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Abstract. Although applications of artificial intelligence
to education have traditionally focused on teacher-
centered approaches such as Intelligent Tutoring Systems,
artificial intelligence can also contribute to student-
centered approaches to learning by providing
representational and interactive support for collaborative
learning. Specifically, AI can inform the design of
representational systems that constrain and guide learner’s
activities, and enable dynamic generation of guidance
based on representational artifacts that learners construct
in these systems. The paper exemplifies such
contributions with an educational software package,
known as “Belvedere” that supports students
collaboratively solving ill-structured problems in science
as they develop critical inquiry skills.

1. Belvedere
Decades of research into cognitive and social aspects of
learning [2] has developed a clear picture of the
importance of learners’ active involvement in the
expression, examination, and manipulation of their own
knowledge, as well as the equal importance of guidance
provided by social processes and mentorship. The
development of the “Belvedere” software reflects this
trend. Belvedere is a networked software system [8] that
provides learners with shared workspaces for coordinating
their collaboration in scientific inquiry [9]. Belvedere’s
core functionality is a diagramming window in which
students construct “evidence maps” – graphs in which
nodes represent statements (primarily empirical
observations or hypotheses) within a scientific debate or
investigation; and links represent the relations between the
elements, i.e., consistency or inconsistency. The software
also includes artificial intelligence advisors, a “chat”
facility for unstructured discussions, and facilities for
integrated use with Web browsers. The diagramming
window is shown in Figure 1. The default “palette” (the
horizontal row of icons) makes salient the most crucial
distinctions we want learners to acquire in order to
conduct scientific inquiry. Left to right, the icons are
“data” for empirical statements, “hypothesis” for
theoretical statements, and “unspecified” for others
statements about which learners disagree or are uncertain;
then links representing “for” and “against” evidential
relations. The rightmost icon invokes the automated
advisors.

2. Representations and Discourse
An early version of Belvedere was designed to determine
whether students can learn the nuances of scientific
argument if provided with a visual “argument-mapping”
language capable of capturing all of these nuances, along
with an intelligent coach that interacts with and guides the
student. A crucial assumption was that students would
express their arguments in the language. However, we
found that much of students’ relevant argumentation was
“external,” arguing from the representations rather than
arguing in the representations. Faced with a decision
concerning some manipulation of the representations,
students would begin to discuss substantial issues until
they reached tentative agreement concerning how to
change the representation. In the process, statements and
relations we would have liked students to represent went
unexpressed. Recognizing this as an opportunity, we
subsequently downplayed the originally intended roles of
the representations in favor of their role as a stimulus and
guide for collaborative learning discourse. This
perspective led to consideration of the role of
representational bias in shaping learning activities.

2.1 Representational Bias
Representational tools are artifacts (such as software)
with which users construct, examine, and manipulate
external representations of their knowledge. A
representational tool is an implementation of a
representational notation that provides a set of primitive
elements out of which representations can be constructed.
Developers choose a representational notation and

Figure 1. Belvedere Evidence Mapping Software
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instantiate it as a representational tool, while the user of
the tool constructs particular representational artifacts in
the tool. We are concerned with interactions between
learners and other learners, specifically verbal and
gestural interactions termed collaborative learning
discourse.

Each given representational notation manifests a
particular representational bias, expressing certain aspects
of one’s knowledge better than others [11].
Representational bias manifests in two major ways:
Constraints: limits on logical expressiveness [7]; and
Salience: how the representation facilitates processing of
certain knowledge units, possibly at the expense of others
[4, 13]. Representational tools mediate collaborative
learning discourse by providing learners with the means to
express emerging knowledge in a persistent medium,
inspectable by all participants, where the knowledge then
becomes part of the shared context. Representational bias
constrains the knowledge that can be expressed in the
shared context, and makes some of that knowledge more
salient and hence a likely topic of discussion.

2.2 Ontological Bias as Constraint
Belvedere requires all knowledge units (statements and
relations) to be categorized at the time of creation. We
observed that learners who were using Belvedere often
initiated discussion of the appropriate categorical
primitive for a given knowledge unit when they were
about to represent that unit. Although this is not
surprising, it is a potentially powerful guide to learning. In
some cases, the choice forced by the tool led to a peer-
coaching interaction on a distinction that was critically
important for how they subsequently handled the
statement. Yet it is not always useful to confront learners
with choices, even if they may become important at some
point in the development of expertise. With more complex
sets of primitives, we sometimes observed students
becoming confused by choices that were not relevant at
their stage of learning.

Based on these observations, we simplified
Belvedere’s representational framework to focus on the
most essential distinction needed concerning the
epistemological source of statements: empirical (“data”)
versus hypothetical (“hypothesis”). Further simplifications
were motivated by observations concerning the use of
relations (links). The original set of argumentation
relations included evidential, logical, causal, and
rhetorical relations as well as the various classifications of
statements exemplified above. In exchanges similar to the
previous example, we observed students’ confusion about
which relation to use. Sometimes more than one applied.
We felt that the ontologically mixed set of relations
confused students about what they were trying to achieve
with the diagrams, and did not help them focus on
learning key distinctions. In order to encourage greater
clarity, we decided to focus on evidential reasoning, and
specifically on the most essential relational distinction for

evidence based inquiry: whether two statements are
consistent or inconsistent.

At one time there were at least three versions of the
“consistency” relation: “predicts” and “explains” (both
drawn from hypotheses to data), and “supports” (drawn
from data to hypotheses). Early versions of our evidence
pattern coach (described later) attempted to reason about
and even enforce these semantics. However, we found that
users’ use of these relations (as expressed in their links)
was inconsistent and sometimes differed from the
intended semantics. When the users’ semantics differed
from the coach’s semantics, confusion or frustration
resulted. The use of “predicts,” “explains,” and “supports”
links was misguided not only because different agents had
different semantics for them, but also because the links
were “surface” level discourse relations that did not
encourage learners to think in terms of the more
fundamental consistency relationships. Whether a
hypothesis predicts or explains a datum is an artifact of
the chronology of the datum with respect to statement of
the hypothesis. Whether one uses “supports” or one of the
other two links is an artifact of the focus of the discourse
process by which the diagram is being constructed
(argumentation about hypotheses versus explanation of
data). Hence we eliminated these in favor of a single non-
directional relation that expresses the more fundamental
notion of evidential consistency.

To summarize, a representational notation provides a
set of primitive elements out of which representational
artifacts are constructed. These primitive elements
constitute an “ontology” of categories and structures for
organizing the task domain. The present hypothesis claims
that learners will see their task in part as one of making
acceptable representational artifacts out of these
primitives. Thus, they will search for possible new
instances of the primitive elements, and hence (according
to this hypothesis) will be biased to think about the task
domain in terms of the underlying ontology.

2.3 Salience of Represented and Missing Units
In working with Belvedere we found suggestive evidence
that salience of information in conjunction with task
requirements may guide discourse. For example, Figure 2
outlines a diagram state in which three statements were
clustered near each other, with no links drawn between the
statements. One student pointed to two statements
simultaneously with two fingers of one hand, and drew
them together as she gestured towards the third statement,
saying “Like, I think that these two things, right here, um,
together sort of support that” (videotape of an early
laboratory study of Belvedere).

This event is an example of how external
representations facilitate the expression of complex ideas
[1]. However, this observation applies to any external
representation. Several features of the particular
representational system in use may have made the
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student’s utterance more likely. First, elaboration on these
particular statements is more likely because they (instead
of others) are expressed as objects of perception in the
representation. Second, this event is more likely to occur
in a representational environment that provides a primitive
for connecting statements with a support relation than in
one that does not: the students perceive their task as one
of linking things together. Third, it may have been easier
to recognize the relationship between the three statements
because they happened to be spatially nearby each other
[4]. In this example, proximity was determined by the
users rather than intrinsic to the representational toolkit.
However, a representational tool could constrain
proximity based on potential relationships between
knowledge units.

We concluded that learners will be more likely to
attend to, and hence elaborate on, the knowledge units that
are perceptually salient in their shared representational
workspace than those that are either not salient or for
which a representational proxy has not been created. The
visual presence of the knowledge unit in the shared
representational context serves as a reminder of its
existence and any work that may need to be done with it.
Also, it is easier to refer to a knowledge unit that has a
visual manifestation, so learners will find it easier to
express their subsequent thoughts about this unit than
about those that require complex verbal descriptions. To
the extent that two representational notations differ in
kinds of knowledge units they make salient, the
representations will encourage elaboration on different
kinds of knowledge units.

Some representational notations provide structures for
organizing knowledge units, in addition to primitives for
construction of individual knowledge units. Unfilled
“fields” in these organizing structures, if perceptually
salient, can make missing knowledge units as salient as
those that are present. If the representational notation
provides structures with predetermined fields that need to
be filled with knowledge units, salience predicts that
learners will be more likely to search for and discuss the
corresponding information.

3. Design of Computer Advisors
We also redirected our quest for computer intervention in
human learning processes. An advisor that fully
understands students’ argumentation and provides advice
based on a deep understanding of the domain of inquiry
would require substantial knowledge engineering, and
would mandate a role of representations in discourse that
is inconsistent with the observations just reported. Instead
we sought to determine how we might provide useful
advice while minimizing the amount of knowledge
engineering required on the part of both users and
developers. In this section we discuss two methods of
advice generation that we have implemented.

3.1 Evidence Pattern Strategies
The first approach [6] gives advice in response to
situations that can be defined on a purely syntactic basis,
using only the structural and categorical features of the
students’ argument graphs. Principles of scientific inquiry
are instantiated as patterns to be matched to the diagram
and textual advice to be given if there is a match. An
example advice pattern from our Belvedere 2.0
implementation is given in Figure 3. Implemented
versions of the system included about 20 different such
patterns. When the solid-lined portions are present and the
dashed portions are missing, the corresponding advice can
be given. Objects that bind to variables in the patterns
(shaded in Figure 3) are highlighted in yellow during
presentation of advice to indicate the target(s) of definite
references such as “this hypothesis.”

?

(def-advice ‘CONFIRMATION-BIAS
  :query ‘(retrieve (?h)
             (and  (hypothesis ?h)
                   (Exists-Multiple-Consistent-DataP ?h)
                   (Multiply-LinkedP ?h)
                   (fail (Exists-Inconsistent-DataP ?h))))
  :advice (“You’ve done a nice job of finding data that is consistent with this hypothesis.
However, in science we must consider whether there is any evidence *against* our
hypothesis as well as evidence for it. Otherwise we risk fooling ourselves into believing a
false hypothesis. Is there any evidence against this hypothesis?”)
  :advice-types ‘(cognitive-bias))

Figure 3. Evidence Pattern Advice

Typically, several advice patterns will match an evidence
map, sometimes with multiple matches per pattern. This is
more than a student can be expected to absorb and

respond to at one time. It is necessary to be selective in a
context sensitive manner. Selection is performed by a
preference-based quick-sort algorithm that discriminates

1

2

1

1. “Like, I think that these two things, right here, um,
2. together sort of support that.”
(Numbers indicate location of the fingers)

Figure 2. Gesturing to express a relationship
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potential advice base on factors such as prior advice that
has been given, how recently the object of advice was
constructed and by whom, and various categorical
attributes of the applicable advice. After sorting, a
redundancy filter is applied that removes all but one of
multiple instantiations of a given advice pattern, retaining
the highest priority instantiation. This provides the final
prioritized list of advice. The advice-on-demand version
of the advisor then sends the first advice on the list to the
requesting client. If further advice is requested before the
diagram changes, subsequent advice instances on the
sorted list are used without reanalysis.

3.2 Expert Path Advisor
The evidence pattern advisor provides advice about
abstracted patterns of relationships among statements, but
has nothing to say about the contents of these statements.
The expert-path advisor was designed to offer specific
information that the student may not discover on her own.
It makes the assumption that a correspondence can be
found between statements in a student’s evidence map and
those in a pre-stored expert’s evidence map. The path
advisor searches the latter “expert graph” to find paths
between units that students have linked in their evidence
maps, and selects other units found along those paths that
are brought to the students’ attention. Our claim is that
this enables us to point out information that is relevant at a
given point in the inquiry process without needing to pay
the cost of a more complete semantic model of that
information, such as would be necessary in traditional
knowledge-based tutoring systems. The only costs
incurred are in the construction of the “expert diagram”
consisting of semantic units that are also available to the
student.

The expert advisor was implemented with an A* best-
first heuristic search in Belvedere 2.0 [10]. The search
finds an optimal path from the start node to the goal node
in the expert diagram according to the following cost
heuristics. (1) Shorter paths are given lower costs, as more
direct relationships are less likely to lead to obscurely
related information. This heuristic takes precedence over
the following two. (2) Paths that contradict the student’s
link are preferred, to address the confirmation bias. (3)
Paths with more than one against link are given higher
costs than other paths. Experience showed that the
meaning of such paths is unclear to users. Once a lowest-
cost path is found between the start and the goal
statements, advice is generated as follows. When the
expert diagram has a direct link between the start and the
goal, simple feedback is generated based on a comparison
to the student’s link, either reinforcing or asking the
student to reconsider the link. When a nontrivial path is
found between the start and the goal, the advisor can
confront the student with information that may contradict
or corroborate the student’s link. This information is
selected from those nodes in the path found in the expert
graph that do not also exist in the student’s graph. It
remains for the preference mechanism discussed

previously to decide when the generated advice is actually
worth giving. One preference was added to promote
expert path advice over others, because this advice is
more specific to the situation at hand than the evidence-
pattern advice. This arbitration scheme can easily be
extended to manage additional sources of advice.

3.2.1 Comparison of Advisors

The evidence-pattern advisor can make suggestions to
stimulate students’ thinking with no knowledge
engineering required on the part of the teacher or domain
expert. However, the advice is very general. It could
better address the confirmation bias by confronting
students with discrepant information they may be
ignoring. The expert-path advisor can provide students
with assistance in identifying relevant information that
they may not have considered. The pattern-based advisor
cannot provide this assistance, because it requires a model
of evidential relationships between the units of
information being manipulated by students. With the
expert-path advisor, we have shown this assistance can be
provided without deep modeling of or reasoning about the
domain.

An attractive option is to combine the two advisors
reported herein. Patterns could be matched to both student
and expert diagrams to identify principled ways in which
students might engage in additional constructive inquiry
along with information that is relevant to that inquiry. For
example, if the pattern matches the expert’s graph but one
pattern component is missing in the student’s graph, the
advisor could then present this information as indicated by
the missing component’s role in the pattern.

4. Conclusions
The phrases “Artificial Intelligence and Education” or
“Intelligent Tutoring Systems” most immediately bring to
mind the endeavor to build smart machines that teach.
Ideally, such machines would “know” a great deal about a
particular subject matter, being able to both articulate
concepts and principles and engage in expert level
problem solving. They would also know about pedagogy,
being able to track the progress of individual students and
choose the best feedback strategies and trajectory through
a curriculum for a particular student [12]. This vision of
AI&ED might be termed “strong AI&ED.” Although
work on "traditional" intelligent tutoring systems
continues with a recent emphasis on agent-based systems,
other work that does not fall within mainstream AI
approaches is increasingly appearing in the AI&ED and
ITS conferences.

Some of this work (e.g., [5] and the automated
advisor described herein) can be characterized as
“minimalist AI&ED.” Instead of attempting to simulate a
teacher and/or model the minds of students, these efforts
provide machines with minimal abilities to respond (in a
manner believed to be educationally relevant) to the
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semantics of student activities and constructions. This
research tests the educational value of these minimal
abilities, and adds functionality as needed to address
deficiencies in the utility of the system. As a research
strategy, this incremental approach ensures that we
understand the capabilities and limitations of each
representational and inferential device unencumbered by
the simultaneous complexities of an attempted complete
pedagogical agent.

A newly emerging third category of AI&ED work
does not attempt to build reasoning machines, even of the
minimalist sort, yet which constitutes a contribution of AI
to education, and potentially even a source and test-bed of
AI ideas. This kind of application can be seen most clearly
in the design of representational systems. An artificial
intelligence sensitivity to the properties of formal
representations for automated reasoning can be applied to
the analysis and design of external representations for
human reasoning as well as machine reasoning. One
revisits the notions of epistemological and heuristic
adequacy, but now the interpreter is human and
“representational bias” includes a perceptual component
[4, 13]. The AI “in” software systems built under this
approach is residual, influencing the design but being a
run-time factor only for human rather than artificial
agents. Examples of work in this category include [3, 7]
and the present work.
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