
Computers Educ. Vol. 20, No. I, pp. 27-43, 1993
Printed in Great Britain. All rights reserved

0360-1315/93 $6.00 + 0.00
Copyright 0 1993 Pergamon Press Ltd

AN APPROACH TO DEVELOPING INTELLIGENT TUTORS
IN MATHEMATICS

HYACINTH S. NWANA

Department of Computer Science, University of Keele, Keele, Staffordshire ST5 SBG, England

Abstract-Mathematics is highly structured and underpins most of science and engineering. For this
reason it has proved a very suitable test domain for intelligent tutoring system (ITS) research with the
result that probably more tutoring systems have been structured for the domain than for any othw.
However, there still exists no consensus on any approach for the design of such systems. Consequently,
existing ITSs in the domain suffer from a considerable number of shortcomings which render them
‘unintelligent’.

This paper after rigorously examining the shortcomings of existing approaches, presents an alternative
approach to constructing ITSs in mathematics which has been demonstrated to have improved on at least
some of the shortcomings of existing approaches. It also provides a flavour of how this approach has been
implemented in the FITS system.

INTRODUCTION

Current approaches to the construction of intelligent tutoring systems (ITSs) in mathematics can
be grouped under two main headings:

(1) The mal-rule approach
(2) The model-tracing approach.

This paper critiques both these approaches and lists some of their example systems. In the light
of these analyses and others, another approach designed to produce ITSs to improve on at least
some of the shortcomings of the above-mentioned is presented.

THE MAL-RULE APPROACH

Mal-rules (or bugs) represent the student’s misunderstandings of the domain. They are central
to this approach. Systems based on mal-rules have the characteristic of being diagnostic in nature:
they end up diagnosing the student’s misconception or give up. According to West, the rationales
for the approach are two-fold: firstly, that “there is hardly a skill in the teacher’s repertoire that
is more important than the ability to identify pupils’ errors and to prescribe appropriate remedial
procedures”, and secondly, that errors may be “springboards” for students to understand
mathematics (quoted in [l]).

However, a more accurate distinction between this and the second approach mentioned above
is made by answering Vanlehn’s[2] bandwidth question: how much of the learner’s activity is
available to the diagnostic program? Most ITSs in mathematics work on the low end of the
information band where only the final state is available to the system, i.e. only the student’s answer
to a question is available to the system [3]. Such tutors are henceforth referred to in this paper as
mal-rule tutors. Sleeman [4] notes that implementors of such ITSs frequently perform the following
steps:

(1) Analyse protocols from students in the target population solving typical tests and codify their
difficulties/misunderstandings. (This may sometimes involve detailed ‘clinical’ interviews with
students.)

(2) Create databases which include codings of the mal-rules (bugs) observed in Step (1).
(3) Implement and use the ITS with students and in particular note student errors which are not

spotted by the system.

21

28 HYACINTH S. NWANA

(4) Carry out detailed interviews to determine the nature of these errors and code them as
additional mal-rules. Steps (3) and (4) are repeated until the system captures the majority of the
bugs which occur with the target population.

Some examples of mal-rule ITSs in mathematics

Table 1 lists examples of mal-rule ITSs in mathematics that have been developed to date. It is
reasonably representative. It is also important to highlight the fact that most of these were
developed as prototypes and largely remain so. Hence, hardly any have been tested on more than
a few people. These ITSs do a lot less than the domain indicated suggests.

Critique of the mal-rule approach

The concept of ‘debugging’ is the major device used in most mal-rule systems to achieve the
diagnosis of errors; DEBUGGY is perhaps the most obvious example. Some of the criticisms
levelled at such systems are [I 3-l 51:

(1) The knowledge involved in debugging algorithms reveals rich interconnections between
different domains of mathematics. This restricts the value of single domain systems.

(2) Some researchers have argued that debugging is an intellectual task which might have great
educational value [151 and hence pupils should be major agents of the debugging process, since they
are the ones who have most to gain from it.

(3) There are a variety of idiosyncratic methods and approaches that can be used successfully
to solve most mathematical problems. Systems such as DEBUGGY neither know about such
methods nor can they learn them, because they have no access to how pupils solve problems in
the first place. Thus if a range of pupil solutions to subtraction problems is considered, DEBUGGY
fares no better than a human teacher, since it will completely fail to debug errors in idiosyncratic
methods [151.

(4) Many systems seem to support a split between an algorithm and its applications. Divorcing
these two, it is argued in [15], “is a device of very doubtful pedagogical value. Subtraction should
not be viewed as a self-contained topic which is separate from ‘mathematical thinking’. It should
be viewed as an integral part of mathematics and mathematical thinking and teaching should focus
on extending and strengthening links and other areas of mathematics”. O’Shea et al. [16] argue
that it is this very divorce that brings about the systematic errors that children make in

mathematics.
(5) There is still a very high percentage of unexplained errors (N 3@40%)[16].
(6) This approach presumes that the novice (student) deviates from the expert (tutor) in

some simple way. This is a very common misconception. For example, the student might be
viewed as having too few routines, and needs to add more to his/her repertoire; or may be
viewed as having some bugs or mal-rules. It is argued in [15] that both these simplistic views are
wrong and that there are major differences between novices and experts that are not so readily
remedied.

(7) The premise that students’ errors are systematic is a basic one, but the nature of the
systematicity is difficult to define. This leads to the question of bug stability. Are children’s errors
transient in nature? Children can be seen to employ two different buggy procedures in solving
almost identical problems within a single session [17]. Therefore, classifying student’s behaviour
on some single occasion as being due to various types of buggy behaviour may be woefully
misleading.

Table I. Some examples of mal-rule IT% in mathematics

BUGGY [5] Diagnosis in basic subtraction
DEBUGGY [6] Diagnosis in basic subtraction
IDEBUGGY (61 Diagnosis in basic subtraction
ATDSE 171 Diaenosis in basic subtraction
EDSMB[8]
HELPERR[9]
LMS[IO]
PIXIE[l I]
WEST[IZ]

Diagnosis in basic multiplication
Diagnosis in basic addition
Diagnosis in basic algebra
Diagnosis/tutoring in basic algebra
Coaching in basic arithmetic

Intelligent tutors in mathematics 29

THE MODEL-TRACING APPROACH

Model-tracing approaches have been around-faf severalyezcrsnow with its foremost protagonist
being the Carnegie Mellon psychologist John Anderson. However, other researchers had earlier
suggested such approaches. The technique (model-tracing) is so termed to express the fact that the
student is made to follow the system’s model quite closely [181. These tutors guide students through
a problem trying to make their steps correspond to those of the ideal student model.

Model-tracing tutors use the expertise of their problem solver to predict the steps the students
will take while working on a problem. The problem solver generates all the possible next steps,
both correct and incorrect according to the database of rules. They are compared to the student’s
step and the rule that matches is selected as an interpretation of the actions. If the tutor cannot
provide a model-driven interpretation of the student’s steps, the tutor signals that it does not
understand the last input and after a pre-determined number of trials, it simply suggests the next
best step according to the ideal model.

The main difference between model-tracing tutors and mal-rule tutors lies in the answer to
Vanlehn’s[2] bandwidth question noted earlier. These ITSs have access to intermediate states:
hence, they work with more information (larger bandwidth) than mal-rule tutors. Because the
diagnostic module needs as much reliable information as possible about the learner’s mental state,
bandwidth is critical in designing IT%. However, the main features of model-tracing are the
following [19,201:

(1) The tutor constantly monitors the student’s problem solving and provides direction wherever
the student wanders off path.

(2) The tutor tries to provide help with both the overt parts of the problem solution and the
planning. However to address the planning, a mechanism had to be introduced in the interface (in
this case menus) to allow the student to communicate the steps of the planning.

(3) The interface tries to eliminate aspects like syntax checking which are irrelevant to the
problem solving skill being tutored.

(4) The interface is highly reactive in that it does make some response to every symbol the student
enters.

Some examples of model-tracing ITSs in mathematics

GEOMETRY Tutor [2 1,221 Geometry proofs tool
ALGEBRA Tutor [22] Algebraic proof tools
INTEGRATION Tutor [23] Basic integral calculus
ALGEBRALAND[24] Algebraic proofs tool

Critique of the model-tracing approach

There appear to be several ‘brands’ of model-tracing, e.g. the discovery-learning type as
exemplified in ALGEBRALAND or the more rigid approach in the GEOMETRY tutor. Anyway,
as previously noted, Anderson’s [181 is by far the most popular. This is supported by recent attempts
at using model-tracing approaches which have produced systems (intermediate systems) more
towards the Andersonian types, e.g. [25]. Furthermore, the work of Anderson’s team is also
amongst the most principled and documented of current ITS research. As a consequence, in listing
some of the shortcomings of this approach, there is an obvious bias towards his ‘brand’ of
model-tracing. Model-tracing tutors’ drawbacks include:

(1) “They seem to incorporate a very dogmatic and authoritarian approach to education”[26].
This is because the main driving force behind such tutors is the detection of deviation from the
ideal student model (expert problem solver). This has obvious dangers in that the system will reject
any other correct approach to solving the problem if it differs from the path in the system. The
model-tracing approach currently keeps the student on one of the correct solution paths in the
problem; normally the optimal path [27]. It is a common misconception to talk about the ‘correct’
way an expert solves the problem. Ridgway[l5] notes that a major characteristic of experts is that
they can solve the same problem in a variety of ways. In short, such tutors are incapable of
supporting the variety of idiosyncratic methods that can be used to solve most problems.

30 HYACINTH S. NWANA

(2) They feign omniscience[28]. But the student could possess strategies that are equally as good
or even better than the ‘hard-wired’ strategy in the ideal student model. Many researchers have
called for a more collaborative approach, e.g.[29]. However, it is not always clear that the
mechanisms for implementing this have been available.

(3) It is argued in[30] that ITSs often have the advantage of an explicit set of tutorial strategies.
In model-tracing IT%, these strategies are often ‘hard-wired’ in these tutors. Therefore, there is
really no explicit representation of knowledge, i.e. the domain-independent and the domain-depen-
dent parts are not clearly delineated. This also leaves no room for improvement by the system itself,
though the progress of the student does provide feedback on the teaching process. In brief, such
systems cannot be easily adapted to tutor another domain [20]: to do so basically requires a total
reconstruction of the new system; neither can they learn or improve their strategies over time. There
are thus undisputably more benefits to be reaped by constructing systems which have their
knowledge explicitly represented. To be fair, this issue is non-trivial: in fact, knowledge represen-

tation still remains one of AI’s unsolved problems. However, some researchers have had some
success, albeit limited, at building self-improving tutors [23, 311, largely as a result of explicit
knowledge representation.

(4) The important educational activity of debugging is taken away by such tutors since this
approach, in principle, does not allow for floundering. It may be therefore deemed by some students
as being very intrusive and definitely of limited value at teaching debugging skills, i.e. such systems
may destroy the student’s personal motivation or sense of discovery. This limitation also applies
to the mal-rule approach. This is the central criticism that Papert and his supporters rightly level
against ITSs. They claim the approach they champion fully addresses this problem, but there are
still many questions about their LOGO technique that requires answering. Indeed, this is a difficult
problem; tutoring involves so many subtle skills, e.g. when is it the right time to interrupt?, which
good human teachers are gifted with. It is still a major research endeavour how to articulate the
knowledge behind such subtle tutoring decisions into ITSs.

(5) The style of teaching never changes in such tutors. This is because the rules and mal-rules
have merely been ‘hardwired’ into the system and such designs generally tend to lead to inflexible
systems[32]. Many researchers, e.g.[33], have stressed the importance of a more flexible style of
tutoring, though they seldom indicate how to go about implementing this.

(6) The success of such tutors depends heavily on the number of correct rules in the ideal student
model as well as the number of mal-rules in the bug catalogue. For instance, the LISP tutor now
contains more than 1200 rules [20], more than half of which are mal-rules [19]. Initially, it had 325
production rules for planning and encoding LISP programs and 475 faulty versions[20]. There are
so many rules because of the attempt to encode all the possible paths the student could possibly
take. These rules are obtained after painstakingly analysing numerous problem-solving protocols
and considerable theoretical analysis of the problem solving domain. One questions how much time
and effort ought to go into this analysis phase considering that a handful of mal-rules tend to
account for a large percentage of the errors in the domain. Also, the time spent by such systems
in diagnosing students’ misconceptions could certainly be reduced if students were made to specify
what they intended to do next. The uncertainty in what path a student would take is then reduced.
Efficiency would also be enhanced with increased flexibility.

(7) The main limitations of earlier CA1 systems were that they provided neither feedback nor
individualization. Systems such as the Geometry tutor definitely do provide feedback mostly in the
form of interrupting either to give advice or for diagnosis when the student wanders off the ‘correct’
path. However, the system lacks adequate individualization. This is probably the most severe of
all the limitations of the model-tracing approach, at least as exemplified in systems like the LISP
and Geometry tutors. This approach neither supports nor maintains any student models or student
history files. Consequently, these tutors do not learn in any way about the student as human tutors
do. Therefore such systems would not tutor a weak student any differently from another weak
student though their levels of understanding might be significantly different. Self[28] strongly
argues in favour of the rehabilitation of student models in intelligent tutoring systems.

(8) Some of these tutors tend to do too much for the student. For instance, in ALGEBRA-
LAND, students do not even need to type in anything on the keyboard. It performs all the manual
calculations for the student. In fact, in most cases, a response can be generated by pointing to parts

Intelligent tutors in mathematics 31

of the existing expressions in the current equation window using the mouse; the idea being to
concentrate only on aspects that are relevant to the problem-solving skill(s) being tutored. This can
be viewed as an advantage or disadvantage depending largely on what view of tomorrow’s
education one holds. If one is of the radical view that the classrooms of today have no place in
tomorrow’s schools [141, then this is certainly an advantage. If one rather holds the conventionalist
view that present classrooms are here to stay, then many would argue that it is a disadvantage.
As[27] rightly point out, it raises the ‘training wheels’ issue; what happens when the student leaves
such a helpful environment that supports problem solving and has to face the realities of today’s
pencil-and-paper? It is certainly true that many errors would otherwise occur through slips and
mis-strikes of keys or mis-copying of expressions but such or equivalent errors also in reality when
using pencil and paper and students must learn how to recover from them. Admittedly, such
help-systems would be very useful in the very early stages of learning a problem-solving skill when
otherwise the student may be frustrated into giving up due to irrelevant errors. Perhaps they should
therefore be used only at this very early stage and then the student should proceed to more lifelike
systems. In summary, it seems that there is a good case for constructing systems which are closer
to the reality of the day.

These are only the main criticisms levelled against the model-tracing approach. In fact, some of
the shortcomings of the mal-rule approach also apply to this model-tracing one.

The effect of many of these limitations is to produce a relatively inflexible tutor as the systems
strive to anticipate all the possible steps the student might make. Therefore, from the ITS
perspective, the model-tracing approach, as exemplified by Andersonian tutors, tends to produce
tutors somewhat towards the CAIjCAL end of the spectrum in spite of their apparent cognitive
foundation. Wenger[34] enforces this view as he notes that “. . . the notion of a compiled ITS
corroborates the CA1 flavour of this approach to knowledge communication”. Anderson and his
colleagues have acknowledged the inflexibility in style of this approach and their recent efforts are
enhancing the paradigm’s flexibility by proposing a new production system, PUPS, to replace
GRAPES on which the current tutors are based[20]. PUPS is meant to have improved on some
of the shortcomings of GRAPES, but Anderson and his colleagues have not yet based any ITS
on it.

In effect, the two predominant approaches to developing ITSs in mathematics have been
observed to have numerous shortcomings; this contributes to the lack of consensus on any
approach for the design of such systems. The next section proposes a novel approach which has
been demonstrated to have improved on at least some of the shortcomings of the two main existing
ones.

THE APPROACH

The shortcomings of existing approaches listed in this paper, the conclusions which were drawn
from empirical work with the reasonably complex domain of fractions[35,36], the conclusions
drawn from a bug theoretical study[37,38] and previous work of other researchers, e.g. [13], all
contributed to the novel approach to be described. They not only provide ideas on how to approach
building an ITS for the fractions domain but for other mathematical as well as suitably structured
ones. The approach like the other two consists of a list of features (principles) which should be
abided by, along with some justifications where deemed appropriate. In effect, mathematical ITSs
should be capable of the following:

(1) Pre-model the student. In our bug theoretical work, it was observed that some errors children
make result from deficient knowledge. “The major problems in automated tutoring is that the
system needs to know what the student knows and understands, what his misconceptions are”[33].
Pre-modelling should identify these prerequisite skills, concepts and facts that are or are not
possessed by the student in question as well as coverage of the syllabus. If the student does not
exhibit enough prerequisite knowledge, then the necessary prerequisite should be presented [39].
Besides, it also seems unreasonable to assume that all learners start off with the same structuring
of space [40].

(2) Pre-teaching prerequisite skills. Most of mathematics is considered hierarchical in nature, that
is certain skills are prerequisites to higher level skills [41]. As mentioned earlier, the empirical study

32 HYACINTH S. NWANA

clearly showed that errors resulted due to deficient mastery of prerequisite skills, facts and concepts.
It is inevitable that if students do not possess the prerequisite skills, they would encounter
difficulties with the goal topic. For instance, it is pointed out in[42] that if a student consistently
solves tasks such as 2*3x + 4x = 22 as x = 22/14, then tutors should recognize his consistency in
making precedence errors and probably switch focus from algebra to arithmetic precedence until
the student shows signs of understanding precedence in arithmetic, and then resume algebra
tutoring. Most importantly, this will also strengthen links with other areas of mathematics. It is
rightly pointed out in[15] that current systems, e.g. BUGGY/Geometry Tutor, support a split
between algorithm and applications as they view topics they tutor as separate from ‘mathematical
thinking’. The ITS should then be able to teach or reteach the necessary prerequisites prior to the
teaching of the goal skills. Another likely advantage is that pre-teaching would also make the
diagnostics or any information generated by the tutor more meaningful, as the student would better
understand what to do.

(3) Provide examples (sequence of examples/lessons) such that Vanlehn’s ,felicity conditions are

satisfied. The bug theoretical study highlighted that, so often, teachers or books assume too much
of the students in their examples as well as their lessons. This view is also supported in[32].
Vanlehn’s [43] felicity conditions address this issue.

(4) Monitoring the student step by step. The case for monitoring (or model-tracing) was clearly
demonstrated in[36,37]. This view is enforced by[44] that “. . . the ideal educational system will
carefully monitor interaction with the student . . .“. Besides, some systems, e.g. PIXIE, which are
based on the mal-rule approach have been enhanced to make use of intermediate steps[42], albeit
in very restricted fashions, to discriminate amongst possible models-a step towards a more
monitoring-type approach. In summary, the system should then be able to monitor and comment
upon the student’s actions, recognize optimal, less than optimal, and clearly irrelevant actions. It
should also offer help, hints, explanations and tutoring advice as appropriate[45].

(5) Diagnose in a problem-solving context. Diagnosis becomes easier and more efficient as the

system has access to intermediate steps. This is because the problems of uncertainty and/or
combinatorial explosion faced by DEBUGGY and PIXIE when carrying out diagnoses (assigning
credit/blame) are substantially reduced. Self[28] also stresses that ITSs should avoid guessing and
that they should get the students to tell them what they need to know. This point is well expressed
in[40]: “an ICAI system should endeavour to interpret students’ inputs, not merely in terms of
knowledge understood or not, but as evidence about the student’s goals, i.e. what he is trying to
achieve”. Diagnosis will be even further enhanced if this is done, for example, if the student specifies

what operation will be carried out.
(6) Be capable of getting the student to communicate intensions (plans) prior to executing them.

This follows from the previous feature.
(7) Remediate in a problem-solving context. The empirical study observed that systems of the

“buggy” type print the inferred bug. This has been shown to be of limited value as there is no point

diagnosing if one cannot remediate[28]. Remediation would also be easier and of more use to the
student since the system would be monitoring every intermediate step. It should take the form of
diagnosing the error, providing the correct answer, instructing the student what to do next or giving

hints [46].
(8) Keep information about the student’s ability andprogress (model the user). Student information

databases, such as student models or student history files, are conspicuously absent from
model-tracing +&ors, at least as exempli&d in the Geometry and LISP tutors[21]. However most
researchers seem to agree that to provide truly individualized instruction, which ITSs strive or
should strive to do, such information is vita1[28,40,47,48]. In brief, the review clearly notes that
the student model is a key component of an ITS.

(9) Be capable of testing the student’s understanding. This might be the student’s understanding
of prerequisite skills, e.g. as in feature (l), or understanding of the goal skill. The results of the
testing exercise should be used to modify the student model.

(10) Be capable of supporting various idiosyncratic ways which the student might choose to solve
the problem. This is contrasted with the ideal problem solver of the LISP and Geometry tutors
which are ‘hardwired’ with the ‘correct’ way of solving the problem: or mal-rule tutors, which only
normally request the final answer. Nonetheless, the ITS should be capable of comparing solutions

Intelligent tutors in mathematics 33

and indicating to the student if the correct solution is sub-optimal and possibly present the optimal
solution. It must also be capable of solving the problems it presents to the students[49].

(11) Have explicit representations of the knowledge of the student, knowledge of tutoring strategies,
knowledge to be taught, the curriculum knowledge and the more enduring characteristics to which
instruction should be sensitive. CAI’s main weaknesses stem from its implicit representation of
knowledge. It has been argued that a system would be more ‘intelligent’ if such knowledge was
all made explicit. Woolf[49] dwells on this premise.

(12) Motivate and support a moreflexible style of tutoring. The empirical study pointed out that
factors such as boredom and motivation are involved in learning[50]. Suppes[Sl] notes that the
absence of sustained work on motivation in ITS research is its most serious omission. However,
it is still extremely difficult to detect or model such phenomenological factors. As a safeguard, ITSs
should be as motivating as possible to reduce the possibility of the student getting bored. ‘Buggy’
tutors were observed to be very boring and uninteresting in their style of tutoring. Model-tracing
tutors were also observed to be inflexible. They should be more flexible by playing a more
collaborative/mentor role for the weaker/better students respectively[33].

(13) Maintain control over the whole tutoring endeavour and support a more mixed-initiative
interaction. They should be simple to use, able to detect and report minor/syntactic errors and
maintain a good level of interaction between it and the student. They should update and maintain
student models, provide examples, etc. However, it should also support a more mixed-initiative
interaction. Our empirical study showed that “buggy” tutors mostly limit students to monosyllabic
answers. Getting the child to interact more with the tutor is also likely to reduce the possibility
of boredom.

(14) Provide environments in which the interaction between them and students should be as close
as possible to the reality of the day. In this era, where traditional classroom instruction is still the
norm and pencil-and-paper still remains the dominant technology, ITSs should reflect these realities
if they are to be truly useful. It has been observed out that children experience the ‘training wheels’
problem when they leave, sophisticated environments and have to sit, say, our present examinations
using pen and paper[27]. Nevertheless, one must not become so conservative as not to realize that
the computer revolution will continue to have fundamental repercussions on the day’s educational
practices!

(15) Should be easy to understand and the approach on which it is based should be transparent so
that it could be applied in other suitable mathematical domains.

DEMONSTRATION OF APPROACH

FITS, a Fraction Intelligent Tutoring System, is an example system which has been developed
and which is underpinned by the above principles. Its details have been extensively discussed in
other publications including[52-551. Only an appraisal of the system against the above principles
is provided here. It must be emphasized that this section is not meant to constitute the evaluation
of the system. It is only meant to provide the reader with a ‘feel’ of how the system improves on
the shortcomings pointed out. FITS has been appraised against other criteria and it is not without
its limitations; a much more comprehensive evaluation of the system is provided in[54].

Example FITS protocol extract

A brief annotated and slightly modified example excerpt from an interaction between the tutor
and an actual student, Rose, is illustrated by a protocol of Fig. Al, like O’Shea does with his classic
Quadratic tutor [3 11. Comments are in italics. The protocol is also slightly stylized, e.g. the fraction
‘/4 really appears in FITS as l/4.

Discussion against principles

In this section, FITS is appraised against its principles to determine how well it achieves its
objectives. Each principle is alternately examined by providing an answer to a question that
concerns it. Where applicable, the reactions of students who have used FITS are also mentioned.
Comparisons are also made with other tutors in the domain so as to further provide a better
appreciation of the tutor.

34 HYACINTH S.NWANA

(1) Does the system pre-model the student?
Fits does pre-model its students. It does this when the student logs on to the system for the first

time. At log in, the following exchange may occur:

Tutor: Good afternoon. Welcome to FITS.

Hello. What is your name?

Student: rose.

Tutor: Fine Rose. I want to find out how much you know about
addition of fractions. I need to know this so that I can
decide what and how to teach you. I can do this by having a
look at your answers to my test of ten questions...

Please enter the name of your file of solutions.

Student: rose file.

[Pre-modelying occurs here].

. . .

FITS appears to provide a reflective enough pre-model to provide an adequate start for
individualized tuition which ITSs strive to achieve, judging from its evaluation with real students.
The weaker students were pre-modelled as such and instruction always began with pre-teaching
some skills. On the other hand, the better ones were not pre-taught any skills. This contrasts with
mal-rule ITSs, e.g. BUGGY, and with current model-tracing tutors, e.g. the GEOMETRY tutor,

which do no pre-modelling at all.
(2) Does the system preteach prerequisite skills?

After pre-modelling, FITS tutors all skills or concepts/tasks that are believed to be lacking from
the student’s repertoire. Such tutoring may also occur after a session where the student consistently
exhibits lack of certain skills. Such tutoring is mainly by exposition, examples and testing. For
example, the task of adding whole numbers is taught/retaught after a session (session 2) where Rose
has exhibited difficulty with it as follows:

Tutor: You appear to be having some difficulty with this session. I
have noticed a skill you still have not mastered yet. Let us
revise it again.

Please press the <RETURN> key to continue.

Student: <RETURN>.

Tutor: SUM WHOLE NUMBERS

Here you just sum and record the loose or whole numbers in the
given problem.

EXAMPLE

Sum the loose numbers in the problem 1:1/4 + 2:1/4-

SOLUTION

The sum of the whole numbers is 1 + 2 = 3.

Another example?

Student: no.

[Testing of the concept occurs here].

Tutor: Let us proceed to redo session 2.

Again, current ITSs of both predominant approaches do no such pre-teaching on the basis of
pre-modelling since they do not perform the latter. They therefore proceed to start tutoring
different students of different aptitudes similarly. FITS improves on this limitation. In fact, it was
observed that a couple of the students who used FITS benefited from this capability: they even
remarked that they liked the way it taught them some of the skills that they did not know or had
forgotten.

(3) Does the system provide examples (sequence of examples/lessons) such that Vanlehn’s felicity
conditions are satisfied?

FITS provides a sequence of examples (lessons) which attempts to satisfy [43’s] felicity conditions
so as to clearly communicate where and when the various skills are used. The following excerpt
demonstrates how.

Tutor:

Intelligent tutors in mathematics 35

I have arranged the examples such that you can understand how
and when the key skills you have learnt are used. Each new
example introduces how and when ONE of these skills is
used. Also note how harder problems use more of the skills you
know.

Please press the <RETURN> key to continue.

Student: <RETURN>.

Tutor: EXAMPLE

Study the step by step solution to the problem 1 + l/2.

SOLUTION

Note how and when you use the skill: REWRITE FRACTION.

Solving problem -> 1 + l/2

Rewriting fraction-> 1:1/2

Please press the <RETURN> key to continue.

Student: <RETURN>.

Tutor:

Tutor:

. . .

EXAMPLE

Study the step by step solution to the problem 1 + 1:1/2.

SOLUTION
Note how and when you use the skill: ADD WHOLE NUMBERS. YOU
have already seen how and when to use the other skill.

Solving problem -> 1 + 1:1/2

Adding whole numbers -> 2 + l/2

Rewriting fraction -> 2:1/2

Please press the <RETURN> key to continue.

EXAMPLE

Study the step by step solution to the problem 1:1/a t 2:1/a.

SOLUTION

Note how and when you use the skill: ADD EQUIVALENT
You have already seen how and when to use the other

Solving problem -> 1:1/d t 2:1/a

Adding whole numbers -> 3 + l/4 + l/4

Adding equivalent fractions -> 3 + 314

Rewriting fraction -> 3:3/4

Please press the <RETURN> key to continue.

FRACTIONS.
skills.

This exposition sequence could be replayed if needed and appropriate testing would ensue;
obviously the pseudo-randomly generated examples will be different.

With this feature, FITS contrasts with mal-rule and model-tracing ITSs which both acknowledge
the fact that students make errors in how perform computations but do not also seem to accede
the fact that children also make arithmetical errors because of lack of knowledge of when to use
their acquired skills/concepts. FITS improves on this shortcoming. All the students who have used
FITS remarked that they liked this Vanlehn tutoring session, which seemed to clearly demonstrate
to them when and where to use the various fraction skills.

(4) Does the system monitor the student step by step?
FITS definitely achieves this. The extract excerpt protocol of FITS in use depicted by Fig. Al

well demonstrates this feature which is clearly not achieved by mal-rule ITSs. Naturally, current
model-tracing ITSs (e.g. the GEOMETRY tutor) support this, but a limitation has always been
the fact that they could frustrate the good students who do not wish to go religiously through these
step by step solutions. This shortcoming is improved on in FITS as is demonstrated in the protocol
of Fig. Al. All the students really did enjoy this monitoring capability.

(5) Does the system diagnose in a problem solving context?
The reader is again referred to the exchange of Fig. A 1. It clearly reveals how FITS diagnoses

in a problem solving context. For example, note from the protocol of Fig. Al how FITS diagnoses

36 HYACINTH S. NWANA

Rose’s error as having multiplied the fractions as opposed to adding them. Once more, all the
students liked the diagnoses: in fact, a couple were sometimes amazed at the accuracy of FITS’s
diagnoses. Admittedly, mal-rule ITSs like PIXIE]501 do achieve this but probably not in such a
problem solving and meaningful context as model-tracing tutors (e.g. FITS) do.

(61 Does the system enable the student to communicate hislher intention fiats prior to executing
them?

FITS certainly supports this. Figure Al reveals that FITS regularly comes up with the question
‘What operation do you want to perform?‘, followed by a menu of operations. The answer to this
question exposes the many situations where students attempt to perform a wrong operation at a
particular stage (i.e. it reveals those concepts which the student knows how to perform but does
not understand when to perform them). It also makes diagnosis~remediation easier. However, as
briefly mentioned previously, FITS is also flexible enough to allow the good students to directly
provide any intermediate step or the final answer as demonstrated in the following exchange.

Tutor: Solve 2z3/4 + 2z1/2.
What operation do you want to perform?

List of Operations
1. Add equivalent fractions

2. Cancel fraction

3. Find equivalent fractions

4. Sum whole numbers

5. Change improper fraction to a mixed numbers

6. Change mixed number to improper fraction

7. Rewrite fraction
8. Provide some intermediate/final answer

WHICH <1..8>?

Student: 8.

Tutor: Go on then.

Student: 294.

Tutor: Correct. What Operation do you want to perform?

. . .
Student: 8.

Tutor: Go on then.

Student: 5:1/a.

Tutor: Congratulations . . .

The students enjoyed this flexibility and remarked that FITS would have been very boring
without it. Naturally, mal-rule ITSs do not support such a feature. However, model-tracing ITSs
do, but do not allow for the sort of flexibility demonstrated above where any intermediate/final
steps could be directly given.

(7) Does the system remediate in a problem solving context?
The reader is once more referred to the exchange of Fig. A 1 which clearly reveals FITS’s remedial

capabilities. It takes many forms, e.g. diagnosing the error, instructing the student on what to do,
etc. It is worth noting the Socratic remedial strategy starting and ending at the statements ‘Well
I think you can do with some help’ and ‘We return to where you were’ respectively. This fragment
clearly further demonstrates FITS’s remedial capabilities. Such a remedial strategy is not only
naturally non-existent in DEBUGGY [6] and other mal-rule ITSs, but also in model-tracing ITSs
like the GEOMETRY tutor which mainly, successfully or unsuccessfully, attempt a diagnosis on
any of the student’s steps which do not match that of their ideal student models. The students also
enjoyed FITS’s remedial capabilities as it always came to their rescue when they were stuck,
confused, etc. The socratic’remedial strategy was a favourite with the weaker students.

(31 Does the system model the user?
FITS would hardly deserve the prefix ‘intelligent’ if it did not do student modelling. In the

example protocol provided to supplement the answer to Question (2) above, the model revealed
a ‘belief’ in the lack of knowledge of the task, sum whole numbers, from the student’s repertoire

Intelligent tutors in mathematics 37

(model) after the session. Tutoring of the task ensued; this is just one of many demonstrations that
FITS does model. This contrasts with mal-rule and model-tracing ITSs which perform no
modelling at all (as exemplified in Anderson’s tutors) as both approaches support neither student
models nor student history databases. Hence, FITS would naturally provide more individualized
instruction than most mal-rule and model-tracing IT%

(9) Does the system test the student’s understanding?
FITS’s tutoring could be globally viewed as testing for all sorts of goals, e.g. testing for

knowledge of how to use a concept, testing for knowledge of when to use a concept, testing to
determine whether the student can handle problems of a particular difficulty level (i.e. session), etc.
Hence, the exchange of Fig. Al is the test of whether Rose can handle problems of that particular
level of difficulty. A further example of testing ensues after the tutoring of the task, sum whole
numbers, mentioned above [see Question (l)].

Tutor: Let us see if you can do this one.

Sum the whole numbers in the problem 3z3/4 + 4:1/6.

Please have a guess if you are not sure.

Student: 7.
Tutor Eh! That is good. Try this.

Sum the whole numbers in the problem 6z4/7 + 3:5/9.

Student: 9.

Tutor: Brilliant. I think you now understand how to perform this
skill.

The system may also test at a later stage (after a Vanlehn tutoring session) whether the student
understands when and where to use the above skill as follows:

Tutor: Fine. Now show me that you understand WHEN to apply all these
skills you have acquired.

Assume you are at the stage 2 t 3/4 t 3.

What operation would you perform next?

List of Operations

J.

4.

5.

6.

7.

WHICH <l

Student: 4.

Tutor: Good...

Add equivalent fractions

Cancel fraction

Find equivalent fractions

Sum whole numbers

Change improper fraction to a mixed numbers

Change mixed number to improper fraction

Rewrite fraction

. I>?

BUGGY and other ‘buggy’ as well as current model-tracing tutors do carry out testing, but
mainly on the overall skill: clearly, they cannot test for a subskill possibly lacking from the student’s
repertoire or about when to use a particular skill (as demonstrated in the previous two protocols)
since they do not have an explicitly represented syllabus as in FITS, and also since they also do
not possess some of its features such as modelling, pre-teaching, etc.

(IO) Does the system support the various idiosyncratic ways which the student might choose to solve
the problem?

FITS certainly does achieve this. For example, any of the following solutions is acceptable to
FITS for the problem 2: ‘/2 + 3: ‘/4.

38 HYACINTH SNWANA

Solving problem ->

Adding whole numbers ->

Finding equivalent fractions->

Adding equivalent fractions ->

Rewriting fraction ->

OR

Solving problem ->

Finding equivalent fractions->

Adding equivalent fractions ->

Adding whole numbers ->

Rewriting fraction ->

2:1/2 + 3:94

2:4/a + 3:2/&3

2 + 3 + 6/a

5 + 6/a

5:6/g

Cancel fraction -> 5:3/4

OR

Solving problem -> 2:1/2 + 3:1/4

Change mixed numbers to improper fractions-> 5/2 + 13/J

Finding equivalent fractions -> IO/q + 13/4

Adding equivalent fractions -> 23/4

Change improper fraction to a mixed number-> 5z3/4

These are certainly not the only solutions to this problem that FITS would accept. Clearly, there
are a multitude of other correct solutions; in fact, the students who have used FITS were observed
using some of the above as well as other solutions and were pleased with this flexibility. This
contrasts with the single ‘optimal’ solutions which Andersonian model-tracing tutors support.
Mal-rule ITSs do not support such a feature. FITS also has the capability of comparing the
student’s solutions to that of the Problem Solving Monitor module’s, with a comment on its
efficiency. It can also provide a solution to any problem the student may present to it. For example,
the following protocol demonstrates that FITS solves ‘hard’ problems which are not easily solved
by human experts (this was a favourite activity amongst the students who have used FITS).

Solving problem -> 61:567/765 + 15:gw7$jg

Adding whole numbers -> 142 + =%65 + “%89

Finding equivalent fractions-> 142 + 14g121/2011g5 + 251685/2011g5

Adding equivalent fractions -> 142 + 4o0886/2011g5

Cancelling fraction -> 142 + 44534/22355

Changing to mixed number -> 142 + 1 + 2217g/22355

Adding whole numbers -> 143 + 2211g/22355

Rewriting fraction -> 143: 2217g/22355

(11) Does the system explicitly represent knowledge?
FITS explicitly represents its knowledge, e.g. its tutoring strategies’ knowledge is largely

independent of the domain-dependent knowledge to be communicated to the student. Hence, the
domain-independent modules could largely be reused for some other domain; this is a similar
concept to that of ‘shells’ in expert systems parlance. BUGGY and most mal-rule ITSs do not have
any domain-independent modules (i.e. the possible domain-independent knowledge is ‘hard-wired’
within the rest of the code in such systems). Admittedly, some of such tutors have begun
incorporating such explicit representational schemes, e.g. PIXIE[56]. Current model-tracing
tutors also suffer from this shortcoming: in fact, Anderson has acknowledged this fact, and his
group is currently devising a more general architecture for their model-tracing tutors. FITS
definitely seems to improve on mal-rule and model-tracing ITSs as regards explicit representation
of knowledge.

Intelligent tutors in mathematics 39

(12) Does the system motivate and support a more flexible style of tutoring?
FITS’s style of tutoring is much more flexible because of all the various enhancements on the

model-tracing paradigm, e.g. it supports various idiosyncratic solutions, it accepts various
idiosyncratic inputs, it supports various tutorial strategies, etc. For the good students, FITS was
observed to play more of a mentor role while for the weaker students it played a more
collaborative/helpful role: this is akin to Barzilay’s [33] SPIRIT system. To this degree, it is flexible.
However, it falls short on motivation. The hope in FITS is to get the student to interact more in
order to reduce the possibility of boredom. Such factors as boredom and motivation are probably
best addressed by providing a much more intelligent interface. However, as demonstrated by the
protocols observed so far, FITS clearly improves on mal-rule ITSs which tend to be very
monotonous and uninteresting as their style of tutoring never changes. It also appears to improve
on model-tracing tutors as they seem to be very authoritative and dogmatic in style [26], and their
tutoring is also inflexible. Nevertheless, some model-tracing tutors (e.g. the GEOMETRY tutor)
provide much more intelligent interfaces as this is a main tenet in Anderson’s monitoring approach.
In summary, FITS does appear to have improved on mal-rule and model-tracing ITSs as regards
flexibility in its style of tutoring but falls well short of some of the latter as regards motivation
mainly due to its fairly ‘primitive’ interface by today’s standards. However, as will be later
discussed, the students who have used it found FITS motivating enough.

(13) Does the system maintain control over the whole tutoring endeavour?
FITS certainly does maintain control; this is demonstrated by all the exchanges observed so far

(e.g. Fig. Al). Too much control leads to authoritarian ITSs. However, FITS is less authoritarian
in approach than current model-tracing ITSs mainly because it does not employ a tutoring strategy
which constrains the student to follow some ‘ideal’ model.

(14) Does the system provide an environment in which the interaction between it and the student
is close to the reality of the day?

FITS’s monitoring capability allows for the students solving problems largely as they will with
pencil and paper than current tutors do. For example, they type in the intermediate steps until they
arrive at the answer, they make careless syntactic as well as logical errors just as they would with
pencil and paper. This contrasts with only the final answers presented to mal-rule ITSs and the
much help provided by model-tracing tutors like ALGEBRALAND [24]. In other words, the
‘training wheels’ problem [27] (i.e. how easily does a student cope with the problems when he/she
leaves the system and returns to pencil and paper in a classroom) would probably be less for a
system like FITS. In the event, a couple of the students who have used the system were, afterwards,
observed solving fraction addition problems in the same manner as they were with FITS; hence,
it appears FITS has largely achieved this feature.

CONCLUSION

This paper provides a rigorous critique of existing approaches to constructing intelligent tutors
in mathematics. Drawing from the latter, it proposes, an alternative approach; it also provides a
flavour of how this approach has been implemented in the FITS system.

Acknowledgements-The author sincerely acknowledges the invaluable comments of this supervisor, Dr Peter Coxhead of
Aston University (Department of Computer Science). This research was supported by a Cameroonian Government BS grant
(Cameroon Embassy, London).

REFERENCES

1. Borasi R., On the educational role of errors in mathematics: beyond diagnosis and remediation. Unpublished doctoral
dissertation, State University of New York at Buffalo (1986).

2. Vanlehn K., Student modelling. In Foundations of Intelligenr Tutoring Systems (Edited by Polson M. C. and Richardson
J. J.), pp. 55-78. Lawrence Erlbaum, London (1988).

3. Burns H. L. and Capps C. G., Foundations of intelligent tutoring systems: an introduction. In Foundations of Inrelligenr
Tutoring .Sysrems (Edited by Polson M. C. and Richardson J. J.), pp. l-19. Lawrence Erlbaum, N.J. (1988).

4. Sleeman D. H., Intelligent Tutoring Systems: a review. Proc. EdCompCon ‘83 Meering, IEEE Computer Society, pp.
95-101 (1983).

5. Brown J. S. and Burton R. R., Diagnostic models for procedural bugs in basic mathematical skills. Cognitive Sci. 2,
155-192 (1978).

40 HYACINTH S. NWANA

6. Burton R., Diagnosing bugs in a simple procedural skill. In Intelligent Tutoring Systems (Edited by Sleeman D. H. and
Brown J. S.), pp. 1577183. Academic Press, London (1982).

7. Attisha M. G. and Yazdani M., A micro-computer based tutor for teaching arithmetic skills. Insfrucf. Sci. 12, 333-342
(1983).

8. Attisha M. G. and Yazdani M., An expert system for diagnosing children’s multiplication errors. Insfrucf. Sci. 13,79-92
(1984).

9. Jones M. A. and Tuggle F. D., Inducing explanations for errors in computer-assisted instruction. Inf. J. Man-Machine
Stud. 11, 301-324 (1979).

10. Sleeman D. H. and Smith M. J., Modelling students’ problem solving. Arfif. Infell. 16, 171-188 (1981).
1 I. Sleeman D. H., Some challenges for intelligent tutoring systems. Proc. 10th Infernafional Joint Confirence on Artificial

Intelligence, Milan, Italy, Vol. 2, pp. 11661168 (1987).
12. Burton R. and Brown J. S., An investigation of computer coaching for informal learning activities. In Inrelligenf

Tuforing Systems (Edited by Sleeman D. H. and Brown J. S.), pp. 79998. Academic Press, London (1982).
13. Ohlsson S., Some principles of intelligent tutoring. Instruct. Sci. 14, 2933326 (1987).
14. Papert S., Mindstorms: Children, Computers and Powerful Ideas. Basic Books, New York (1980).
15. Ridgway J., Of course ICAI is impossible worse though, it might be seditious. In Artificial Infelligence and Human

Learning: Intelligent Computer-Aided Instruction (Edited by Self J. A.), pp. 28848. Chapman & Hall, London (1988).
16. O’Shea T., Evertsz R., Hennessy S., Floyd A., Fox M. and Elsom-Cook M., Design choices for an intelligent arithmetic

tutor. In Arftficial Intelligence and Human Learning: Intelligenf Compufer-Aided Insfruction (Edited by Self J. A.), pp.
2577275, Chapman & Hall, London (1988).

17. Vanlehn K., Bugs are not enough: empirical studies of bugs, impasses and repairs in procedural skills. J. Math. Behaa.
3, 3372 (1982).

18. Anderson J. R., Cognitive psychology and intelligent tutoring. Proc. 6th Annual Conference of fhe Cognifiue Science
Society, Boulder, Cola., pp. 3743 (1984).

19. Anderson J. R., Production systems, learning and tutoring. In Production System Models of learning and Development
(Edited by Klahr D., Langley P. and Neches R.), pp. 437458. MIT Press, London (1987).

20.

21.
22.

23.

24.

25.

26.
27.

28.

29.

30.

31.

32.
33.

34.
35.

36.

37.

38.
39.

40.

41.

42.

43.
44.

45.

Anderson-J. R. and Skwarecki E.. The automated tutoring of introductory computer programming. Commun. ACM
29, 842-849 (1986).
Anderson J. R.. Boyle D. F. and Reiser B. J., Intelligent tutoring systems. Science 228, 456462 (1985).
Anderson J. R., Boyle D. F. and Yost G., The geometry tutor. Proc. 9fh Infernational Joint Conference on Arftjicial
Intelhgence, Los Angeles, Calif.. pp. 1-7 (1985).
Kimball R. A., A self-improving tutor for symbolic integration. In Infelligent Tutoring Sysfems (Edited by Sleeman
D. H. and Brown J. S.), pp. 283-307. Academic Press, London (1982).
Brown J. S., Process versus product: a perspective on tools for communal and informal electronic learning. J. Educl
Compufing Res. 1, 179-201 (1985).
Visetti Y. M. and Dague P., Plan inference and student modelling in ICAI. Proc. AAAI-87 6th Nafional Conference
on Arftjicial Infelligence, Seattle, Wash., Vol. I, pp. 77781 (1987).
Yazdani M., Intelligent tutoring systems survey. Arfif: Infell. Rev. 1, 43-52 (1986).
Lewis M. W., Milson R. and Anderson J. R., The TEACHER APPRENTICE: designing an intelligent authoring system
for high school mathematics. In Artijicial Intelligence and Instrucfion: Instruction and Mefhods (Edited by Keersley G.),
pp. 2699301. Addison-Wesley, New York (1987).
Self J. A.. Bypassing the intractable problem of student modelling. Proc. 1st International Conference on Intelligent
Tuforing Systems. Montreal, Canada, pp. 18-24 (1988).
Chan T. W. and Baskin B. A.. Studying with the Prince-the computer as a learning companion. Proc. 1st Infernational
Conference on Intelligent Tutoring Systems, Montreal, Canada, pp. 194-200 (1988).
O’Shea T. and Sleeman D. H., A design for an adaptive self-improving teaching system. In Advances in Cybernetics
(Edited by Rose J.), Gordon & Breach. London (1973).
O’Shea T., A self-improving quadratic tutor. In Intelligent Tutoring Systems (Edited by Sleeman D. H. and Brown J. S.).
pp. 283-307. Academic Press. London (1982).
Ross P.. Intelligent Tutoring Systems. J. Comput. Assisted Learning 3, 194203 (1987).
Barzilay A., SPIRIT: a flexible tutoring style in an Intelligent Tutoring System. In Artijicial Intelligence Applications:
The Engineering of Knowledge-Based Systems (Edited by Weisbin R. C.). IEE Computer Society (1985).
Wenger E., Artijicial Intelligence and Tutoring Systems. Morgan Kaufmann, Los Altos, Calif. (1987).
Nwana H. S. and Coxhead P., Towards an Intelligent Tutoring System for fractions. Proc. fst Infernafional Conference
on Intelligent Tutoring Systems, Montreal, Canada, pp. 403408 (1988).
Nwana H. S. and Coxhead P., Towards an Intelligent Tutoring System for a ‘complex’ mathematical domain. Espert
Syst. 5(4) (1988).
Nwana H. S. and Coxhead P., Fraction bugs: explanations, bug theories and implications on intelligent tutoring
systems. Cognitive Sysf. 2, 2755289 (1989).
Nwana H. S.. Intelligent Tutoring Systems: an overview. Artif. Intell. Rev. 4(4) (1990).
Woolf B.. Murray T., Suthers D. and Schultz K., Knowledge primitives for tutoring systems. Proc. fst International
Conference on Intelligent Tutoring Systems, Montreal, Canada, pp. 491498 (1988).
Self J. A., Realism in student modelling. Alcey-IKBS Research Workshop Tutoring Systems. University of Exeter (I 7-l 8
November 1987).
Oliver W. P., Computer-assisted mathematics instruction for community college students. Int. J. ManMachine Stud.
5, 385-395 (1973).
Moore J. and Sleeman D. H., Enhancing PIXIE’s tutoring capabilities. Technical Report AUCS/TR8709, Dept of
Computing Science, Univ. of Aberdeen (1987).
Vanlehn K., Learning one subprocedure per lesson. ArtiJ. Intell. 31, 140 (1987).
Fare11 R., Anderson J. R. and Reiser B. J., An interactive computer-based tutor for LISP. Proc. and National Conference
on Arttjicial Intelligence-AAAI 84, Austin, TX, pp. 10&109.
Woolf B., Representing complex knowledge in an intelligent machine tutor. In Artificial Infelligence and Human
Learning: Intelligent Computer-Aided Instruction (Edited by Self J. A.), pp. 3-27. Chapman & Hall, London (1988).

Intelligent tutors in mathematics 41

46. Lepper M. R. and Chabay R. W., Intrinsic motivation and instruction: conflicting views on the role of motivational
processes in computer-based education. E&cl Psychol. 20, 217-230 (1985).

47. Self J. A., Student models in computer-aided instruction. Znt. J. Man-Machine Stud. 6, 261-276 (1974).
48. Sleeman D. H., UMFE: a user modelling front-end subsystem. In!. J. Man-Machine Stud. 23, 71-88 (1985).
49. Woolf B., Theoretical frontiers in building a machine tutor. In Arrificial InfeNigence and Insfruction: Instruction and

Mefhoak (Edited by Kearsley G.), pp. 229-267. Addison-Wesley, Reading, Mass. (1987).
50. Duchastel P., Intelligent computer assisted instruction systems: the nature of learner control. J. Educl Computing Res.

2, 379-393 (1986).
51. Suppes P., The future of intelligent tutoring systems: problems and potential. Proc. 1st International Conference on

Infelligent Tutoring Systems, Monk&al, Canada (1988).
52. Nwana H. S., The anatomy of FITS: a mathematics tutor. Infell. Tuloring Media 1, 82-95 (1990).
53. Nwana H. S., User modelling and user adapted in an intelligent tutoring system. LIser Modell. User-Adapted Interaction

1, 1-33 (1991).
54. Nwana H. S., The evaluation of an intelligent tutoring system. Intell. Tutoring Media 1, 117-132 (1991).
55. Nwana H. S., FITS: a Fraction Intelligent Tutoring System. Proc. 9th National Conference on ArtiJcial Intelligence

(AAAI-91), Anaheim, California, Vol. I, pp. 49-54 (1991).
56. Sleeman D. H., PIXIE: a shell for developing intelligent tutoring systems. In Artificial Intelligence and Education (Edited

by Lawler R. and Yazdani M.), Vol. 1, pp. 239-265. Ablex, N.J. (1987).

APPENDIX

[The system would begin with pre-testing and appropriate pre-
teaching].

Tutor: Solve l:l/4 t 2:1/2.

What operation do you want to perform?

List of Operations

1.

2.

3.

4.

5.

6.

7.

8.

Add equivalent fractions

Cancel fraction

Find equivalent fractions

Sum whole numbers

Change improper fraction to a mixed number

Change mixed numbers to improper fraction

Rewrite fraction

Provide some intermediate/final answer

WHICH <1 ..8>? [Demanding the student's intention/plan]

Student: 2.

Tutor: Oh no! There is no fraction to cancel.

Try again. [Hint].

What operation do you want to perform?

. . .
Student: 4.

[Could equally have chosen to find equivalent fractions or to
change mixed numbers to improper fractions. Therefore the
system can support various idiosyncratic ways of solving the
same problem, hence no one 'correct'solution].

Tutor: Fine Rose. Perform operation.

Student: 3 t l/4 t l/2.

[Could have typed in 3:l/q t l/2 or l/4 f 3:1/z or l/4 + 3 +

l/2. Note these various possible idiosyncratic inputs are
possible due to explicit fractions knowledge representation.]

Tutor: Correct. What operation do you want to perform?

. . .
Student: 3.

Tutor: Fine. Perform operation.

Student: 3 t 2/o t 4/B.

[Note these idiosyncratic inputs: could also have typed in

3:4/&j t 4/&' or 3 t 2/4 t 2/4 Or 3:8/16 + 8/16.1

Tutor: Correct. What operation do you want to perform?

. . .
Fig. Al. Caption on p. 43.

42 HYACINTH SNWANA

Student: 1.

Tutor: Fine Rose. Perform operation.

Student: 3 + 916.

Tutor: Not Correct. You seem to have added both numerators and
denominators to provide the
the fraction respectively.

[Classic fraction error].

Remember you add equivalent
numerators and placing this

this example to help you. 2

Remember your current step
The operation to perform is

Student: 3 + 964.

Tutor: Still not correct. You seem
together instead of adding.

numerator and the denominator of

fractions by just adding the
sum over the denominator. Study

+ l/4 + 2/4 -> 2 + 3/4. [Hint].

is 3 + 2/fj + 4/g.
adding equivalent fractions.

to have multiplied the fractions

WELL I THINK YOU CAN DO WITH SOME HELP.

Add the numerators and place the sum over the denominator for

the problem 2/S + 4/S.

Student: 98.
Tutor: Not Correct. Add the numerators: 2 + 4 = ?

Student: 6.

Tutor: Correct. Place this value 6 over the common denominator 0.

Student: 6/&

Tutor: Correct. Now add this fraction sum 6/S to the whole number

Student: 3 + 6/S.

Tutor. Correct.

WE RETURN TO WHERE YOU WERE.

Remember you were at the stage: 3 + 2/S + 4/S.

You chose to perform adding equivalent fractions.

Now with the help I have given you, Try again.

Student: 3 + 6/S.

3.

Tutor:

[Note the use of the explicit knowledge represented in the
system. Also note the different tutoring strategy which FITS
adopts here. The system could therefore switch to tutoring a
different aspect of mathematics, if necessary, before returning
to tutoring fractions.]

Correct. What operation do you want to perform?

. . .
Student: 4.

Tutor: There are no whole numbers to sum Rose. Try again.

Student: 1.

Tutor: There are also no equivalent fractions to add.

Try cancelling the fraction Rose.

[Strategy here is to tell the student what to do].

Remember your current step is 3 + %.3.

[The system notes in the student model that Rose has shown
evidence of a lack of understanding of when to cancel a
fraction].

Student: 2.

Tutor: Fine. Perform operation.

Student: 3 + 3/4.

Tutor: Correct. What operation do you want to perform?

Fig. Al. Cuption opposite

Intelligent tutors in mathematics 43

Student: I.
Tutor: Fine. Perform operation.

Student: 3:3/4.

Tutor: Congratulations Rose. You have arrived at the answer.

[After this the system would display the student's full answer,
with a comment on its efficiency, followed by its 'optimal'
answer.]

Fig. Al. Extract from protocol of FITS in use.

