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Abstract—We describe problems associated with accessing data
resources external to the application, which we termexternalities,
in replicated synchronous collaborative applications. Accessing
externalities such as files, databases, network connections, envi-
ronment variables, and the system clock is not as straightforward
in replicated collaborative software as in single-user applications
or centralized collaborative systems. We describead hocsolutions
that add to development cost and complexity because the devel-
oper must program different behavior for different replicas.

We introduce a novel general approach to accessing externali-
ties uniformly in a replicated collaborative system. The approach
uses a semireplicated architecture where the actual externality re-
sides at a single location and is accessed via replicatedproxies. This
approach allows developers of replicated synchronous groupware
to 1) use similar externality access mechanisms as in traditional
single-user applications, and 2) program all replicas to execute the
same behavior. We describe a general design for proxied access to
read-only, write-only, and read–write externalities and discuss the
tradeoffs of this semireplicated approach over full, literal replica-
tion and the class of applications to which this approach can be
successfully applied. We also describe details of a prototype imple-
mentation of this approach within a replicated collaboration-trans-
parency system, called Flexible JAMM (Java Applets Made Mul-
tiuser).

Index Terms—Collaborative work, concurrency control, dis-
tributed computing, file servers, object-oriented programming,
software.

I. INTRODUCTION

W ITH TODAY’S proliferation of electronic devices and
near universal networking, the emphasis onpersonal

computinghas evolved tointer-personal computing. People
collaborate continually in their physical environment but,
despite the increasing tendency for work to involve a computer,
there is little support for synchronous collaboration in today’s
systems.

A major contributor to this deficiency is the cost of including
support for synchronous collaboration in an application. Several
technical and human factors must be addressed that are not nec-
essarily present in a single-user application such as the distri-
bution architecture, concurrency control, and collaborative us-
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ability [12], [18]. A key technical issue is the sharing of external
system resources, such as files, sockets, and the system clock.
We call such resourcesexternalitiesbecause they represent state
necessarily external to the application. Groupware toolkits [3],
[4], [8], [10], [21], [15], which facilitate the creation of syn-
chronous multiuser software, do not address access to external-
ities.

This paper presents common problems related to sharing
externalities in real-time collaborative applications that use a
replicated architecture. We also describead hocand general
solutions, introducing a novel semireplicated solution in which
the actual externality is accessed via replicated proxies. To our
knowledge, this is the first time that the range of problems
surrounding externalities in replicated groupware has been
addressed explicitly or that this general solution has been
presented.

II. GROUPWAREARCHITECTURES

Synchronous collaborative systems are generally distributed.
Distributed software architectures fall in a range fromcentral-
ized, where all of the shared data are maintained and processed
at a single location, toreplicated, where each site maintains and
processes a complete copy of the shared data [13], [5]. The di-
agrams in Figs. 1 and 2 illustrate the key components and com-
munication paths between processes of a conceptual two-user
collaborative system under fully centralized and replicated ar-
chitectures.

A. Architecture Tradeoffs

The key advantage of centralized architectures is that they
have no problem with data consistency because there is only
one copy. On the other hand, they typically require higher net-
work bandwidth to distribute graphical display information than
does a replicated implementation which can distribute only min-
imal update information. Centralized systems also impose strict
What You See Is What I See (WYSIWIS), where the partic-
ipants see exactly the same view of the shared application at
the same time [24], which disallows independent work. Further-
more, centralized implementations are less responsive to user
input due to round-trip latency as each user interaction must
travel to and from the central process. Finally, centralized ap-
proaches are potentially less fault tolerant than replicated, be-
cause the central host is a single point of possible systemwide
failure.

A purely centralized architecture is not possible in practice
because, minimally, a representation of the shared data must be
replicated to each participating user. Therefore, all synchronous
collaborative systems are in fact semi- to fully replicated. The

1063–6692/01$10.00 © 2001 IEEE
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Fig. 1. Centralized architecture. The shared data and process, indicated by
the solid-outline box, exist at a single host. A user at a remote host views and
manipulates the data via a representation, indicated by a dashed box. Arrows
indicate network traffic.

Fig. 2. Replicated architecture. Each host contains a full copy of the shared
data and process.

practical question is to decide at which layer should replication
occur: screen pixels, user interface data, user interface behavior,
in-memory application data, or externalities. Replication at each
layer has tradeoffs, as discussed by Dewan [7].

Replicated and semireplicated architectures have the ad-
vantage of potentially lower bandwidth and support for
collaborative usability principles. First, a replicated system
can provide faster response to user input by updating the local
copy before remote copies. Additionally, the constraint of
strict WYSIWIS can be relaxed by having a different view
of the shared data at each replica. Independent simultaneous
work is also supported by allowing participants to modify
their local copy of data and merging the changes with remote
copies semisynchronously using techniques such as opera-
tional transformation [26]. However, maintaining consistency
among replicas is more complex than sharing a single copy of
centralized data. Despite the increased complexity, groupware
toolkits and applications tend to favor replicated and hybrid
architectures [2], [11].

One class of real-time groupware that generally does not
use replication is application-sharing systems, which pro-
vide the shared use of existing single-user applications. All
currently available commercial application-sharing systems
(e.g., Microsoft NetMeeting and SunForum) use centralized
architectures, as do most research application-sharing systems.
Such systems are useful for tightly coupled collaborations
where the collaborators work closely together. However, they

have been found to use network resources inefficiently and to
be too limiting for collaborations where group members work
with any degree of independence, because they lack support for
fundamental groupware principles [1], [19], [20], [22].

B. Shared Resource Problems

Computers have several sources of input and destinations
for output: keyboard, mouse, screen, printers, files, databases,
network connections, other processes, system time, environ-
ment variables, etc. We use the termexternalityfor a source of
input or output—other than user input and display output—that
is external to the application. We exclude user input–output
because the problems of handling them are fundamentally
different from those of other input–output resources, and in
many ways the problems are reversed. Inputs generated by mul-
tiple users must bemergedin some fashion. Conversely, input
originating from a single externality ismulticast to multiple
replicas. Display output originating from the shared application
is likewise multiply displayed for each user, whereas output
to be written to an externality generally should go only to
one instance, as we will discuss shortly. Solutions to issues
surrounding user input–output can be found in the literature
[1], [11], [26], whereas externality input–output in groupware
is not addressed elsewhere.

In general, there is no problem sharing an externality in a
centralized system, because only the single central process is
accessing the externality. In contrast, multiple replicas should
not access an individual externality directly, either because
they do not have access, or the value of the externality at
each replica may not be the same. For example, the system
clock on each host will return a different value. As another
example, consider a replicated application which reads a file,
saybookmarks.html . If a file of the same name resides on
each host but contains different data, each replica would receive
different input. Different input can lead to replica inconsistency
because, as copies of the same deterministic process, we can
only guarantee consistency when all replicas receive the same
input. Therefore, the replicas must run ineffectivelythe same
environment. Techniques to provide the illusion that replicas
share one environment are described in the next section.

In some cases, however, an application may behave incor-
rectly if all replicas receive the same input from a particular
externality. For example, applications may use unique aspects
of the local environment such as the user’s home directory, cur-
rent working directory, and command path. A replica may be-
have incorrectly if it is given a value from a different replica’s
environment. For example, if replica A running on one user’s
machine requests the value of the user’s home directory and
is given the home directory of a different user running replica
B on a different machine, replica A may not be able to access
that directory. Developers must take care to selectively distribute
only those parts of the external environment required to main-
tain consistency among the replicas.

Replicated output can also pose a problem. In some cases,
output may be idempotent in that it would be acceptable for each
replica to generate output redundantly. In other cases, however,
generating the same output multiple times is not desired. For
example, although it would be acceptable for each replica to
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write a copy of a file on its local host, it would be annoying
if each replica sent a copy of an email message to the same
recipient. The developer must consider these possibilities and
ensure proper behavior in a replicated collaborative application.

III. EXTERNALITY REPLICATION

Externalities are trivially handled under centralized architec-
tures but are more difficult under the replicated architectures fa-
vored by groupware toolkits and groupware applications. This
section describes the tradeoffs ofad hocand general solutions.
Current groupware toolkits (surveyed in [2]) provide no abstrac-
tions to facilitate replicated input to, or output from, externali-
ties.Ad hocapproaches require replicas to access externalities
in a nonuniform way, resulting in complex, error-prone code. In
contrast, two general approaches alleviate coordination issues
by providing uniform access to externalities: 1) full environment
replication, and 2) semireplicated proxies.

A. Ad Hoc Solutions

In some cases, it is possible for all replicas to access a single
instance of the externality. One example are resources accessed
via a Uniform Resource Locator (URL). Replicas of a multiuser
whiteboard application, for example, could use this approach to
load clip-art image files from the World Wide Web.

Often, though, an externality is only accessible by one replica,
such as when a particular file resides on only one host and is
not network accessible. Another problem arises if all hosts have
access to an externality locally, such as the system time, but the
local states differ. A solution to both of these problems is to
designate one host as the source of a particular externality. That
replica may be referred to as the “master,” and the other replicas
may be called “slaves.” Fig. 3 illustrates this approach.

1) Explicit Distribution: Consider a replicated multiuser
text editor that reads an input file and appends the file con-
tents to an in-memory document. Fig. 4 shows a pseudocode
fragment in which data are read by the master replica. The
master replica applies the data to its local copy of the shared
document, then explicitly generates a message containing the
data and sends the message to all other replicas. A facility to
send a message to all replicas other than the originating replica
is available in many groupware toolkits (e.g., GroupKit [21],
and the Java Shared Data Toolkit1 [3]) or may be implemented
ad hoc.

2) Implicit Distribution: The above example requires devel-
opment of a message protocol and explicit message passing. The
sender creates a message and explicitly sends it, and each recip-
ient parses the message and handles it appropriately. Each type
of message must have a unique identifier to indicate the behavior
the recipient should perform. For example, in Fig. 4, the pro-
gram performs one action [appendLocal() ] upon receipt of
anappendText message, and performs a different action for
a anotherMsgType message.

1Sun, Sun Microsystems, Java, and all Java-based trademarks are trademarks
of Sun Microsystems, Inc. in the U.S. and other countries. All other products
mentioned herein are trademarks or registered trademarks of their respective
owners.

Fig. 3. Illustration of a shared editor application that explicitly distributes
externality data among replicas. The “master” replica accesses a file and
distributes the contents to the “slave” replicas.

Fig. 4. Sample pseudocode to read a file into a replicated collaborative
text editor. Data are read by the master replica, appended locally, and then
sent to slave replicas (lines 1–6). When the message is received by each
slave,receiveMessage() is invoked (line 7). When the message type is
“appendText ,” the text is extracted from the message and then appended
to the local copy of the document by invokingappendLocal() (line 10).
Lines 1–6 and 13–14 are invoked on the master, 7–14 on slave replicas.

Rather than creating a message protocol explicitly, it is pos-
sible to invoke behavior on all replicas remotely using a remote
procedure call (RPC) or remote object method invocation pro-
vided by distributed object technologies, such as the common
object request broker architecture (CORBA) [16], distributed
component object model (DCOM) [23] and Java remote method
invocation (RMI) [27]. A groupware extension to RPC is pro-
vided by GroupKit [21], called multicast remote procedure call
(MRPC), which adds the capability to make the invocation on
multiple remote processes simultaneously. Using MRPC, the
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Fig. 5. Sample pseudocode using a multicast remote procedure call to directly
invoke the procedure that appends data to the document on all replicas. Lines
1–5 are invoked only by the master, 6–7 by all replicas (master and slave).

twelve lines of pseudocode in Fig. 4 may be simplified to the
seven lines seen in Fig. 5.

MRPC is conceptually simpler to program than creating and
handling a message protocol explicitly. Nevertheless, although
MRPC mitigates the tedium of creating a message protocol, the
complexity of coordinating access between master and slave
replicas remains. Only the master replica should invoke the
readFile() method. MRPC and other remote invocation
mechanisms solve only half the problem.

B. General Solutions

The primary disadvantage of the preceding approaches is that
the developer must program different behavior for the master
and slave replicas. This is prone to error and contributes to
the cost of adding real-time collaboration capabilities to an ap-
plication. There are general solutions, however, that allow the
same behavior in all replicas and use similar mechanisms as in
single-user nondistributed applications.

Section III-B-1 describes a straightforward approach to han-
dling externalities: full replication. Although full replication can
be effective for files, it cannot be applied to all externalities and
is therefore not a complete solution. In Section III-B-2, we in-
troduce a complete, general solution to handling externalities in
a groupware application based on the use of replicated proxies
to a single instance of a shared externality.

1) Full Externality Replication:One approach to externality
distribution is to completely replicate the externality so that each
replica has individual access to an identical copy. This approach
was used to share files in MMConf [6], a replicated group-
ware toolkit, and Dialogo [14], a replicated collaboration-trans-
parency system. In Dialogo, a directory was designated as the
“conference directory,” and any file placed in it was automat-
ically copied to other participants’ conference directories. The
users of shared applications in these systems confined their ac-
cess to files in the conference directory.

Although literal copying can be effective for shared files,
there are still some difficulties related to uniform file access and
nonfile types of externalities. One problem arises when the col-
laborative application uses the fully qualified path to access a
file. If each participant’s conference directory resides in a dif-
ferent absolute path, some replicas may fail to locate the file.
Additionally, differing file naming conventions (e.g., Macintosh
versus UNIX file systems) prevent uniform access to files across
replicas running on heterogeneous systems. Additionally, literal
replication does not help in cases where the externality will re-
turn a different value depending on the machine on which it
exists, such as environment variables (e.g., host name) and the

Fig. 6. Shared editor replicas access the externality uniformly via proxies. The
externality resides physically on a central site and is accessed by proxies at each
replica.

system clock. Finally, in some cases it is infeasible or impossible
to literally replicate an externality, such as the network connec-
tion to an exclusive service.

One advantage of literal replication is that it provides an
amount of fault tolerance by allowing users to continue working
independently if the network fails. In some cases, however,
this advantage may be offset by the need to merge conflicting
edits later. In any case, from the perspective of the isolated
collaborators, the synchronous collaboration is disrupted.

2) Proxied Externalities:This section introduces a
semireplicated approach where the externality resides physi-
cally at a single location and is accessed via replicatedproxies
[9] that multiplex input to and output from the actual exter-
nality. To the application, the proxy acts in place of the actual
externality and programmers access the proxy with the same
code they would use to access the externality itself.

Fig. 6 shows the architecture for a proxied externality which
consists of a client, called the externality proxy, and an exter-
nality server. The server holds a reference to an actual exter-
nality from which the server acquires or writes data.

Proxies and servers behave differently depending on whether
the externality only provides input to the application, only ac-
cepts output from the application or both provides input and ac-
cepts output. We describe the algorithms for each type next.

Input-only externalities, such as the system clock or
read-only files, are handled in the following manner. When a
proxy is created, it registers with the corresponding externality
server which assigns a unique identifier to the proxy so that
each proxy’s requests can be tracked. When the application
replica reads from the proxy, the proxy increments a request
counter by one and sends the request number and unique proxy
identifier along with the request parameters to the externality
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Fig. 7. Server-side pseudocode for a read request of a proxied input-only
externality.

server. Upon receipt of a request, the server checks the request
number to see if it is higher than any request number it has
serviced previously. If so, then this is the first proxy to make
this request so the real externality is accessed and the data are
returned to the requesting replica. The server caches the data in
a table and maps that request number with that data. As each
replica makes the same numbered request, the server returns
the data for that request number. Data are only cached as long
as they are needed. When all of the active replicas have made
the same request, the cache space for that request is released.
Fig. 7 contains pseudocode summarizing how an input-only
externality server handles read requests.

After the first proxy makes a particular request, the server
may pre-send the result to other proxies in anticipation of their
requests, accelerating the response to their request [17], [25].
When a replica leaves normally, the proxy notifies the server
which discontinues tracking that replica’s requests. If a replica
is separated from the session abnormally, the server detects the
disconnection of the proxy through the absence of a heartbeat
signal sent periodically from each proxy. Other fault detection
mechanisms, such as renewable leases, can be used.

Output-only externalities that do not return a value from
a write request, such as write-only files and output streams in
C++ and Java, are handled as follows. One proxy is designated
as the “master” and only its write requests are actually sent
to the externality server and written to the externality. The
designation of the master may depend on which host has access
to the externality or other criteria. All write requests made by
other replicas are ignored. However, all proxies store the write
requests locally so that each is able to take over as master in
case the master is cut off. In such a case, a distributed consensus
algorithm designates a new master which then applies the write
operations that occurred since the fault. To allow proxies to
flush unneeded data, the server periodically sends a notice to
all proxies of the last applied write operation. The pseudocode
in Fig. 8 summarizes how an output-only externality proxy
handles write requests.

Fig. 8. Proxy-side pseudocode for a write request of a proxied output-only
externality. Only the master’s request is actually sent.

Fig. 9. Server-side pseudocode for a read request of a proxied
input-and-output externality. Nonmaster proxies set the checkSynch
value to true only for read requests that follow a write.

Input-and-output externalities, such as read–write files or
databases, are handled by combining the above two approaches,
summarized by the pseudocode for an input-and-output exter-
nality server in Fig. 9. Again, one proxy is designated as the
“master” and only its write requests are sent to and applied to
the actual externality. To ensure correctness, it is necessary to
synchronize the proxies at the point of each read that follows
a write request. Otherwise, it would be possible for a fast-run-
ning slave proxy, whose write requests are dropped, to read a
value incorrectly before the master writes an update to it. To
prevent such incorrect results, it is necessary for proxies to be
synchronized with the master following writes. It is sufficient to
synchronize the proxies prior to the read following one or more
writes, rather than after each write, because there is no risk of
inconsistency until a read is performed.

Synchronization is performed in the following way. Recall
that each proxy increments its request number by one with each
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TABLE I
A SERIES OFREAD AND WRITE REQUESTSSENT FROM TWO PROXIES TO AN INPUT-AND-OUTPUT EXTERNALITY SERVER

read and write request. When a nonmaster proxy makes a read
request following one or more dropped writes, the read’s re-
quest number will be more than one greater the proxy’s pre-
viously sent request number, because the intervening write re-
quests were not sent. When the externality server receives a
request, it checks to see if the difference between this request
number and that proxy’s previous request number is greater than
one. If so, the server needs to synchronize this proxy with the
master before returning the value of the read, which is done
by blocking the proxy’s request until its request number is less
than or equal to one more than the master’s last request number.
When that condition is true, the master has completed the write
request that precedes the read request issued by the proxy so the
externality’s state is up to date. The server will read the actual
externality, return the value to the proxy and cache it. Corre-
sponding read requests from other proxies, including the master,
will be given the cached value.

As an example, consider an externality with only two oper-
ations:void setValue(int newValue) sets the value
of the externality; andint getValue() returns the value of
the externality. Suppose each replica will execute the following
series of operations on the externality.

setValue(5) ;
x = getValue() ;
setValue(x+1) ;
y = getValue() ;

On all replicas, the result should bex == 5 and y == 6 .
Table I traces how the server responds to two proxies issuing
this series of operations.

3) Applicability and Limitations:This approach of proxied
externalities is applicable to systems in which the replicas ac-
cess the externality using the same requests in the same order.
Thus, it is particularly suited to replicated collaboration-trans-
parency systems, such as Dialogo[14] and Flexible JAMM [1].
Each replica makes the same requests in the same order, because
each replica is a copy of the same deterministic process.

Proxied externalities may also be used in applications specif-
ically designed to be used collaboratively so long as the replicas
make the same calls to the externalities in the same order. The
replicas are not required to behave uniformly in any other re-
spect. Generally, replicas differ in their views of shared data,
not in how they acquire or store the data.

Because this semireplicated system has a centralized com-
ponent it carries two disadvantages common to centralized ar-
chitectures. The first is that proxied externalities are less fault
tolerant than full literal replication (Section III-B-1). Under the
proxied approach, a user cannot continue to work offline in case
of a network fault, because the actual externality is not available
locally. We note, however, that the ability to work alone would
disrupt the nature of a synchronous collaboration in any case.
Another issue related to network faults is that the centralized
externality is a single point of possible failure. No replica can
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Fig. 10. Sample pseudocode using a proxied input file. The code is similar
to that of a traditional single-user application and all replicas use the same
behavior.

continue if the externality server is unreachable. Generally, al-
though not a requirement, the externality server would reside on
the same host as one of the replicas and at least that replica could
continue, although again the collaboration would be broken.

The second disadvantage is that the speed of data retrieval is
dependent on network latency as each request must travel from
the proxy to the server and return. This could result in unac-
ceptable performance in systems that frequently query an ex-
ternality. An additional performance limitation is seen in the
case of input-and-output externalities where proxies are syn-
chronized with the master at the point of a read following one
or more writes. If the master is more sluggish than the other
proxies, this synchronization step will prevent the other replicas
from executing as quickly as they could otherwise.

4) Benefits: Current commercial application-sharing sys-
tems use centralized architectures in part because these prevent
the possibility of inconsistent shared data which can arise
from problems accessing externalities, as we discussed in
Section II-B. However, centralized application-sharing systems
have been shown to use network resources inefficiently and
impose an inflexible style of collaboration by not adequately
supporting key groupware principles: concurrent work, re-
laxed WYSIWIS, and detailed group awareness [1]. Proxied
externalities make replicated architectures more viable for
application-sharing systems which can alleviate the usability
problems found in conventional, centralized systems.

This approach also benefits collaboration-aware applica-
tions. Externalities are accessed using code similar to that used
in a traditional single-user application. Additionally, at the
application level, all replicas have the same behavior because
the master–slave coordination is managed in the proxies. These
simplifications can result in faster development and more
reliable code. As an example, consider that whereas thead
hoc approaches described in Section III-A used minimally
two methods consisting of the seven lines of pseudocode (not
counting master/slave management) seen in Fig. 5, the proxied
approach can use one method consisting of the four lines shown
in Fig. 10.

How much savings there would be in lines of real code, as
opposed to pseudocode, depends on the language and platform
but clearly there is a savings in terms of reduced complexity at
the application level. If one were to augment a modern office
productivity suite with collaborative capabilities, such savings
would be substantial. To handle externalities in such a system
would first require the development of a package to handle prox-
ying the externalities, such as the prototype implementation we
describe in the next section. Beyond that, at the application level,
the proxied externality approach would require nearly the same
amount of code as in the current implementation, whereas an

ad hocapproach would require additional code for master/slave
coordination and for externality content distribution.

IV. PROTOTYPEIMPLEMENTATION

We have implemented a prototype of our proxied externality
approach as part of a replicated application-sharing system for
the Java platform, called Flexible JAMM (Java Applets Made
Multiuser) [1]. To allow transparent, dynamic replacement of
an externality with a proxy, we modified core library and native
platform classes in Sun’s Java 1.1.6 runtime environment. As a
result, the prototype uses a nonstandard Java runtime environ-
ment.

Fig. 11 shows our class design in the proxy and
server implementation for a Java read-only file resource,
java.io.FileInputStream . The proxy implements
the Proxy interface which defines the method calledcon-
nectToMaster() which is called to connect to the server
and associate this proxy with a unique identifier. The server
uses this identifier to keep track of each proxy’s requests.
The ProxyFileInputStream class contains are-
moteResourceLocator which contains the address of
the externality server to which this proxy will connect. The
ProxyFileInputStream also contains a reference to an
interface for the remote externality server,RemoteFileIn-
putStream , which implementsRemoteExternality ,
which defines a method by which proxies register [regis-
terProxy() ] and a method that proxies can use to create a
unique identifier [getConnectionNumber() ]. Remote-
FileInputStreamImpl is an implementation of the actual
externality server.

We modified the original class to contain a reference to
either an externality proxy or a local externality which may be
switched dynamically. This approach follows thebridgedesign
pattern, described by Gammaet al. [9], which decouples an ab-
straction (e.g.,FileInputStream ) from its implementation
(e.g., a physical file), allowing the implementation to change
at run time. This allows the externality to be switched between
single- and multiuser access. When the proxy is used in a
single-user application, the object accesses the local externality
directly. If the application is later shared, the object switches
from the local externality to a remote externality server.
The original externality is wrapped by the externality server.
Fig. 12 shows an example of (a) a single-user application with
a FileInputStream object, and (b) the introduction of
proxies after the application has been shared.

Although we were able to proxy file resources transparently
in Flexible JAMM, we encountered a problem with proxying
the system clock [java.lang.-System.current-
TimeMillis() ], because it is not only accessed by an
application executing within the Java virtual machine (VM)
but also by the VM itself. Consistent application state does not
depend on these VM-level calls sharing the same global time.
Therefore, to maintain efficient VM performance, we did not
simply replace the reference to the system clock with a proxy.
Instead, for each access of the system clock, we checked to
see if the request came from an application-level object. If
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Fig. 11. Class diagram for the proxy and server for the Java input-only file externality,FileInputStream .

Fig. 12. Switching from single- to multiuser access dynamically. (a) The original applet has ajava.io.DataInputStream (DIS) connected to a
java.io.FileInputStream (FIS), which refers to a Local FIS, which reads the physical disk. (b) When the application is shared, the original Local FIS
is wrapped by a FIS Server which is accessed via each replica’s FIS Proxy.

so, the proxy was accessed, otherwise the local machine was
accessed. As a result, sharingjava.lang.System is more
complex than the other externality classes in that it performs an
additional check before accessing the data.

A. Java Externality Classes

Identifying externality classes in Java is straightforward, be-
cause, as a rule, a Java externality class will access the ac-
tual externality via anativemethod, a platform-specific imple-
mentation of the method. For example,FileInputStream
reads from a physical file via a native method namedread() .
Table II lists the externality classes in version 1.1 of the core
Java class library. Not all externalities should be proxied as ex-
plained in the table. Flexible JAMM includes implementations
for each of the listed externalities exceptRandomAccess-
File andProcess , because the applications we tested did
not use those.

Many native methods areprivate , meaning they cannot
be invoked by applications directly. Typically, applications in-
directly invoke these via apublic method that in turn calls the
private native method. For these cases, we modified the
public method so that it retrieves data differently depending
on whether the externality is shared. If the externality is not
being shared, the native method is invoked as before, accessing
the resource locally, otherwise a proxy is used to access the re-
source remotely.

A public native method cannot be as easily modified,
because applications invoke the native implementation directly.

For these cases, we “privatized” the originalnative method,
renaming it in the formoriginalNameNative . The original
method name becomes apublic nonnative method, which fol-
lows the bridge pattern described in the preceding paragraph.
For example, the code seen in Fig. 13 replacespublic na-
tive FileInputStream.read() .

B. Instantiating an Externality

When an externality class is instantiated by a shared applica-
tion it needs to be accessed remotely. However, when instanti-
ated by the VM (e.g., to obtain class bytecode from a file), the
externality needs to be accessed locally. Therefore, the system
needs to differentiate these cases. To do so, Flexible JAMM uses
an implementation ofjava.lang.ClassLoader similarly
to how Java applet security detects whether an access to a re-
stricted resource comes from an applet or the VM. When an
application is shared, a flag is set in the application’sClass-
Loader .

When constructed, an externality class queries the Flexible
JAMM security manager which checks the class loader of each
object on the execution stack. If any class loader in the stack is
set to share mode, then the calling object is a descendent of a
shared application and the externality constructs a proxy. If the
shared externality is being instantiated by the master replica,
then Flexible JAMM’s proxy manager creates both a server and
a proxy. The proxy manager then sends the address of the exter-
nality server to all replicas. At each replica, the proxy manager
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TABLE II
EXTERNALITIES IN VERSION1.1 OF THE JAVA CLASS LIBRARY

Fig. 13. Code to replacepublic native FileInputStream.read() .
If it is accessed within a shared application, the proxy will be accessed (line 9).
Otherwise, the private native method,readNative , will be accessed (lines 11
and 12).

creates a proxy and connects to the externality server once the
address of the externality server arrives.

V. FUTURE WORK

As a distributed system, proxied externalities suffer problems
common to distributed systems. We have considered such issues
in the context of the unique aspects of this system but an obvious
area of future work involves integrating known solutions and
investigating new approaches to distributed-system problems in
proxied externalities.

Another area of exploration involves relaxing the restriction
that replicas must makeexactly the same requests in the
same order. We can imagine situations where it would be
useful to have replicas access shared externalities in a nonuni-
form manner. Benefits may include improved efficiency for

individual replicas, or better support of flexible styles of collab-
oration. Such a capability would likely require the replicas to
specify the data they desire more precisely than in the present
system. The replicas might need to specify the version of the
externality, or the state of the replica when making the request,
or possibly other parameters. Such a capability may be highly
application dependent and therefore less generally applicable
than what we have described here.

VI. SUMMARY AND CONCLUSIONS

We described common problems associated with sharing
externalities in replicated, synchronous, collaborative appli-
cations. We also described a range ofad hocand two general
solutions: full literal replication and a novel approach of using
replicated proxies to access a centrally located externality. In
contrast to thead hocapproaches, the proxy approach allows,
and indeed depends on, all replicas to access externalities
uniformly, making the same requests in the same order. This
approach is particularly well suited for use in a replicated
application-sharing system where each replica is identical. The
approach is also applicable in replicated collaboration-aware
applications as long as each replica accesses externalities via
the same calls in the same order.

We described a prototype implementation of this approach
within an application-sharing system, called Flexible JAMM.
In our prototype, we extended the general design to allow an
externality to switch from direct local access to proxied remote
access when an application is switched from single- to multiuser
mode. We treated the system clock specially so that queries by
the virtual machine always access the local machine time but
queries from shared application objects access the time via a
proxy. We described how Flexible JAMM determines whether
to create a proxy or access a local externality directly when an
externality class is instantiated.



842 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 9, NO. 6, DECEMBER 2001

The primary contribution of this work is a systematic
solution to the problem of accessing data that are external to a
replicated shared application. The use of proxied externalities
simplifies development of replicated synchronous groupware
in two key ways. The first is that proxies can be accessed
using code similar to that used in traditional nondistributed
single-user applications. This capability allows a replicated
application-sharing system to replace a reference to an actual
externality with a proxy transparently. Collaboration-aware
application developers also benefit by using the same access
mechanisms as in traditional single-user applications. The
second key benefit is that development complexity is reduced
by programming the same behavior in all replicas. The pro-
grammer does not write special code for replicas acting in
different roles (master or slave) and does not need to designate
or manage which replicas are acting in which role. The des-
ignation and management of roles are handled in the proxies,
decreasing complexity at the application level.

This general approach to handling externalities lowers the
cost of development for replicated synchronous groupware. The
use of replicated architectures brings improved network usage
over centralized architectures along with support for relaxed
WYSIWIS and independent work. These capabilities allow col-
laborators to shift naturally between tightly and loosely coupled
forms of collaboration.
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