide what and how to teach you. I can do this by having a 
look at your answers to my test of ten questions... 

Please enter the name of your file of solutions. 

Student: rose file. 

[Pre-modelying occurs here]. 

. . . 

FITS appears to provide a reflective enough pre-model to provide an adequate start for 
individualized tuition which ITSs strive to achieve, judging from its evaluation with real students. 
The weaker students were pre-modelled as such and instruction always began with pre-teaching 
some skills. On the other hand, the better ones were not pre-taught any skills. This contrasts with 
mal-rule ITSs, e.g. BUGGY, and with current model-tracing tutors, e.g. the GEOMETRY tutor, 

which do no pre-modelling at all. 
(2) Does the system preteach prerequisite skills? 

After pre-modelling, FITS tutors all skills or concepts/tasks that are believed to be lacking from 
the student’s repertoire. Such tutoring may also occur after a session where the student consistently 
exhibits lack of certain skills. Such tutoring is mainly by exposition, examples and testing. For 
example, the task of adding whole numbers is taught/retaught after a session (session 2) where Rose 
has exhibited difficulty with it as follows: 

Tutor: You appear to be having some difficulty with this session. I 
have noticed a skill you still have not mastered yet. Let us 
revise it again. 

Please press the <RETURN> key to continue. 

Student: <RETURN>. 

Tutor: SUM WHOLE NUMBERS 

Here you just sum and record the loose or whole numbers in the 
given problem. 

EXAMPLE 

Sum the loose numbers in the problem 1:1/4 + 2:1/4- 

SOLUTION 

The sum of the whole numbers is 1 + 2 = 3. 

Another example? 

Student: no. 

[Testing of the concept occurs here]. 

Tutor: Let us proceed to redo session 2. 

Again, current ITSs of both predominant approaches do no such pre-teaching on the basis of 
pre-modelling since they do not perform the latter. They therefore proceed to start tutoring 
different students of different aptitudes similarly. FITS improves on this limitation. In fact, it was 
observed that a couple of the students who used FITS benefited from this capability: they even 
remarked that they liked the way it taught them some of the skills that they did not know or had 
forgotten. 

(3) Does the system provide examples (sequence of examples/lessons) such that Vanlehn’s felicity 
conditions are satisfied? 

FITS provides a sequence of examples (lessons) which attempts to satisfy [43’s] felicity conditions 
so as to clearly communicate where and when the various skills are used. The following excerpt 
demonstrates how. 
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I have arranged the examples such that you can understand how 
and when the key skills you have learnt are used. Each new 
example introduces how and when ONE of these skills is 
used. Also note how harder problems use more of the skills you 
know. 

Please press the <RETURN> key to continue. 

Student: <RETURN>. 

Tutor: EXAMPLE 

Study the step by step solution to the problem 1 + l/2. 

SOLUTION 

Note how and when you use the skill: REWRITE FRACTION. 

Solving problem -> 1 + l/2 

Rewriting fraction-> 1:1/2 

Please press the <RETURN> key to continue. 

Student: <RETURN>. 

Tutor: 

Tutor: 

. . . 

EXAMPLE 

Study the step by step solution to the problem 1 + 1:1/2. 

SOLUTION 
Note how and when you use the skill: ADD WHOLE NUMBERS. YOU 
have already seen how and when to use the other skill. 

Solving problem -> 1 + 1:1/2 

Adding whole numbers -> 2 + l/2 

Rewriting fraction -> 2:1/2 

Please press the <RETURN> key to continue. 

EXAMPLE 

Study the step by step solution to the problem 1:1/a t 2:1/a. 

SOLUTION 

Note how and when you use the skill: ADD EQUIVALENT 
You have already seen how and when to use the other 

Solving problem -> 1:1/d t 2:1/a 

Adding whole numbers -> 3 + l/4 + l/4 

Adding equivalent fractions -> 3 + 314 

Rewriting fraction -> 3:3/4 

Please press the <RETURN> key to continue. 

FRACTIONS. 
skills. 

This exposition sequence could be replayed if needed and appropriate testing would ensue; 
obviously the pseudo-randomly generated examples will be different. 

With this feature, FITS contrasts with mal-rule and model-tracing ITSs which both acknowledge 
the fact that students make errors in how perform computations but do not also seem to accede 
the fact that children also make arithmetical errors because of lack of knowledge of when to use 
their acquired skills/concepts. FITS improves on this shortcoming. All the students who have used 
FITS remarked that they liked this Vanlehn tutoring session, which seemed to clearly demonstrate 
to them when and where to use the various fraction skills. 

(4) Does the system monitor the student step by step? 
FITS definitely achieves this. The extract excerpt protocol of FITS in use depicted by Fig. Al 

well demonstrates this feature which is clearly not achieved by mal-rule ITSs. Naturally, current 
model-tracing ITSs (e.g. the GEOMETRY tutor) support this, but a limitation has always been 
the fact that they could frustrate the good students who do not wish to go religiously through these 
step by step solutions. This shortcoming is improved on in FITS as is demonstrated in the protocol 
of Fig. Al. All the students really did enjoy this monitoring capability. 

(5) Does the system diagnose in a problem solving context? 
The reader is again referred to the exchange of Fig. A 1. It clearly reveals how FITS diagnoses 

in a problem solving context. For example, note from the protocol of Fig. Al how FITS diagnoses 
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Rose’s error as having multiplied the fractions as opposed to adding them. Once more, all the 
students liked the diagnoses: in fact, a couple were sometimes amazed at the accuracy of FITS’s 
diagnoses. Admittedly, mal-rule ITSs like PIXIE]501 do achieve this but probably not in such a 
problem solving and meaningful context as model-tracing tutors (e.g. FITS) do. 

(61 Does the system enable the student to communicate hislher intention fiats prior to executing 
them? 

FITS certainly supports this. Figure Al reveals that FITS regularly comes up with the question 
‘What operation do you want to perform?‘, followed by a menu of operations. The answer to this 
question exposes the many situations where students attempt to perform a wrong operation at a 
particular stage (i.e. it reveals those concepts which the student knows how to perform but does 
not understand when to perform them). It also makes diagnosis~remediation easier. However, as 
briefly mentioned previously, FITS is also flexible enough to allow the good students to directly 
provide any intermediate step or the final answer as demonstrated in the following exchange. 

Tutor: Solve 2z3/4 + 2z1/2. 
What operation do you want to perform? 

List of Operations 
1. Add equivalent fractions 

2. Cancel fraction 

3. Find equivalent fractions 

4. Sum whole numbers 

5. Change improper fraction to a mixed numbers 

6. Change mixed number to improper fraction 

7. Rewrite fraction 
8. Provide some intermediate/final answer 

WHICH <1..8>? 

Student: 8. 

Tutor: Go on then. 

Student: 294. 

Tutor: Correct. What Operation do you want to perform? 

. . . 
Student: 8. 

Tutor: Go on then. 

Student: 5:1/a. 

Tutor: Congratulations . . . 

The students enjoyed this flexibility and remarked that FITS would have been very boring 
without it. Naturally, mal-rule ITSs do not support such a feature. However, model-tracing ITSs 
do, but do not allow for the sort of flexibility demonstrated above where any intermediate/final 
steps could be directly given. 

(7) Does the system remediate in a problem solving context? 
The reader is once more referred to the exchange of Fig. A 1 which clearly reveals FITS’s remedial 

capabilities. It takes many forms, e.g. diagnosing the error, instructing the student on what to do, 
etc. It is worth noting the Socratic remedial strategy starting and ending at the statements ‘Well 
I think you can do with some help’ and ‘We return to where you were’ respectively. This fragment 
clearly further demonstrates FITS’s remedial capabilities. Such a remedial strategy is not only 
naturally non-existent in DEBUGGY [6] and other mal-rule ITSs, but also in model-tracing ITSs 
like the GEOMETRY tutor which mainly, successfully or unsuccessfully, attempt a diagnosis on 
any of the student’s steps which do not match that of their ideal student models. The students also 
enjoyed FITS’s remedial capabilities as it always came to their rescue when they were stuck, 
confused, etc. The socratic’remedial strategy was a favourite with the weaker students. 

(31 Does the system model the user? 
FITS would hardly deserve the prefix ‘intelligent’ if it did not do student modelling. In the 

example protocol provided to supplement the answer to Question (2) above, the model revealed 
a ‘belief’ in the lack of knowledge of the task, sum whole numbers, from the student’s repertoire 
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(model) after the session. Tutoring of the task ensued; this is just one of many demonstrations that 
FITS does model. This contrasts with mal-rule and model-tracing ITSs which perform no 
modelling at all (as exemplified in Anderson’s tutors) as both approaches support neither student 
models nor student history databases. Hence, FITS would naturally provide more individualized 
instruction than most mal-rule and model-tracing IT% 

(9) Does the system test the student’s understanding? 
FITS’s tutoring could be globally viewed as testing for all sorts of goals, e.g. testing for 

knowledge of how to use a concept, testing for knowledge of when to use a concept, testing to 
determine whether the student can handle problems of a particular difficulty level (i.e. session), etc. 
Hence, the exchange of Fig. Al is the test of whether Rose can handle problems of that particular 
level of difficulty. A further example of testing ensues after the tutoring of the task, sum whole 
numbers, mentioned above [see Question (l)]. 

Tutor: Let us see if you can do this one. 

Sum the whole numbers in the problem 3z3/4 + 4:1/6. 

Please have a guess if you are not sure. 

Student: 7. 
Tutor Eh! That is good. Try this. 

Sum the whole numbers in the problem 6z4/7 + 3:5/9. 

Student: 9. 

Tutor: Brilliant. I think you now understand how to perform this 
skill. 

The system may also test at a later stage (after a Vanlehn tutoring session) whether the student 
understands when and where to use the above skill as follows: 

Tutor: Fine. Now show me that you understand WHEN to apply all these 
skills you have acquired. 

Assume you are at the stage 2 t 3/4 t 3. 

What operation would you perform next? 

List of Operations 

J. 

4. 

5. 

6. 

7. 

WHICH <l 

Student: 4. 

Tutor: Good... 

Add equivalent fractions 

Cancel fraction 

Find equivalent fractions 

Sum whole numbers 

Change improper fraction to a mixed numbers 

Change mixed number to improper fraction 

Rewrite fraction 

. I>? 

BUGGY and other ‘buggy’ as well as current model-tracing tutors do carry out testing, but 
mainly on the overall skill: clearly, they cannot test for a subskill possibly lacking from the student’s 
repertoire or about when to use a particular skill (as demonstrated in the previous two protocols) 
since they do not have an explicitly represented syllabus as in FITS, and also since they also do 
not possess some of its features such as modelling, pre-teaching, etc. 

(IO) Does the system support the various idiosyncratic ways which the student might choose to solve 
the problem? 

FITS certainly does achieve this. For example, any of the following solutions is acceptable to 
FITS for the problem 2: ‘/2 + 3: ‘/4. 
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Solving problem -> 

Adding whole numbers -> 

Finding equivalent fractions-> 

Adding equivalent fractions -> 

Rewriting fraction -> 

OR 

Solving problem -> 

Finding equivalent fractions-> 

Adding equivalent fractions -> 

Adding whole numbers -> 

Rewriting fraction -> 

2:1/2 + 3:94 

2:4/a + 3:2/&3 

2 + 3 + 6/a 

5 + 6/a 

5:6/g 

Cancel fraction -> 5:3/4 

OR 

Solving problem -> 2:1/2 + 3:1/4 

Change mixed numbers to improper fractions-> 5/2 + 13/J 

Finding equivalent fractions -> IO/q + 13/4 

Adding equivalent fractions -> 23/4 

Change improper fraction to a mixed number-> 5z3/4 

These are certainly not the only solutions to this problem that FITS would accept. Clearly, there 
are a multitude of other correct solutions; in fact, the students who have used FITS were observed 
using some of the above as well as other solutions and were pleased with this flexibility. This 
contrasts with the single ‘optimal’ solutions which Andersonian model-tracing tutors support. 
Mal-rule ITSs do not support such a feature. FITS also has the capability of comparing the 
student’s solutions to that of the Problem Solving Monitor module’s, with a comment on its 
efficiency. It can also provide a solution to any problem the student may present to it. For example, 
the following protocol demonstrates that FITS solves ‘hard’ problems which are not easily solved 
by human experts (this was a favourite activity amongst the students who have used FITS). 

Solving problem -> 61:567/765 + 15:gw7$jg 

Adding whole numbers -> 142 + =%65 + “%89 

Finding equivalent fractions-> 142 + 14g121/2011g5 + 251685/2011g5 

Adding equivalent fractions -> 142 + 4o0886/2011g5 

Cancelling fraction -> 142 + 44534/22355 

Changing to mixed number -> 142 + 1 + 2217g/22355 

Adding whole numbers -> 143 + 2211g/22355 

Rewriting fraction -> 143: 2217g/22355 

(11) Does the system explicitly represent knowledge? 
FITS explicitly represents its knowledge, e.g. its tutoring strategies’ knowledge is largely 

independent of the domain-dependent knowledge to be communicated to the student. Hence, the 
domain-independent modules could largely be reused for some other domain; this is a similar 
concept to that of ‘shells’ in expert systems parlance. BUGGY and most mal-rule ITSs do not have 
any domain-independent modules (i.e. the possible domain-independent knowledge is ‘hard-wired’ 
within the rest of the code in such systems). Admittedly, some of such tutors have begun 
incorporating such explicit representational schemes, e.g. PIXIE[56]. Current model-tracing 
tutors also suffer from this shortcoming: in fact, Anderson has acknowledged this fact, and his 
group is currently devising a more general architecture for their model-tracing tutors. FITS 
definitely seems to improve on mal-rule and model-tracing ITSs as regards explicit representation 
of knowledge. 
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(12) Does the system motivate and support a more flexible style of tutoring? 
FITS’s style of tutoring is much more flexible because of all the various enhancements on the 

model-tracing paradigm, e.g. it supports various idiosyncratic solutions, it accepts various 
idiosyncratic inputs, it supports various tutorial strategies, etc. For the good students, FITS was 
observed to play more of a mentor role while for the weaker students it played a more 
collaborative/helpful role: this is akin to Barzilay’s [33] SPIRIT system. To this degree, it is flexible. 
However, it falls short on motivation. The hope in FITS is to get the student to interact more in 
order to reduce the possibility of boredom. Such factors as boredom and motivation are probably 
best addressed by providing a much more intelligent interface. However, as demonstrated by the 
protocols observed so far, FITS clearly improves on mal-rule ITSs which tend to be very 
monotonous and uninteresting as their style of tutoring never changes. It also appears to improve 
on model-tracing tutors as they seem to be very authoritative and dogmatic in style [26], and their 
tutoring is also inflexible. Nevertheless, some model-tracing tutors (e.g. the GEOMETRY tutor) 
provide much more intelligent interfaces as this is a main tenet in Anderson’s monitoring approach. 
In summary, FITS does appear to have improved on mal-rule and model-tracing ITSs as regards 
flexibility in its style of tutoring but falls well short of some of the latter as regards motivation 
mainly due to its fairly ‘primitive’ interface by today’s standards. However, as will be later 
discussed, the students who have used it found FITS motivating enough. 

(13) Does the system maintain control over the whole tutoring endeavour? 
FITS certainly does maintain control; this is demonstrated by all the exchanges observed so far 

(e.g. Fig. Al). Too much control leads to authoritarian ITSs. However, FITS is less authoritarian 
in approach than current model-tracing ITSs mainly because it does not employ a tutoring strategy 
which constrains the student to follow some ‘ideal’ model. 

(14) Does the system provide an environment in which the interaction between it and the student 
is close to the reality of the day? 

FITS’s monitoring capability allows for the students solving problems largely as they will with 
pencil and paper than current tutors do. For example, they type in the intermediate steps until they 
arrive at the answer, they make careless syntactic as well as logical errors just as they would with 
pencil and paper. This contrasts with only the final answers presented to mal-rule ITSs and the 
much help provided by model-tracing tutors like ALGEBRALAND [24]. In other words, the 
‘training wheels’ problem [27] (i.e. how easily does a student cope with the problems when he/she 
leaves the system and returns to pencil and paper in a classroom) would probably be less for a 
system like FITS. In the event, a couple of the students who have used the system were, afterwards, 
observed solving fraction addition problems in the same manner as they were with FITS; hence, 
it appears FITS has largely achieved this feature. 

CONCLUSION 

This paper provides a rigorous critique of existing approaches to constructing intelligent tutors 
in mathematics. Drawing from the latter, it proposes, an alternative approach; it also provides a 
flavour of how this approach has been implemented in the FITS system. 
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APPENDIX 

[The system would begin with pre-testing and appropriate pre- 
teaching]. 

Tutor: Solve l:l/4 t 2:1/2. 

What operation do you want to perform? 

List of Operations 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

Add equivalent fractions 

Cancel fraction 

Find equivalent fractions 

Sum whole numbers 

Change improper fraction to a mixed number 

Change mixed numbers to improper fraction 

Rewrite fraction 

Provide some intermediate/final answer 

WHICH <1 ..8>? [Demanding the student's intention/plan] 

Student: 2. 

Tutor: Oh no! There is no fraction to cancel. 

Try again. [Hint]. 

What operation do you want to perform? 

. . . 
Student: 4. 

[Could equally have chosen to find equivalent fractions or to 
change mixed numbers to improper fractions. Therefore the 
system can support various idiosyncratic ways of solving the 
same problem, hence no one 'correct'solution]. 

Tutor: Fine Rose. Perform operation. 

Student: 3 t l/4 t l/2. 

[Could have typed in 3:l/q t l/2 or l/4 f 3:1/z or l/4 + 3 + 

l/2. Note these various possible idiosyncratic inputs are 
possible due to explicit fractions knowledge representation.] 

Tutor: Correct. What operation do you want to perform? 

. . . 
Student: 3. 

Tutor: Fine. Perform operation. 

Student: 3 t 2/o t 4/B. 

[Note these idiosyncratic inputs: could also have typed in 

3:4/&j t 4/&' or 3 t 2/4 t 2/4 Or 3:8/16 + 8/16.1 

Tutor: Correct. What operation do you want to perform? 

. . . 
Fig. Al. Caption on p. 43. 
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Student: 1. 

Tutor: Fine Rose. Perform operation. 

Student: 3 + 916. 

Tutor: Not Correct. You seem to have added both numerators and 
denominators to provide the 
the fraction respectively. 

[Classic fraction error]. 

Remember you add equivalent 
numerators and placing this 

this example to help you. 2 

Remember your current step 
The operation to perform is 

Student: 3 + 964. 

Tutor: Still not correct. You seem 
together instead of adding. 

numerator and the denominator of 

fractions by just adding the 
sum over the denominator. Study 

+ l/4 + 2/4 -> 2 + 3/4. [Hint]. 

is 3 + 2/fj + 4/g. 
adding equivalent fractions. 

to have multiplied the fractions 

WELL I THINK YOU CAN DO WITH SOME HELP. 

Add the numerators and place the sum over the denominator for 

the problem 2/S + 4/S. 

Student: 98. 
Tutor: Not Correct. Add the numerators: 2 + 4 = ? 

Student: 6. 

Tutor: Correct. Place this value 6 over the common denominator 0. 

Student: 6/& 

Tutor: Correct. Now add this fraction sum 6/S to the whole number 

Student: 3 + 6/S. 

Tutor. Correct. 

WE RETURN TO WHERE YOU WERE. 

Remember you were at the stage: 3 + 2/S + 4/S. 

You chose to perform adding equivalent fractions. 

Now with the help I have given you, Try again. 

Student: 3 + 6/S. 

3. 

Tutor: 

[Note the use of the explicit knowledge represented in the 
system. Also note the different tutoring strategy which FITS 
adopts here. The system could therefore switch to tutoring a 
different aspect of mathematics, if necessary, before returning 
to tutoring fractions.] 

Correct. What operation do you want to perform? 

. . . 
Student: 4. 

Tutor: There are no whole numbers to sum Rose. Try again. 

Student: 1. 

Tutor: There are also no equivalent fractions to add. 

Try cancelling the fraction Rose. 

[Strategy here is to tell the student what to do]. 

Remember your current step is 3 + %.3. 

[The system notes in the student model that Rose has shown 
evidence of a lack of understanding of when to cancel a 
fraction]. 

Student: 2. 

Tutor: Fine. Perform operation. 

Student: 3 + 3/4. 

Tutor: Correct. What operation do you want to perform? 

Fig. Al. Cuption opposite 
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Student: I. 
Tutor: Fine. Perform operation. 

Student: 3:3/4. 

Tutor: Congratulations Rose. You have arrived at the answer. 

[After this the system would display the student's full answer, 
with a comment on its efficiency, followed by its 'optimal' 
answer.] 

Fig. Al. Extract from protocol of FITS in use. 


