A FULL RESOLUTION ELEVATION REPRESENTATION
REQUIRING THREE BITS PER PIXEL

Clifford A. Shaffer
Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

ABSTRACT

A quadtree-like representation for storing gridded elevation data is described. The data structure is a pyramid with each node containing two bits of data. The root of the pyramid has associated with it the minimum elevation for the corresponding grid and the maximum variance (the difference between the minimum and maximum values). The elevation value at any pixel is calculated by traversing a path from the root to the pixel, refining the local elevation value during the decent by interpreting the two bit codes stored with each node along the path. Since the total number of nodes in the pyramid is 4/3 the number of pixels required for the bottom level of the pyramid, the amortized storage cost is less than 3 bits per pixel, regardless of vertical resolution. This scheme is most appropriate for efficient secondary storage archival, such as on a CD-ROM. It allows efficient retrieval of complete elevation data from any sub-region, at multiple scales, within the entire elevation database. This is a lossless encoding when the difference between sibling pixels is not “too great”.

1. INTRODUCTION

The need for high quality topographic data combined with the difficulties encountered when processing such large volumes of data have resulted in many competing representations. One method is to store a collection of benchmark points with associated elevation values. The value for locations not explicitly stored is derived by interpolating the values of nearby a priori data points. This approach is time consuming since the nearby data points must be located, and the interpolation performed. The reliability of

This work was partially supported by General Dynamics and by the Virginia Center for Innovative Technology.
such an interpolation is also questionable (consider for example, the results of fractal geometry [Mand82]). Finally, the storage requirements include space for the coordinates of the data points since they may not be at specified intervals. One popular variation on the benchmark point approach is the Triangulated Irregular Network [Peuk78].

Another approach to storing elevation data is as a grid with an elevation value at every cell. Stereographic gestalt mapping techniques make this an attractive approach since grid data is easily captured from areal photographs [Kel77]. This method typically requires 8 or 16 bits of data at every grid cell (depending on the range and resolution of the elevation values). For large areas of the earth at any reasonable resolution, this approach requires a great deal of storage.

The quadtree [Same84] and its many variants has successfully supported a number of cartographic applications. The quadtree data structure provides a spatial index to locate spatial data objects efficiently. For example, see [Shaf86] for a description of a prototype GIS that supports thematic regions, points, and linear feature data. Many related approaches have also been applied to computer cartography and computer graphics applications requiring spatial indexing. For example, EXCELL [Tamm81], image pyramids [Ant86, Shaf87], and others. For the remainder of this section, I will loosely use the term "quadtree" to refer to all such spatial indexing methods.

The quadtree approach attempts to save both space and time over simple grid approaches by either aggregating homogeneous regions (as does the simple region quadtree), or by spatially organizing a collection of data objects (as does the FM quadtree for lines [Same85b]). Such approaches have not been successful in the past for representing elevation data since such data does not fall into either category. Elevation data may be viewed as a surface whose z value varies over the x and y dimensions. Unless the vertical resolution is extremely coarse in relation to the horizontal resolution, neighboring pixels in the corresponding grid are not homogeneous. Thus the region quadtree approach will not be space efficient since there are no homogeneous blocks to aggregate. [Cebr85] suggests that while the quadtree will not compress homogeneous blocks, the elevation grid should still be arranged in Morton order [Mort66] since it would then be more compatible with quadtree-based GIS.

Another approach to applying a quadtree representation to topographic data is to derive a relatively small collection of spatial data objects from the data to be stored by means of a spatial index. One approach is to generate a collection of surface patches to approximate the topographic surface [Mart82]. [Chen86, Leif87] apply the quadtree representation to this technique.

The benchmark point method of storing elevation data may be more amenable to spatial indexing methods since the data points could be indexed with a PR quadtree [Same84] or a grid file [Niev84]. However, while the spatial index makes it easier to locate data points near to a query point, the interpolation problems remain. In addition, if the number of data points is high in relation to the number of grid cells at the desired resolution, than the additional storage required to support the spatial indexing method may well be greater than that required by simply interpolating the data points over the grid and storing the grid. Note that the grid requires no storage overhead beyond the data value at each grid cell. If the number of data points is greater than about 10% of the grid cells, the grid will probably be more efficient in space and time than the aforementioned quadtree methods.

We present an alternate elevation pyramid. The elevation pyramid is formed by full resolution elevation values at each node in the pyramid. This allows for a natural hierarchical structure for the pyramid, which is organized in a way that allows for efficient querying of elevation data at any resolution.

2. DATA AMORTIZATION

Trees are often used for storing hierarchical data. For example, a file system is a tree where each node in the tree represents a file or directory. The cost of traversing a tree can be amortized over the entire tree. A quadtree is the neighbor of the child of a quadtree node. Thus, the neighbor-finding query is performed using a quadtree.

While amortization allows for efficient searching of large data structures, it can be a useful technique for organizing hierarchical data. For example, a tree structure can be used to store a hierarchical database. Each node in the tree represents a record in the database, and the child nodes represent sub-records. This allows for efficient querying of the database, as well as efficient storage and retrieval of large amounts of data.

The trie data structure can be used to store and organize hierarchical data. A trie (also known as a prefix tree) is a tree-like data structure that stores keys and associated values. In a trie, each node contains a set of child nodes, each of which is associated with a prefix of the key. This allows for efficient querying of the data, as well as efficient storage and retrieval of large amounts of data.

An idealized (though not necessarily practical) tree structure is shown in Figure 2. Each node in the tree represents a record in the database, and the child nodes represent sub-records. This allows for efficient querying of the database, as well as efficient storage and retrieval of large amounts of data.
We present an alternative approach to representing elevation data, termed the
\textit{elevation pyramid}. The elevation pyramid uses an image pyramid structure \cite{Tan85} to allow aggregation of the elevation data at higher levels in the pyramid. This aggregation allows full resolution elevation data to be stored at an amortized cost of less than 3 bits per grid cell. It is a generalization of the \textit{DEPTH} coding scheme of Dutton \cite{Dutt83}, though our approach to coding methods is quite different.

2. DATA AMORTIZATION

Trees are often used to aggregate computation costs when processing the data stored in the tree. For example, if every leaf node in a tree must be visited, it is inefficient to travel from the root to each leaf node of the tree in turn. Instead, a tree traversal is performed where each node of the tree is visited once. Since the total number of nodes in the tree is $O(N)$ where N is the number of leaf nodes, the total cost of a traversal is $O(N)$, not $O(N \log N)$ or worse as would be required if each leaf were processed separately. The cost of traversing the path from the root to any leaf node is amortized over the entire traversal. An example of such amortization of the computation in a quadtree is the neighbor passing traversal algorithm of \cite{Sam85}. Here, the neighbors of the child of a quadtree node Q are recognized to be children of Q and its neighbors. Thus, the neighbor-finding computation can be amortized over the traversal of the tree.

While amortization of computation by tree methods is commonly practiced, amortization of the data to save storage is less common. One well known approach is the trie \cite{Fred60,Aho83}, which can be used to store dictionaries in a space efficient manner. For example, assuming a 26-letter alphabet, the trie can be represented as a 26-way tree with each branch labeled by a corresponding letter. All words starting with 'a' would be placed in the 'a' branch of the tree; those starting with 'b' in the 'b' branch, etc. At the second level of the tree, words are further separated by their second letter, and so on. To locate a word in the trie, the path from the root to the desired word is followed, collecting the letters during the process. The total amount of storage required is related to the number of differences between words, not to the total number of characters in the words.

The trie data structure not only compresses the number of characters that must be stored, but also organizes one-dimensional data for efficient retrieval. When storing elevation data, we must be concerned with three dimensions: the location in 2-D space and its elevation value. Both the grid, and hierarchical spatial data structures such as the quadtree, index space with the location of cells or nodes implicitly contained in their structure. Objects whose data values are correlated to their positions are amenable to data aggregation.

An idealized (though impractical) example of such an aggregation would be the location of quadtree blocks. Morton codes \cite{Mort66,Garg82} have been used extensively as an addressing technique to support the linear quadtree (i.e., a quadtree representation that stores only leaf nodes along with a description of their size and location). One way to derive the Morton code is by interleaving the bits of the x and y coordinates for a
pixel. An alternative characterization is as a description of the path from the root to the pixel. The NW branch has a 2 bit code, say, 00. The NE branch has code 01, and so on. The address for a pixel is the concatenation of the codes for each branch in the path. If it were desirable to explicitly store the Morton code address for each node, one could store the complete address of size 2 \(n \) (for a \(2^n \times 2^n \) image) with each node. A more space efficient approach is to store with each node the 2 bit code representing the branch from the node's father. The complete address is generated by concatenating the codes during the descent. The addresses of neighboring nodes are perfectly correlated, and perfectly inheritable from the parent. A simple inductive proof on \(k \)-ary trees shows that the total number of nodes in a quadtree is \(\frac{3}{3} L \) where \(L \) is the number of leaf nodes in the tree. Thus, this technique would require only \(\frac{3}{3} \) bits per node.

Of course, there is no reason to store Morton code addresses with the nodes in a tree structure since they can be computed from the tree structure during traversal. In fact, the most significant application of Morton codes in quadtree representations is to eliminate the tree structure itself. However, other types of data are such that nearby nodes have correlated data values. The concept of aggregating the related portions of the data in the common ancestor nodes can be used in these cases. One significant example of such data is elevation.

The method developed in this paper is related to the technique of progressive transmission for images [Sloa79, Know80, Hill83, Hard84]. Progressive transmission contains elements of both computation and data amortization. These methods store in a variable some form of "average" value for the image, and utilize a tree structure to store "differences" indicating how the refinement takes place as one proceeds through the tree. These methods allow for transmission of images with no loss of information, no increase in storage requirements, and yet at the same time allowing ever-improving versions of the image to be transmitted. In addition, homogeneous regions of such images need not be redundantly transmitted at finer resolution. Progressive transmission allows the receiver to cut the transmission prematurely if the full resolution image is not desired. Note that these methods do not utilize data aggregation for storage compression. The application of lossless image transmission does not encourage the storage saving method described in this paper since adjacent image pixel values are not sufficiently well correlated.

3. THE ELEVATION PYRAMID

This section describes our representation for elevation, termed the elevation pyramid. This representation reduces the storage requirements of the grid method for storing elevation data to less than 3 bits per grid cell. It does this by taking advantage of the correlation of the data values for pixels within any region of the grid.

The pyramid structure [Tan75] is derived from a \(2^n \times 2^n \) grid. The pyramid can be viewed as a stack of arrays which stores at the bottom level the entire image of size \(2^n \times 2^n \). At the next level, each disjoint \(2 \times 2 \) pixel block is represented by a single cell, with the entire image at this level represented by \(2^{n-1} \times 2^{n-1} \) cells. This process continues until the \(n \)th level, which contains a single cell. Thus, the pyramid is equivalent to a complete children and all leaf nodes s representation requires no p and parent nodes can be de like traditional storage techn bottom level to be level 0, a

The basic elevation p with the pyramid is the mini variance) between the minin ALLMIN and ALLVAR. ALL is the greatest power of 2 less of in the image and the ma these variables will be refine value for that pixel is deterr. Each internal node o each. Strictly speaking, the internal node; however, im together to form a single by not require any storage. Sin N is the number of pixels, w storage is \(\frac{3}{3} \) bits/pixel.

Each 2-bit field repres values for the current node t with that field. In our init the minimum elevation for that maximum variance for that following operations on vari for future operations:

- Code 00 - \(M_{\text{new}} := 1 \)
- Code 01 - \(M_{\text{new}} := 1 \)
- Code 10 - \(M_{\text{new}} := 1 \)
- Code 11 - \(M_{\text{new}} := 1 \)

Determining the value of a \(p \) to ALLMIN, and \(V \) is initial to the desired pixel, the appr. When a pixel is reached, th Pascal-like pseudocode for t shows a sample elevation gr drawn between nodes in the implementation would store Construction of the \(\alpha \) the original elevation array is stored into the base of a \(t \) value and variance for each temporary pyramid. The fin
is equivalent to a complete quadtree, i.e., one in which all internal nodes have four children and all leaf nodes are at the lowest level of resolution. However, the pyramid representation requires no pointers since the memory location of the children, sibling, and parent nodes can be derived from the memory location of the current node (much like traditional storage techniques for the heap data structure [Aho83]). We define the bottom level to be level 0, and the root to be level n.

The basic elevation pyramid represents an elevation map as follows. Associated with the pyramid is the sum of all pixel values in the image, and the difference (or variance) between the minimum and maximum values. We define two global variables, ALLMIN and ALLVAR. ALLMIN stores the minimum value within the image. ALLVAR is the greatest power of 2 less than or equal to the difference between the minimum value of the image and the maximum value. As the pyramid is traversed, local copies of these variables will be refined until the pixel level is reached, at which point the actual value for that pixel is determined.

Each internal node of the pyramid is 8 bits long, divided into 4 fields of 2 bits each. Strictly speaking, these four fields represent the codes for the children of that internal node; however, implementation is more efficient if these values are grouped together to form a single byte value. Leaf nodes (i.e., level 0 in the pyramid) thus do not require any storage. Since the complete pyramid contains \(\frac{1}{2} N \) internal nodes where \(N \) is the number of pixels, with each internal node requiring 8 bits, the total amount of storage is \(\frac{8}{3} \) bits/pixel.

Each 2-bit field represents the required modification to the minimum and variance values for the current node to generate the corresponding values for the child associated with that field. In our initial coding scheme, the first bit indicates modification to the minimum elevation for that subtree, while the second bit indicates modification to the maximum variance for that subtree. Specifically, the two bits can be defined by the following operations on variables \(M \) and \(V \), which will then be passed to the child node for future operations:

\[
\begin{align*}
\text{Code 00 - } M_{\text{new}} &:= M_{\text{old}}; \quad V_{\text{new}} := V_{\text{old}}/2; \\
\text{Code 01 - } M_{\text{new}} &:= M_{\text{old}}; \quad V_{\text{new}} := V_{\text{old}}; \\
\text{Code 10 - } M_{\text{new}} &:= M_{\text{old}} + V_{\text{old}}/2; \quad V_{\text{new}} := V_{\text{old}}/2; \\
\text{Code 11 - } M_{\text{new}} &:= M_{\text{old}} + V_{\text{old}}; \quad V_{\text{new}} := V_{\text{old}};
\end{align*}
\]

Determining the value of a pixel begins with the root of the tree, where \(M \) is initialized to ALLMIN, and \(V \) is initialized to ALLVAR. As the pyramid is traversed from the root to the desired pixel, the appropriate two-bit field is processed and the variables updated. When a pixel is reached, the stored value for that pixel is in \(M \). Algorithm 1 shows Pascal-like pseudocode for the decoding operation using this coding method. Figure 1 shows a sample elevation grid and the corresponding elevation pyramid. Pointers are drawn between nodes in these figures purely to aid in viewing the picture. An actual implementation would store the nodes as a list in memory.

Construction of the coded elevation pyramid is easily performed. We assume that the original elevation array is available during the coding process. This elevation data is stored into the base of a temporary pyramid which is capable of storing the minimum value and variance for each node in the pyramid. Two passes are then made over the temporary pyramid. The first pass sets at each internal node of the temporary pyramid
the minimum value and variance for its sub-pyramid. This is performed by a simple post-order traversal of the pyramid. The second phase generates (and outputs) the encoded form of the final pyramid. ALLMIN and ALLVAR are set based on the minimum value and variance of the root. For each internal node of the pyramid, the minimum and variance values of each child are examined. The function MAKECHILDCODE compares these values to the current value of M and V to generate the proper code. As a side effect, MAKECHILDCODE sets the minimum and variance values of the child node in the intermediate pyramid to the values computed from the codes traversed thus far, making these values available when MAKECHILDCODE is executed on the child. One advantage of this approach is that the algorithm we present can easily be converted to operate as a breadth-first traversal. The PASCAL pseudo-code for the second pass in this process is shown in Algorithm 2.

4. VARIANTS ON THE ELEVATION PYRAMID

Ideally, the elevation pyramid would provide a completely faithful representation of the original elevation data. The term “faithful” is used instead of “accurate” considering that the source of elevation data is often suspect. A potentially significant problem with the coding scheme described in the previous section is that rapidly changing elevation values cannot be faithfully represented, as shown in Figure 2. Note in this figure that 5 pixels (whose values are circled) were incorrectly labeled. In each case the computed value is one less than the true value. Figure 3 reverses the pixel elevation values of Figure 2 in order to demonstrate that the minimum elevation representation does not give anomalous affects when the minimum value varies rapidly. Figure 3 yields similar results to Figure 2.

We see that the elevation pyramid tends to smooth out rapid changes in elevation. The significance of this problem would depend on the relationship between horizontal and vertical resolution. If the original elevation data is not extremely accurate, minor degradation in the representation may not be of concern. However, greater faithfulness can be achieved through various modifications to the basic coding algorithm.

Note that the code generation function of Algorithm 2 has been very carefully constructed. Changes in this function can lead to significant changes in the quality of the codes produced. For example, the variance value can be the greatest power of 2 less than or equal to the true variance, as opposed to the greatest power of 2 less than the true variance. Otherwise, a variance of 1 would always be reduced to 0, yielding incorrect values. Another feature of the function MAKECHILDCODE is that it first checks and, if possible, modifies the minimum value for the child without regard to the child’s variance. In the case of code 11, this could lead to rapid increases of the minimum value while maintaining the variance even when the true variance for that area is rather low. However, it is reasonable to expect that in general, if the minimum value is changing rapidly, the variance will remain high. Likewise, code 10 allows a moderate increase in the minimum value, but forces a decrease in the variance regardless of the true state. One might be concerned that an area with a slightly higher minimum value but a high variance might be at the expense of an increment problem since small increases is already low enough to all the code generating function class of variants to our algorithm.

Another class of variants modifying values other than elevation value for the substantification being to add or subtract do not speculate further on.

A third class of variants on the current level in the pyramid we can modify the codes based on two levels. In particular, we are not significant, except for the bottom level would not improve coding for the bottom level:

- Code 00: $M_{new} := 0$
- Code 01: $M_{new} := 1$
- Code 10: $M_{new} := 0$
- Code 11: $M_{new} := 1$

Further, we expect that the following:

Thus, we prefer to modify these codes:

- Code 00: $M_{new} := 1$
- Code 01: $M_{new} := 1$
- Code 10: $M_{new} := 1$
- Code 11: $M_{new} := 1$

Note that this version changes decreasing the variance. The modification for level 0 which shows the elevation grid for this example, only the last faithfully reproduces Algorithm 2.

A fourth class of variants of the pyramid. Storing more turn would allow for more efficient computation of representation every node, as in the traditional pyramid that is worthy of future exam. pyramid. Since $\frac{3}{4}$ of the storage requirements only fits.

A fifth class of variants pyramid [Tamm84]. A bint
formed by a simple post-
und outputs) the encoded
based on the minimum
pyramid, the minimum
MAKECHILD CODE
rate the proper code. As
riance values of the child
the codes traversed thus
is executed on the child.
nt can easily be converted
-code for the second pass

but a high variance might be incorrectly coded since the variance is artificially reduced
at the expense of an increase in the minimum value. However, this is not normally a
problem since small increases in the minimum value can only occur when the variance
is already low enough to allow them (since the least increase is \(V/2 \)). Modifications to
the code generating function, or the definition of the codes themselves, would form one
class of variants to our algorithm.

Another class of variants on our basic coding scheme results from storing and
modifying values other than the local minimum and variance. For example, the average
elevation value for the subtree and the variance could be stored, with a suitable mod-
ification being to add or subtract the current variance at each branch in the tree. We
do not speculate further on such variants.

A third class of variants results from modifying the definition of the codes based
on the current level in the pyramid. Defining the lowest level to be 0, the next as 1, etc.,
we can modify the codes based on level to take advantage of peculiarities at the bottom
two levels. In particular, we note that modification to the variance at the bottom
level is not significant, except for its affect when added to the minimum. A better coding
for the bottom level would be to increase the range of effect for the variance. Thus, an
improved coding for the bottom level would be as follows.

```
Code 00 - M_{new} := M_{old};
Code 01 - M_{new} := M_{old} + V_{old}/2;
Code 10 - M_{new} := M_{old} + V_{old};
Code 11 - M_{new} := M_{old} + 3V_{old}/2;
```

Further, we expect that the bottom level will require lower variance than higher levels.
Thus, we prefer to modify the code for level 1 as follows.

```
Code 00 - M_{new} := M_{old}; V_{new} := V_{old}/2;
Code 01 - M_{new} := M_{old}; V_{new} := V_{old};
Code 10 - M_{new} := M_{old} + V_{old}/2; V_{new} := V_{old}/2;
Code 11 - M_{new} := M_{old} + V_{old}; V_{new} := V_{old}/2;
```

Note that this version changes the meaning of only code value 11 from the original,
decreasing the variance. This works especially well in conjunction with the described
modification for level 0 which allows more flexibility for smaller variances. Figure 4
shows the elevation grid for Figure 2 as it would be coded using these modified functions.
In this example, only the lower right pixel varied too quickly for the coding scheme to
faithfully reproduce. Algorithm 3 presents the modified MAKECHILD CODE function.

A fourth class of variants has to do with the number of bits stored at each node
of the pyramid. Storing more bits would allow for a greater number of codes. This in
turn would allow for more flexibility in representing images with high local variance. In
fact, we can view the 2 bit per pixel elevation pyramid as being at one extreme of a
continuum of representations whose other end would store complete elevation data at
every node, as in the traditional image pyramid [Tan85]. A space-efficient modification
that is worthy of future examination is to store an extra 2 bits for internal nodes of the
pyramid. Since \(\frac{2}{3} \) of the nodes are at the bottom level, this would raise the amortized
storage requirements only from \(\frac{2}{3} \) to \(\frac{4}{3} \) bits/pixel.

A fifth class of variants is based on use of a bintree pyramid instead of a quadtree
pyramid [Tam84]. A bintree pyramid would store at level 1 a \(2^n \times 2^{n-1} \) array with
each cell corresponding to 2 cells at level 0; level 1 would be a $2^{n-1} \times 2^{n-1}$ array; and so on. Since the bintree pyramid has as many internal nodes as leaf nodes, the storage requirements will be 4 bits/pixel. However, the bintree provides additional control over the elevation and variance values, allowing more accurate representation. This is because each internal node of the quadtree is equivalent to three internal nodes in the bintree, arranged in a triangle. The result is that for each internal node along a path in the quadtree, there will be two equivalent nodes in the bintree. This allows for more opportunity to correctly modify the values. Another alternative is to use a bintree, but store only 1 bit/node instead of two. Odd levels would store, e.g., V bits, even levels would store M bits (thereby making the final modification be to the pixel’s minimum value). This would require only 2 bits/pixel total storage. The relative abilities of these variants to faithfully represent elevation data as compared to the 2 bit/node quadtree method await further investigation.

A final consideration is the order of storage for nodes in the pyramid. Heaps [Aho83] are traditionally stored in breadth-first order. It may be the case that for large, disk-based images, that a depth-first storage order is preferable to minimize disk accesses during traversal.

5. ARCHIVAL STORAGE, RETRIEVAL, AND TRANSMISSION

The primary motivation for the elevation pyramid technique is not so much to store elevation data for direct manipulation, but rather for large scale archival with relatively fast retrieval. Using the elevation pyramid, large portions of the earth's surface could be stored on disk or CD-ROM. In this application, the user would like to retrieve portions of the database for further processing. Such retrieval must be done quickly, so long term archival methods are not desirable if they slow the retrieval process. The region to be represented may not be a simple square region of land, but may include significant portions of ocean or lake. We suggest that a quadtree be used to represent the entire map, perhaps using a scheme to account for the spherical shape of the earth as reported in [Mark87]. This upper-level quadtree would be used primarily to distinguish ocean from land. At a certain level in the tree, those nodes that do not represent entirely water would store a pointer to an elevation pyramid. Additional savings can be obtained by storing a single node in the quadtree in lieu of any large flat area, not just the ocean. Such a representation would allow for the efficient representation of elevation for large portions of the earth's surface.

Given an elevation pyramid encoding, it may be desirable to extract a smaller region, possibly at some intermediate scale. For example, given an elevation pyramid archived at size $8K \times 8K$ at $1:100,000$ resolution, the user may desire a 512×512 subtree. This is easily obtained by traversing from the root of the pyramid to the appropriate internal node representing the root of the subtree containing the desired region, and generating only the complete elevation data for that subtree. If arbitrarily positioned regions are desired, windowing techniques such as described in [Shaf89] are appropriate. Images at double scale, quadruple scale, etc. are easily obtained by stopping before reaching the bottom of the pyramid; scale can also be obtained, bi-

The motivation for the use of Section 2 are to support efficient compact storage, and by the depth-first quadtree. The elevation pyramid can be understood in the same sense. The upper levels levels, providing ever improvi

6. STORAGE REQUIREMENTS

It should be clear that topographic data can be stored in high resolution, e.g., 8-10 bits/pixel, must expect to require even larger additional overhead with no

ever, that the region quadtree shown in Figure 5. This image is a quadtree triangle depicting the Ruins as a simple set of topographic

Surprisingly, the elevation pyramid requires only a total of 87 bytes of storage for each pixel in this particular image. We have determined that the pyramid requires only 2.03 bytes per pixel, compared to 2.08 bytes for a 10-bit representation. This results in a savings of about 25%. A storage optimization favoring a simple linear list over an array of 360 bytes requires 0.144 bytes per pixel. Even better [Kawa80] representation for nodes requiring only 2 bytes (about 25,000). Thus the to bits/node would reduce the the most compact array or sparse quadtree; (2) low ve quadtree nodes.
reaching the bottom of the pyramid. Scales that are not powers of two above the base
can also be obtained, but would require resizing and interpolating.

The motivation for the progressive transmission techniques mentioned at the end
of Section 2 are to support efficient transmission of images. This was facilitated both by
compact storage, and by the ability to generate ever improving resolution for the image.
The elevation pyramid can be used for progressive transmission of elevation data in the
same sense. The upper levels of the pyramid can be transmitted first, followed by lower
levels, providing ever improving resolution.

6. STORAGE REQUIREMENTS

It should be clear that the elevation pyramid provides enormous space savings for
topographic data as compared to the standard grid method when the topography data
has high resolution, e.g., 8-16 bits/pixel. Region quadrees and related data structures
must expect to require even more storage to represent elevation data since they require
additional overhead with no benefit from aggregation of data. One might expect, how-
ever, that the region quadree would perform better for contour maps, such as the one
shown in Figure 5. This image shows the 100 foot contour levels from part of a USGS
quadrangle depicting the Russian river region in northern California. This map is about
as simple a set of topographic data as would ever likely be used.

Surprisingly, the elevation pyramid compares quite favorably to the quadtree
even for this simple image. The original image is 400 x 450 pixels, yielding an image
array of 360 kbytes if each pixel requires 16 bits. Since there are only 11 contour levels
in this particular image, we could compress this to 4 bits/pixel, requiring 80 kbytes.
The elevation pyramid would require about 350,000 nodes at 2 bits/node. This gives
a total of 87 kbytes of storage, regardless of the vertical resolution. The quadtree for
this image requires about 25,000 leaf nodes. As an example of an actual quadtree GIS
implementation, the QUILT system [Shaf86], which uses a linear quadtree [Garg82]
organized by a B-tree for efficient access requires 8 bytes/node, spread onto a disk file
requiring a total of about 270 kbytes. However, this implementation does not provide
great storage savings over the array; its goal it to provide efficient manipulation of maps.

A storage optimizing linear quadtree implementation might forego the B-tree in
favor of a simple linear list. The data portion of the linear quadtree node could be
reduced to 2 bytes, requiring a total of 6 bytes/node. This yields a total requirement
of 144 kbytes. Even better space performance could be obtained by a DF-expression
[Kawa80] representation for the quadtree. This structure could store full resolution
nodes requiring only 2 bytes/node, but would store 4/3 the total number of leaf nodes
(about 25,000). Thus the total storage requirements would be 67 kbytes. Using only 4
bits/node would reduce the requirements to only 17 kbytes. This is much better than
the most compact array or the elevation pyramid. However, this relies on (1) a very
sparse quadtree; (2) low vertical resolution; and (3) sacrifices random access to the
quadree nodes.
The main points to be observed are that the elevation pyramid is easily manipulated (i.e., windows and point queries can easily be performed), has high vertical resolution, and still compares favorably in storage requirements to the array or quadtree under all but the most favorable conditions for those latter structures.

7. CONCLUSIONS AND FUTURE WORK

The elevation pyramid allows for full gridded elevation data to be stored in a manner that requires less than 3 bits/pixel. Its storage and time requirements should compare quite favorably to traditional non-grid methods for storing elevation data. Many variants on the basic scheme are possible, and a few are described. No doubt, better refinements will be discovered in the future. Extension of the elevation pyramid to 3 dimensions (for example, to store 3-D densities) are straightforward.

Our plans for the immediate future are to test the elevation pyramid algorithms on wide range of elevation data to determine the amount of information loss in typical images. We will implement and compare several of the variants described. Finally, we will develop characterizations for the types of images that can be encoded without loss of information for the most promising variants.

8. ACKNOWLEDGEMENTS

I would like to thank Dave Boldery for implementing the algorithms described in this paper, and for double-checking and correcting my calculations.

9. REFERENCES

4. [Chen86] Z.T. Chen and W.R *Proceedings of Auto-Carto Londo

5. [Dutt83] G.H. Dutton, Efficient for processing land data with a *Land Policy Monograph Series, 1*

10. [Kawa80] E. Kawaguchi and *and its application to data com; Machine Intelligence 2*, 1(Janua

11. [Kell77] R.E. Kelly, E.P.H. *tomapping system, Photogramm*

10. APPENDIX

```plaintext
function DECODE(root : ↑ PT)
{ Generate the elevation value " + size 2^n x 2^n. ALLMIN the entire pyramid. While r nodes, in practice they wo pyramid. }

var
currnode : ↑ PYR;
m, v, currx, curvy, currl
begin
currnode := root; m := ALLL
currx := 0; curvy := 0; currl
repeat
currl := currl - 1; hal
if x >= currx + half then
  if y >= curvy + half then
    begin child := SW; c
      else begin child := NW; c
      else if y >= curvy + half then
        begin child := SE; c
          else child := NE; c
          case currnode.value[child
            '00': v := v/2;
            '01':
              '10': begin v := v/2; m
                '11': m := m + v
          end} Case }
    currnode := CHILDOF(ct
  until currl = 0;
  return (m)
end;
```

Algorithm 1. Decoding algorithm
10. APPENDIX

function DECODE(root : ↑ PYR; x, y : integer) : ELEVATION;
{ Generate the elevation value at point (x, y) in the pyramid with root pointer root
and size $2^n \times 2^n$. ALLMIN and ALLVAR is the minimum and total variance
for the entire pyramid. While root and currnode are indicated as pointers to pyramid
nodes, in practice they would likely be indexes into an array implementing the
pyramid. }

var
currnode : ↑ PYR;
m, v, currx, curry, currlev, half : integer;

begin
currnode := root; m := ALLMIN; v := ALLVAR;
currx := 0; curry := 0; currlev := n;
repeat
currlev := currlev - 1; half := 2^currlev;
if x >= currx + half then
 if y >= curry + half then
 begin child := SW; currx := currx + half; curry := curry + half end
 else begin child := NW; currx := currx + half end
else if y >= curry + half then
 begin child := SE; curry := curry + half end
else child := NE;
case currnode.value[child] of
 '00': v := v/2;
 '01': ;
 '10': begin v := v/2; m := m + v end;
 '11': m := m + v
end{ Case }
currnode := CHILDOF(currnode, child);
until currlev = 0;
return (m)
end;

Algorithm 1. Decoding algorithm.
procedure PASS2(root : ↑ NODE; n : integer);
 { Second pass of pyramid construction. Produces the pyramid in depth-first order.
 root is the root of a subtree in the intermediate pyramid containing minimum and
 variance values for each node. }
var
 q : integer;
begin
 for q in { NW, NE, SW, SE } do
 OUTPUT(MAKECHILDCODE(root.min, root.var, root.child[q].min,
 root.child[q].var));
 if n <> 1 do
 for q in { NW, NE, SW, SE } do PASS2(root.child[q], n - 1)
 end; { PASS2 }

function MAKECHILDCODE(currmin, currvar : integer;
 var childmin, childvar : integer) : CODE
 { Create the child's code. In the process, set the child's computed estimation of mini-
 mum and variance values into the pyramid for future use. }
var
 code : CODE;
begin
 if ((currmin + currvar) <= childmin) then
 begin code := '11'; childmin := currmin + currvar; childvar := currvar end
 else if ((currmin + currvar/2) <= childmin) then begin
 code := '10'; childmin := currmin + currvar/2; childvar := currvar/2 end
 else if (currvar <= childvar) then
 begin code := '01'; childmin := currmin; childvar := currvar end
 else
 begin code := '00'; childmin := currmin; childvar := currvar/2 end
 end; { MAKECHILDCODE }

Algorithm 2. Encoding algorithm: second pass.
function MAKECHILDCODE(currmin, currvar : integer;
 var childmin, childvar : integer): CODE; { Modified child code generator. }
begin
 var code : CODEVAL;

 if level <> 0 then { not bottom level }
 if ((currmin + currvar) <= childmin) then
 begin code := '11'; childmin := currmin + currvar;
 if level <> 1 then childvar := currvar else childvar := currvar/2
 end
 else if ((currmin + currvar/2) <= childmin) then
 begin
 code := '10'; childmin := currmin + currvar/2; childvar := currvar/2
 end
 else begin code := '01'; childmin := currmin; childvar := currvar end
 else begin code := '00'; childmin := currmin; childvar := currvar/2 end

 end; { MAKECHILDCODE }

Algorithm 3. Modified encoding algorithm with special codes at bottom two levels of
the pyramid.
Figure 1. An elevation grid and its elevation pyramid using standard coding.
id using standard coding.

Figure 2. Elevation grid and pyramid using standard coding for an elevation grid whose values rise too rapidly for the pyramid to faithfully represent all grid values. Incorrectly valued pixels are circled.
Figure 3. Elevation grid and pyramid for the same grid as in Figure 2, except that all values v have been replaced by $8 - v$. Incorrectly labeled values in the pyramid are circled.

Figure 4. The elevation grid level-modified coding rules.
as in Figure 2, except that ceiling values in the

Figure 4. The elevation grid of Figure 2 and its elevation pyramid derived using the level-modified coding rules. Pixels incorrectly labeled by the pyramid are circled.
Figure 5. A simple elevation map.