
This article was downloaded by: [Virginia Polytechnic Institute and State University],
[Clifford A. Shaffer]
On: 19 April 2012, At: 06:26
Publisher: Routledge
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Computers in the Schools
Publication details, including instructions for authors and
subscription information:
http://www.tandfonline.com/loi/wcis20

The Role of Visualization in Computer
Science Education
Eric Fouh a , Monika Akbar a & Clifford A. Shaffer a
a Virginia Tech, Blacksburg, Virginia, USA

Available online: 18 Apr 2012

To cite this article: Eric Fouh, Monika Akbar & Clifford A. Shaffer (2012): The Role of Visualization in
Computer Science Education, Computers in the Schools, 29:1-2, 95-117

To link to this article: http://dx.doi.org/10.1080/07380569.2012.651422

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching, and private study purposes. Any
substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,
systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation
that the contents will be complete or accurate or up to date. The accuracy of any
instructions, formulae, and drug doses should be independently verified with primary
sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand, or costs or damages whatsoever or howsoever caused arising directly or
indirectly in connection with or arising out of the use of this material.

http://www.tandfonline.com/loi/wcis20
http://dx.doi.org/10.1080/07380569.2012.651422
http://www.tandfonline.com/page/terms-and-conditions

Computers in the Schools, 29:95–117, 2012
Copyright © Taylor & Francis Group, LLC
ISSN: 0738-0569 print / 1528-7033 online
DOI: 10.1080/07380569.2012.651422

The Role of Visualization in Computer
Science Education

ERIC FOUH, MONIKA AKBAR, and CLIFFORD A. SHAFFER
Virginia Tech, Blacksburg, Virginia, USA

Computer science core instruction attempts to provide a detailed
understanding of dynamic processes such as the working of an al-
gorithm or the flow of information between computing entities. Such
dynamic processes are not well explained by static media such as
text and images, and are difficult to convey in lecture. The authors
survey the history of visualization in computer science education,
focusing on artifacts that have a documented positive educational
assessment. Changes in how computing technology has affected the
development and uptake of such visualization artifacts in computer
science education, and how recent technology changes are leading
to progress in developing online hypertextbooks are then discussed.

KEYWORDS algorithm visualization, data structure visualiza-
tion, program visualization, eTextbooks, hypertextbooks

Computer science instruction has a duel nature. On one hand, computer
science (CS) students constantly build artifacts of the practice. Creating soft-
ware at small and medium scale is done from early in the first course. This
is so ingrained in the culture that students often express that something
is wrong with any early CS course that is not programming-intensive. Stu-
dents from most other disciplines would be fortunate to get a fraction of
the hands-on experience that is normal for CS instruction. However, this is
only half of the story. CS students must also learn a body of knowledge.
Most of this core knowledge relates to abstractions. One cannot see or touch
an algorithm or data structure, let alone the higher order concepts that re-
late these algorithms and data structures to the underpinning theories of
the discipline. To make the situation worse, much of the content involves
the detailed workings of dynamic processes. Particularly at the intermediate

Address correspondence to Clifford A. Shaffer, Department of Computer Science, Virginia
Tech, Blacksburg, VA 24061. E-mail: shaffer@cs.vt.edu

95

D
ow

nl
oa

de
d

by
 [

V
ir

gi
ni

a
Po

ly
te

ch
ni

c
In

st
itu

te
 a

nd
 S

ta
te

 U
ni

ve
rs

ity
],

 [
C

lif
fo

rd
 A

. S
ha

ff
er

]
at

 0
6:

26
 1

9
A

pr
il

20
12

96 E. Fouh et al.

stage (between when students have properly learned the basic concept of
“algorithm” or “recipe” for computation in the first year, and when they begin
courses on specific subareas of CS that come in the junior and senior years),
students spend significant time learning about dynamic processes. Sorting
algorithms, search algorithms, the data structures that support them, and the
analysis techniques used to assess their quality are the bread and butter of
sophomore-level computer science. Even the more concrete aspects of CS
instruction, such as programming languages and computer architecture, re-
quire an understanding of the dynamic flows of information that take place
within the computer.

Dynamic process is extremely difficult to convey using static presenta-
tion media such as text and images in a textbook. During lectures instructors
typically draw on the board, trying to illustrate dynamic process through
words and constant changes to the diagrams. Most students have a hard
time understanding such explanations at a detailed level. For this reason,
there has long been great interest among CS instructors in using animation
and visualization to convey dynamic concepts. With the ready availabil-
ity and potential for educational use of our own fundamental artifact—the
computer—it is natural to expect that CS educators would turn to using com-
puters in hopes of finding new ways to convey our own discipline’s core
knowledge. In this article the authors discuss the use of algorithm visualiza-
tion (AV) and program visualization (PV) for CS education.

EARLY USE OF AV

AV has a long history in CS education, dating from the 1981 video “Sorting
out Sorting” (Baecker & Sherman, 1981) and the BALSA system (Brown &
Sedgewick, 1985). Since then, hundreds of AVs have been implemented and
provided free to educators, and hundreds of papers have been written about
them (AlgoViz.org Bibliography, 2011). Good AVs bring algorithms to life
by graphically representing their various states and animating the transitions
between those states. They illustrate data structures in natural, abstract ways
instead of focusing on memory addresses and function calls.

Early systems, such as BALSA (Brown & Sedgewick, 1985), Tango
(Stasko, 1990), XTango (Stasko, 1992), Samba (Stasko, 1997), and Polka
(Stasko, 2001) suffered from the fact that their implementation technology
was not easy to disseminate to a broad audience. This has often been a
problem with earlier educational software. Massachusetts Institute of Tech-
nology’s Project Athena (Champine, 1991) sought not only to provide inter-
active courseware, but also to solve issues of dissemination through the X
Windows display system (Gettys, Newman, & Scheifler, 1989). Many of the
AV systems of the late 1980s and early 1990s were built on X Windows for
this reason. However, the fact that many institutions did not have access

D
ow

nl
oa

de
d

by
 [

V
ir

gi
ni

a
Po

ly
te

ch
ni

c
In

st
itu

te
 a

nd
 S

ta
te

 U
ni

ve
rs

ity
],

 [
C

lif
fo

rd
 A

. S
ha

ff
er

]
at

 0
6:

26
 1

9
A

pr
il

20
12

Visualization in Computer Science Education 97

to sufficiently powerful workstations to run X Windows in an educational
laboratory setting made access to this courseware difficult.

The first significant attempt to assess the pedagogical effects of AV was
conducted by Hundhausen, Douglas, and Stasko (2002). They performed a
meta-study of 24 prior small-scale experiments related to AV. They found that
11 of those experiments showed a “statistically significant difference between
the performance of a group of students using AV technology and another
group of students using an alternative AV technology or no AV technology
at all” (p. 265). Ten of those experiments showed a nonsignificant result, two
showed a significant result but the AV’s contribution was uncertain, and one
showed a significant result where the AV appeared to reduce learning. Mea-
suring the educational gain was found to be difficult due to lack of agreement
on the type of knowledge being measured. Some experiments involving AV
technology measure conceptual or declarative knowledge (comprehension
of the concepts of an algorithm) as well as procedural knowledge (internal-
ization of the step-by-step behavior and data manipulation of an algorithm).
AVs in these studies were found to give the most significant results when
measuring only the procedural knowledge.

AV systems reviewed in Hundhausen et al. (2002) had mixed results
in regard to their pedagogical effectiveness. Use of XTango (Stasko, Badre,
& Lewis, 1993) did not result in a statistical difference in posttest accuracy
between students taught only by the textbook and those using the textbook
and the visualization tool. Another experiment involving XTango and Polka
(Byrne, Catrambone, & Stasko, 1999) as lecture aid resulted in better abil-
ity to predict the next step of the algorithm for students who viewed the
animation in comparison to ones who only used the textbook. On program-
ming accuracy, students who constructed and viewed algorithm animations
using BALSA II (Brown, 1988) and Polka (Kann, Lindeman, & Heller, 1997)
outperformed learners who did not use them. The authors note that the AV
systems under study were all of the pre-Java variety, and the studies were
conducted at a time when student access to computers (and especially to
the AVs being used) would come only in a computer lab setting.

Perhaps the most significant findings of the Hundhausen et al. (2002)
meta-study were that (a) how students use AV, rather than what they see,
has the greatest impact on educational effectiveness; and (b) AV technology
is effective when the technology is used to actively engage students in the
process. This view that engagement is key has had enormous impact on
subsequent AV development.

AV IN THE INTERNET ERA

Much changed in the mid 1990s with the advent of the World Wide Web and
the Internet as we know it. In large part due to the widespread availability

D
ow

nl
oa

de
d

by
 [

V
ir

gi
ni

a
Po

ly
te

ch
ni

c
In

st
itu

te
 a

nd
 S

ta
te

 U
ni

ve
rs

ity
],

 [
C

lif
fo

rd
 A

. S
ha

ff
er

]
at

 0
6:

26
 1

9
A

pr
il

20
12

98 E. Fouh et al.

of Java, and to a lesser extent of JavaScript and Flash, AVs soon became
available to many more instructors and students. At about the same time,
more and more students gained access to their own computers on campus.
During the late 1990s and early 2000s, a whole new crop of AV develop-
ment systems based on Java came into being, and the older X Windows-
based AV systems lost what little traction they had with the educational
community.

Examples of the newer systems written in Java include JSamba (Stasko,
1998); JAWAA (Pierson & Rodger, 1998); JHAVÉ (Naps, Eagan, & Nor-
ton, 2000); ANIMAL (Rossling, Schuler, & Freisleben, 2000); and TRAKLA2
(Korhonen et al., 2003). One unifying feature of these systems is that they
are intended to be complete toolkits for building AVs. This followed in the
tradition of the pre-Java systems, which offered a programming framework
for would-be AV developers. While the pre-Java systems were not easy to
develop in, they at least made the development process feasible for those
willing to invest considerable effort. In contrast, some of the Java-based de-
velopment systems (such as JAWAA) focused particularly on making it easy
for instructors to develop visualizations, albeit without much support for
interactivity.

A key change that coincided with the use of Java was the advent of
collections of AVs independent of any proposed AV development system.
Java granted an AV developer independence from any given operating sys-
tem or similar constraints, and the Internet allowed the software to be easily
distributed. This changed how developers viewed their role. While JHAVE
and ANIMAL follow the tradition of providing a system, their AV content is
also significant. Many other projects have developed AVs as a stand-alone
package with no pretensions of providing an AV system to be used by other
developers. Examples of significant pre-packaged collections include Data
Structure Navigator (DSN) (Dittrich, van den Bercken, Schafer, & Klein 2001),
Interactive Data Structure Visualization (IDSV) (Jarc, 1999), Algorithms in Ac-
tion (Stern, 2001), Data Structure Visualization (Galles, 2006), and TRAKLA2
(Korhonen et al., 2003).

Another effect of the Java revolution was the advent of one-off AV
development by students and/or instructors. Building an AV is a great way
for students to learn Java, something that they found attractive in the late
1990s. Unfortunately, most of these student-built AVs were poor in terms of
pedagogical value (Shaffer et al., 2010). Fortunately, a number of particularly
well-regarded AVs were also developed, usually as part of a sustained effort
over several years to create individual Java applets to present specific lessons.
Examples include Binary Treesome (Gustafson, Kjensli, & Vold, 2011), JFLAP
(Rodger, 2008), University of Maryland’s Spatial Index Demos (Brabec &
Samet, 2003), and Virginia Tech Algorithm Visualization Research Group
(2011).

D
ow

nl
oa

de
d

by
 [

V
ir

gi
ni

a
Po

ly
te

ch
ni

c
In

st
itu

te
 a

nd
 S

ta
te

 U
ni

ve
rs

ity
],

 [
C

lif
fo

rd
 A

. S
ha

ff
er

]
at

 0
6:

26
 1

9
A

pr
il

20
12

Visualization in Computer Science Education 99

THE IMPACT OF ENGAGEMENT

The early-to-mid 2000s saw a series of influential working group reports
conducted as part of the annual ACM Innovation and Technology in Com-
puter Science Education (ITiCSE) conference (Naps et al., 2003b, Naps et al.,
2003a, Rossling et al., 2006). Naps et al. (2003b) extended the conclusions of
Hundhausen et al. (2002) regarding the need for AVs to engage the learner
in an active way. Their report defined a taxonomy that specifies the level
and the type of engagement at which AVs can involve learners. They defined
six engagement categories:

• No viewing indicates cases where no AV is used;
• Viewing involves both watching the AV execution and directing the pace

of the AV;
• Responding involves answering questions about the visualization being

viewed;
• Changing asks the learner to provide input data to the AV to direct its

actions;
• When Constructing, students build their own visualization of the algorithm;

and
• Presenting asks the learners to tell about the AV and gather feedback.

This taxonomy imposes a hierarchy in the learner engagement that is closely
related to the Bloom hierarchy (Bloom & Krathwohl, 1956).

Urquiza–Fuentes and Velázquez–Iturbide (2009) performed a new meta-
study to evaluate AVs in regard to their pedagogical significance. Their evalu-
ation focused on areas where some educational benefit has been perceived.
The educational benefit was measured against the taxonomy defined by
Naps et al. (2003b). They found that viewing does not increase the learning
benefit compared to no viewing. This is consistent with the prior findings of
Hundhausen, et al. (2002). Unfortunately, Shaffer et al. (2010) reported that
most AVs are still at the viewing level.

Urquiza–Fuentes and Velázquez–Iturbide found that students interact-
ing at the responding level with an AV have significantly better knowledge
acquisition than those using AVs with only viewing features. The changing
level has better acquisition results than the responding level. Constructing
an AV improves the learning outcomes more than changing (though at a
significantly greater cost in time and effort). The presenting level has better
acquisition results than constructing.

Among the successful AVs, Urquiza–Fuentes and Velázquez–Iturbide
cited specific examples from various larger AV systems. JHAVÉ (Naps et al.,
2000) AVs consist of a graphical interface plus textual information about
the algorithm and some questions for the learners. JSamba (Stasko, 1998)

D
ow

nl
oa

de
d

by
 [

V
ir

gi
ni

a
Po

ly
te

ch
ni

c
In

st
itu

te
 a

nd
 S

ta
te

 U
ni

ve
rs

ity
],

 [
C

lif
fo

rd
 A

. S
ha

ff
er

]
at

 0
6:

26
 1

9
A

pr
il

20
12

100 E. Fouh et al.

lets learners and instructors use a scripting language to customize the
representation of data structures. TRAKLA2 (Korhonen et al., 2003) includes
exercises where the learner demonstrates proficiency in a step-by-step ex-
ecution of the algorithm, assessing the knowledge of the learner by asking
him to predict the next step of the algorithm. Alice (Cooper, Dann, & Pausch,
2000) allows the learner to visualize objects in a 3D virtual world. jGRASP
(Hendrix, Cross, & Barowski, 2004) lets instructors develop specific visualiza-
tions to satisfy an objective (how they want the learners to see the objects).

Urquiza–Fuentes and Velázquez–Iturbide noted that an element typically
found in successful AVs is narrative content and textual explanations. Inte-
grating an explanation with the steps of the visualization improves learning
at the viewing engagement level. Feedback on student action is a feature at
the responding engagement level, where the student is actually engaged by
demonstrating his/her proficiency with the knowledge. Extra time using the
AV can be achieved when the students are asked to construct or to customize
an AV (the constructing engagement level). Good AVs also provide advanced
features like a more versatile interface to manipulate and direct aspects of
the visualization (often required to support the responding level and above).

Myller, Bednarick, Sutina, and Ben–Ari (2009) investigated the impact
of engagement on collaborative learning. They extended the engagement
taxonomy of Naps et al. (2003b) to better capture the differences between
student behaviors. They added four engagement levels, including controlled
viewing and entering input, falling between the original levels of viewing and
responding. They claim that their extended engagement taxonomy (EET) can
also be used to guide successful collaboration among students when using
visualization tools. To probe their claim, Myller et al. (2009) conducted an
experiment in which students were asked to work in pairs during lab session.
The students interacted with the program visualization tools BlueJ (Sanders,
Heeler, & Spradling, 2001) and Jeliot (Levy, Ben–Ari, & Uronen, 2003) at dif-
ferent EET levels. They observed and recorded all students’ communication
during the experiments. They found that EET levels are positively correlated
with the amount of interaction. Interaction is one of the essential ingredients
for a successful computer-supported collaboration along with coordination
and motivation (Meier, Spada, & Rummel, 2007).

SOME SELECTED VISUALIZATION ARTIFACTS

In this section the authors describe in some detail several visualizations or
systems that have supported documented pedagogical improvements. Those
that showed a statistically significant difference in students’ performance be-
fore and after using the visualization systems under a controlled experiment
were selected, typically because they engaged learners at levels of the tax-
onomy above viewing.

D
ow

nl
oa

de
d

by
 [

V
ir

gi
ni

a
Po

ly
te

ch
ni

c
In

st
itu

te
 a

nd
 S

ta
te

 U
ni

ve
rs

ity
],

 [
C

lif
fo

rd
 A

. S
ha

ff
er

]
at

 0
6:

26
 1

9
A

pr
il

20
12

Visualization in Computer Science Education 101

TRAKLA2

TRAKLA2 is one of the most widely used AV collections, routinely used
throughout Finnish universities. It provides an outstanding example of op-
erating at the responding engagement level. TRAKLA2 allows the learner to
control the visual representation of the data structures manipulated by the al-
gorithm. Learners can “build” a data structure by dragging and dropping GUI
elements. TRAKLA2 exercises ask learners to determine a series of operations
that will change the state of the data structure to achieve some outcome. For
example, students might build a tree data structure by repeatedly dragging
new values to the correct locations in the tree. Alternatively, the learner can
practice to gain understanding by examining a step-by-step execution of
the algorithm (called the model solution). Many TRAKLA2 exercises include
some tutorial text along with pseudocode to explain the algorithm, but their
main purpose is to provide an interactive proficiency exercise.

Laakso et al. (2005) reported on the use of TRAKLA2 exercises in data
structures and algorithms courses at two universities in Finland. TRAKLA2
exercises were incorporated as classroom (closed lab) exercises, and supple-
mented lecture hours and classroom sessions. TRAKLA2 exercises were also
incorporated into the final exam (one out of five questions) and midterm
(they replaced half of a question with a TRAKLA2 exercise in a total of five
questions). A year after the introduction of TRAKLA2 in the curriculum, the
activity of students increased in all aspects of the course, not only the part in-
volving TRAKLA2 exercises. The average performance in classroom exercises
rose from 54.5% to 60.3% (number of exercises completed). Student opin-
ions of TRAKLA2 were collected through an online survey. Eighty percent
of the students reported having a good opinion of TRAKLA2. After a year of
using TRAKLA2, the opinion of students on its suitability for instruction rose
significantly. Ninety-four percent of students agreed that TRAKLA2 exercises
helped in their learning process. Their opinion did not change regarding
their preference on the medium used to access and perform the exercises:
They preferred a mixed (online and traditional classroom) experience. The
later result confirms recommendations on integrating AVs with existing class
materials from Levy and Ben–Ari (2007), discussed later.

Usability plays a big role in the success of an AV in regard to the
learning objectives. Usually learners spend more time-on-task when using
an AV system. But it is not clear if this is because the learners have to get
used to the system due to its lack of usability (Pane, Corbett, & John, 1996).
The usability of TRAKLA2 has been studied through a series of questionnaires
and observations in a usability lab (Laakso et al., 2005). The observations did
not find any critical usability issues, and revealed that 80% of the time was
used to solve exercises while 14% of the time was used to get acquainted
with the system interface. The students had a total of 15 minutes to complete
all the exercises. This is an important finding since it is typical that any given
AV is intended to be used from only a few minutes up to a couple of hours.

D
ow

nl
oa

de
d

by
 [

V
ir

gi
ni

a
Po

ly
te

ch
ni

c
In

st
itu

te
 a

nd
 S

ta
te

 U
ni

ve
rs

ity
],

 [
C

lif
fo

rd
 A

. S
ha

ff
er

]
at

 0
6:

26
 1

9
A

pr
il

20
12

102 E. Fouh et al.

TRAKLA2 has been used to assess the impact of the EET on student per-
formance. Laasko, Myller, and Korhonen (2009) studied whether students
using a visualization tool in pairs at EET-level changing outperformed pairs
using it on EET-level controlled viewing. First-year students were divided
into two groups, both groups using the same textual materials. The treat-
ment group (EET-level changing) used TRAKLA2 exercises while students
in the control group (EET-level controlled viewing) viewed AVs containing
equivalent information. All the students took an individual pretest and were
asked to freely form pairs. They then had 45 minutes to study the learn-
ing materials and solve exercises together (using paper and pencil). All the
students were also asked to take an individual posttest. The students were
videotaped during the experiment. The first analysis of pretest and posttest
scores did not show a statistically significant difference between the treat-
ment and the control group; but a second analysis of the video revealed that
some students in the treatment group were not using TRAKLA2 as expected:
They did not solve TRAKLA2 exercises but instead just watched the model
solution. Thus they were interacting at the EET-level controlled viewing. Af-
ter regrouping the students by creating a third group for the students in the
treatment group interacting on the controlled viewing level, the analysis of
the scores showed that the students in the treatment group interacting on a
changing level outperformed the controlled viewing groups.

JHAVÉ

JHAVÉ (Naps et al., 2000) is an AV development system aimed at making it
relatively easy for AV developers to create animated slideshows with built-in
assessment through pop-up questions to users. JHAVÉ’s interface includes
a pane containing the visualization, a pane displaying the pseudocode, and
often a brief text giving a tutorial about the algorithm. The information page
allows importing of images and has been used for example to represent the
algorithm’s flow chart. JHAVÉ now includes a large collection of AVs, and
has seen wide use.

Lahtinen and Ahoniemi (2009) developed “Kick-Start Activation,” a
method for teaching CS1 courses to learners with no programming expe-
rience using visualization. Their method relies on three requirements:

1. A real programming problem as the starting point of the lesson. Data struc-
tures, pseudocode, flow charts, and programming concepts are explained
based on the solution of the problem. Visualization tools are used as class
materials.

2. Use of pseudocode and flow charts to represent the algorithmic solution
of the problem. The pseudocode looks similar to a description in English.

3. The student should interact with the algorithm (testing, debugging, etc).

D
ow

nl
oa

de
d

by
 [

V
ir

gi
ni

a
Po

ly
te

ch
ni

c
In

st
itu

te
 a

nd
 S

ta
te

 U
ni

ve
rs

ity
],

 [
C

lif
fo

rd
 A

. S
ha

ff
er

]
at

 0
6:

26
 1

9
A

pr
il

20
12

Visualization in Computer Science Education 103

Lahtinen and Ahoniemi (2009) argued that most AV systems presume
that learners are already familiar with the programming language used by
the system. Since they were targeting novice learners with no or little pro-
gramming experience, they needed an AV system that was syntax free and
flexible enough to represent the flow chart of the algorithm within the sys-
tem. JHAVÉ was chosen as the visualization tool to supplement their method.
In Kick-Start Activation, students were asked to design an algorithm at an
early stage of the class, called “the premature algorithm.” They then tested
and visualized their solution and eventually amended it. The result was “the
mature algorithm,” and it is visualized in JHAVÉ. When using this method,
learners are engaged with the AV system at the viewing, responding, chang-
ing, constructing, and presenting levels. The evaluation of Kick-Start Activa-
tion/JHAVÉ revealed that 86% of the students found the visualization useful
for learning. Students with no programming experience found it more useful
than ones with previous experience. Interesting aspects of this experiment
included integration of the AV into a pedagogical method, and an innovative
way of using the AV tool: pseudocode close to English and construction of
the algorithm’s flow chart using images, all packaged with the Java applet for
the algorithm. This was possible because of the flexibility of JHAVÉ. Students
used JHAVÉ throughout the entire class.

JHAVÉ-POP (Furcy, 2007) is a JHAVÉ extension for practicing elemen-
tary pointer and linked-list operations. The user can type code snippets in
C++ or Java, and JHAVÉ-POP automatically generates a step-by-step visu-
alization of the contents of memory as each program statement is executed.
Student feedback on JHAVÉ-POP collected through a questionnaire (Furcy,
2009) indicated that “JHAVÉ-POP deepens student understanding of pointers
by making them concrete” and it “helps students not only understand but
also debug their programs” (p. 39).

ALVIS

ALVIS (Hundhausen & Brown, 2005) is a program development environment
where programs are written using a pseudocode-like language called SALSA.
It includes features to support storyboarding. Hundhausen and Brown (2008)
developed pedagogy with the goal of involving their students at all five en-
gagement levels within a first semester programming class studio experience.
In this experiment, students worked in pairs to create their own visualization
of algorithms studied in class. They presented and discussed their solutions
with classmates and instructors. The students used ALVIS to develop their
solution. To evaluate their system, Hundhausen and Brown divided the learn-
ers into two groups, one using ALVIS and the other using art supplies (pen,
paper, tape, etc.) to build their visualizations. All students developed their
solutions in SALSA, using either a text editor (art supplies group) or ALVIS.

D
ow

nl
oa

de
d

by
 [

V
ir

gi
ni

a
Po

ly
te

ch
ni

c
In

st
itu

te
 a

nd
 S

ta
te

 U
ni

ve
rs

ity
],

 [
C

lif
fo

rd
 A

. S
ha

ff
er

]
at

 0
6:

26
 1

9
A

pr
il

20
12

104 E. Fouh et al.

Students were videotaped during studio sessions. All artifacts used during the
sessions were collected afterward. All students answered a series of question-
naires to describe their experience, and the students using art supplies were
interviewed at the end of their sessions. For both session groups, students
spent the majority of their time coding their solution. Students using art sup-
plies discussed more with the teaching assistant in comparison to students
using ALVIS. Codes developed by the ALVIS students had approximately
half as many errors per solution/algorithm as the ones in the art supplies
group. Hundhausen and Brown contended that developing an algorithm
using either approach prepared the student for discussion and critical think-
ing. At the end of the experiment, ALVIS was found to help students code
faster, with less semantic errors, and to foster audience participation during
presentation, yielding more technical discussion about the algorithm.

Virginia Tech Hashing Tutorial

The Virginia Tech Hashing Tutorial (Virginia Tech Algorithm Visualization
Research Group Web site, 2011) goes beyond a simple AV, providing a
complete textbook-quality treatment of an important topic in CS, the concept
of search by hashing. A series of AVs (in the form of Java applets) are
embedded in text presented in HTML pages. In addition to showing the
basics of the hashing process, additional applets allow students to explore
the relative performance of various approaches discussed in the tutorial.

In 2008 and repeated again in 2009, students in separate sections of
a sophomore-level course on data structures and algorithms were taught
about hashing using two separate treatments. One section was given standard
lecture and textbook for one week, similar to what had been done previously
in the class. The other section spent one week of class time working through
the online tutorial with AVs to present the same material. Since the tutorial
used text from the course textbook, it was an exact match to the material
being presented in the control section. However, the online tutorial heavily
supplemented this text with AVs.

In each of the trials, the two sections were given a quiz on hashing at
the conclusion of the week. The results were positive: Significant differences
in performance were obtained in favor of those who used the online tutorial
versus standard lecture and textbook. This means that not only can an online
tutorial be as effective as a lecture (with important implications for distance
learning), but that providing proper interactivity allows computerized
instruction to be better than lecture-based (passive) instruction. However, at
least one major consideration might influence the results of this study: How
much impact did the controlling structure of coming to class and doing the
tutorial in a lab setting have on the results? The outcome could be quite
different for a student just reading the material and working through the AVs

D
ow

nl
oa

de
d

by
 [

V
ir

gi
ni

a
Po

ly
te

ch
ni

c
In

st
itu

te
 a

nd
 S

ta
te

 U
ni

ve
rs

ity
],

 [
C

lif
fo

rd
 A

. S
ha

ff
er

]
at

 0
6:

26
 1

9
A

pr
il

20
12

Visualization in Computer Science Education 105

on his/her own, where self-discipline might not be sufficient to provide the
necessary amount of time and attention. Likewise, the controlled environ-
ment of attending lecture before reading the textbook on one’s own is also
likely to have a major difference compared to simply reading the book on
one’s own.

AlViE

Like JHAVÉ, AlViE (AlViE, 2011) is a post-mortem algorithm visualization tool
since it allows the learner to see the resulting visualization after an algorithm
execution. This means that the visualization is driven by a script that could
be generated in a number of ways, including from an instrumented program
executing a complex algorithm or simulation. It is written in Java and uses
XML to describe the data structures and the relevant events of the algorithm
execution.

Crescenzi and Nocentini (2007) described the results of two years
of teaching data structures and algorithms using AlViE intensively. They
designed the courses so that their students could go through the maximum
number of engagement levels. The first year of the experiment involved
the engagement levels no viewing, viewing, constructing, and presenting.
AlViE was systematically used during class sessions to teach students about
algorithms and data structures. The homework consisted of implementing
an algorithm without the help of the visualization tool. Each student was
assigned a final project to build an animation for a specific algorithm using
AlViE and then present it to his/her peers and the instructor. The students
were asked through a survey to evaluate their experience with AlViE. Sev-
enty percent of the students reported positive and 30% very positive opinions
on the use of AlViE for the final exam. Ninety percent of the students agreed
that viewing the animation improved their understanding of the algorithm’s
behavior. All students agreed that the use of visualization was educationally
valuable.

During the second year, the authors made some changes: They pub-
lished a (printed) textbook (Crescenzi, Gambosi, & Grossi, 2006) and they
added the changing engagement level. The interesting point of the textbook
is that it was designed to be an extension of AlViE, with the textbook de-
scribing the algorithm and the data structures. All illustrations in the textbook
came from the AlViE GUI. Readers are invited to visualize the execution of
all algorithms presented in the book. The textbook and AlViE have been
adopted by several universities in Italy.

Alice

Alice (Alice, 2011) is a 3-D interactive programming environment. It allows
users to create virtual worlds by dragging and dropping objects in the main

D
ow

nl
oa

de
d

by
 [

V
ir

gi
ni

a
Po

ly
te

ch
ni

c
In

st
itu

te
 a

nd
 S

ta
te

 U
ni

ve
rs

ity
],

 [
C

lif
fo

rd
 A

. S
ha

ff
er

]
at

 0
6:

26
 1

9
A

pr
il

20
12

106 E. Fouh et al.

windows. Users can write scripts to control the objects’ behavior. Alice’s goal
is to expose novice learners to object-oriented programming using a simple,
graphical interface. Its ease of use and support for storytelling has lead to
wide adoption within the CS community. It has been used to introduce
students at a wide variety of levels to programming, including CS majors,
nonmajors, high school students, and middle school students.

Moskal, Luri, and Cooper (2004) conducted a study to find if exposure to
Alice improves CS1 students’ performance. Specific questions follow: Is Alice
effective in improving the retention rate of students in the CS major? Does ex-
posure to Alice improve students’ confidence in their ability to succeed in CS?
All students involved in the experiments were CS majors. They were divided
into three groups: (a) a treatment group consisting of students with no or lit-
tle programming experience and who enrolled in the Alice-based course; (b)
control group 1, consisting of students with no or little programming experi-
ence and who did not enroll in the Alice-based course; and (c) control group
2, consisting of students with previous programming experience and who did
not enroll in the Alice-based course. Students in the treatment group earned
an overall GPA of 3.0 ± 0.8 in the class. Students in control group 1 earned
an overall 1.9 ± 1.3 GPA. Control group 2 earned an overall GPA of 3.0 ± 1.2.
Historically, students who reach college with little or no prior programming
experience do far worse in introductory CS courses and have much lower
retention rates than students who come to college with programming experi-
ence, so this is potentially an important result. The retention rate over the two
years of the experiment was 88% for the treatment group, 47% for control
group 1, and 75% for control group 2. Evaluation of student attitudes revealed
that students with no prior programming experience who did not take the
Alice-based course had “more negative attitudes with respect to creativity
in computer science after CS1” (p. 78). The authors concluded that Alice
was effective in improving student performance, that it can help increase the
retention rate in CS programs, and that it can better the attitude of students
toward CS.

Jeliot

Jeliot (Levy et al., 2003) is designed to help teach Java programming to
high school students. In Jeliot the learner can visualize program source code
along with an automatically generated animation showing the behavior of
the program. Thus, Jeliot is an example of a PV tool, since it visualizes
the behavior of an actual program rather than a hand-crafted presentation
of an abstract algorithm. PVs are able to generate visualizations that give
insight into the behavior of actual programs with little additional effort on
the part of the programmer beyond writing the program. They have the
disadvantage that they cannot so easily abstract away irrelevant details and

D
ow

nl
oa

de
d

by
 [

V
ir

gi
ni

a
Po

ly
te

ch
ni

c
In

st
itu

te
 a

nd
 S

ta
te

 U
ni

ve
rs

ity
],

 [
C

lif
fo

rd
 A

. S
ha

ff
er

]
at

 0
6:

26
 1

9
A

pr
il

20
12

Visualization in Computer Science Education 107

focus on higher order or key selected aspects of the underlying algorithm.
The interface allows for step-by-step execution of the program.

Jeliot visualizations were used to present conflicting animations by
Moreno, Sutinen, Bednarik, & Myller, (2007). They argue that conflicting
animations can be used to expose learners’ misconceptions about program-
ming concepts. Conflicting animations extend the responding engagement
level by asking the student to detect errors in the animation that is being
executed. The changing level requires students to fix the erroneous part of
the animation. The student might construct a conflicting animation at the
constructing level and present it to their classmates, thus extending to the
presenting engagement level. Moreno, Joy, Myller, and Sutinen (2010) de-
veloped Jeliot ConAn, a Jeliot-based AV system to generate animations that
contain known bugs.

To enhance learners’ mental models, Ma, Ferguson, Roper, Ross, and
Wood (2009) proposed a four-stage model to detect and fix bad mental
models regarding programming concepts. A model’s stages are as follows:

• Preliminary: Find the erroneous pre-existing mental mode;
• Cognitive conflict: Dispute the students’ pre-existing mental model and

then induce adaptation/change in the model;
• Model construction: Use visualization to aid students in the process of

constructing a correct mental model; and
• Application: Test the newly constructed mental model (typically by solving

programming problems).

To assess mental models, the student logs into a system displaying a roadmap
of all the programming concepts that must be understood. Each concept
is attached to a series of exercises. Each exercise is linked to a cognitive
question, its associated Jeliot visualization materials, and a final question
to test understanding of the concept. If a student’s answer to the cognitive
question is incorrect, then he/she is required to run the visualization attached
to the question to identify the discrepancy between his/her model and the
program’s execution. During this phase the student can be helped by the
instructor to improve his/her understanding of the algorithm. The student is
tested again using a similar program implementing the same concept with
different data values. The authors evaluated their models on three content
areas: Conditionals and loops, scope and parameter passing, and object
reference assignment. Out of 44 students who participated in the experiment
on conditionals and loops, 23% had a correct understanding of the concept at
the beginning of the experiment, and 73% had a correct understanding at the
end of the experiment. Only 19% of the learners had a good comprehension
of scope and parameter passing prior to the experiment, and 85% after. Ma
et al. (2009) found that their model works well on simple concepts, but

D
ow

nl
oa

de
d

by
 [

V
ir

gi
ni

a
Po

ly
te

ch
ni

c
In

st
itu

te
 a

nd
 S

ta
te

 U
ni

ve
rs

ity
],

 [
C

lif
fo

rd
 A

. S
ha

ff
er

]
at

 0
6:

26
 1

9
A

pr
il

20
12

108 E. Fouh et al.

its benefits are hardly perceptible on the more complex ones (e.g., object
reference assignments).

ViLLE

ViLLE (Rajala, Laasko, Kaila, & Salakowski, 2007) is a program visualization
tool developed at the University of Turku in Finland. It is designed to be
used as a lecture aid or for independent learning to visualize the execution
of example programs created by instructors or students. The user can follow
changes in program states and data structures. The key features of ViLLE
are its support for multiple programming languages (including Java, C++
and an extensible form of pseudocode) and its built-in editor for interactive
quizzes and tests displayed as pop-up windows.

The effectiveness of ViLLE was assessed through an experiment on
students in their first programming class (Rajala, Laasko, Kaila, & Salakoski,
2008). The students were divided into two groups, one using ViLLE and the
other using only the textbook. The experiment took place during a two-hour
computer lab session. Students in both groups took a pretest where they
were asked to predict the output or the state of a program. They then read
a programming tutorial with ViLLE as lecture aid for one group and only the
tutorial for the other group before taking the posttest. The posttest had the
same question as the pretest plus two extra questions about completing a
piece of program with given statements. The experiment did not reveal a
statistically significant difference between the ViLLE group and the control
group as far as learning acquisition. However, within the ViLLE group, there
was a significant difference in knowledge improvement for students with no
previous programming experience over those with prior experience, thus
reducing the gap between novice and experienced programmers. In contrast,
a significant difference in the total points earned in the posttest remained be-
tween students with prior programming experience and those with no prior
experience in the control group. Another experiment was conducted using
high school students (Kaila, Rajala, Laakso, & Salakoski, 2009). All class ma-
terials were accessible via the Moodle course management system with links
to ViLLE for the treatment group. At the final exam, students using ViLLE
performed better than the control group (statistically significant). ViLLE was
more effective for program execution tracing and learning program writing
skills.

jGRASP

jGRASP (Hendrix et al., 2004) provides a complete program development
environment with synchronized “object viewers” that visualize objects and
data structure states. It has been used in lab sessions when teaching CS2
courses using Java. A series of experiments were performed by Jain, Cross,

D
ow

nl
oa

de
d

by
 [

V
ir

gi
ni

a
Po

ly
te

ch
ni

c
In

st
itu

te
 a

nd
 S

ta
te

 U
ni

ve
rs

ity
],

 [
C

lif
fo

rd
 A

. S
ha

ff
er

]
at

 0
6:

26
 1

9
A

pr
il

20
12

Visualization in Computer Science Education 109

Hendrix, and Barowski (2006) at Auburn University to evaluate the peda-
gogical benefits of jGRASP. The experiments were intended to find if using
jGRASP data structure viewers results in students being able to produce
code with fewer bugs, and whether students are able to detect and fix
non-syntactical bugs more accurately. Two experiments were conducted to
answer those questions. In each experiment, students were divided into two
groups. One used only the JGRASP debugger while the other used both the
debugger and the object viewers. The students were observed during in-lab
activities. They were required to implement four basic operations with singly
linked lists. This experiment showed a statistically significant difference be-
tween the two groups in regard to accuracy. The mean accuracy was 6.34
points for the treatment group and 4.48 points for the control group. The
authors concluded that in most cases (95%), jGRASP can be used to “help in-
crease the accuracy and reduce time taken for programs implementing data
structures” (pp. 35). During the second experiment, students were asked
to detect and fix non-syntactical errors in a Java program (containing nine
errors) implementing a singly linked list with four functions. This experi-
ment showed that the students using object viewers detected on average 6.8
bugs versus 5.0 for the control group. Students using the visualizers were
able to correct an average of 5.6 bugs and introduced only 0.65 new errors
in the program while the control group fixed 4.2 bugs and introduced 1.3
new errors on average. However, students using the object viewers spend
slightly more time to complete the task: 88.23 minutes on average versus
87.6 minutes for the other students.

JFLAP

JFLAP (Java Formal Languages and Automata Package) (Rodger, 2008) is
designed to help teach formal languages and automata theory. This is tradi-
tionally senior-level material, though JFLAP has been used to teach aspects
of formal languages to first-semester students. Users can build a variety of
automata in JFLAP, then simulate and visualize their behavior. JFLAP can also
be used to create and parse strings in grammars and convert a nondetermin-
istic finite automaton to a deterministic finite automaton. JFLAP effectiveness
was assessed through a two-year study (Rodger et al., 2009) involving 12
universities the first year and 14 the second year. The goal of the experiment
was to answer these questions: How effective is JFLAP in enhancing the
learning process? and What additional value might JFLAP add to the Formal
Languages and Automata course? During the first year, most of the instructors
used JFLAP for homework and for demonstrations in class; no instructor used
it for examinations. The results after the first year of the experiment showed
that 55% of the students used JFLAP to study for exams. Ninety-four percent
said that they had enough time to learn how to use JFLAP. Sixty-four percent
said that using JFLAP helped them to earn better grades. Eighty-three percent

D
ow

nl
oa

de
d

by
 [

V
ir

gi
ni

a
Po

ly
te

ch
ni

c
In

st
itu

te
 a

nd
 S

ta
te

 U
ni

ve
rs

ity
],

 [
C

lif
fo

rd
 A

. S
ha

ff
er

]
at

 0
6:

26
 1

9
A

pr
il

20
12

110 E. Fouh et al.

said that it was easier to use JFLAP than paper and pencil. However, 50%
thought that they would have performed as well in the class without using
JFLAP. During the second year of the experiment, the pretest and posttest
were shortened. The survey revealed that when preparing for exams, 32% of
the students used JFLAP during more than 20% of their study time, and 29%
of the students used it to study additional problems. JFLAP made the course
more enjoyable for 63% of the students, and 72% said that using JFLAP made
them feel more engaged in the course.

HOW OFTEN ARE AVS USED IN CS COURSES?

Periodic surveys of instructor interest in AVs and their level of use have been
conducted at CS education conferences and on CS education listservs for
more than a decade. Naps et al. (2003b) reported on three surveys conducted
in 2000. Collectively, they indicate a strong positive view in favor of AV use
(over 90%). However, only about 10% of respondents at that time indicated
frequent use of AVs in data structures courses at their institutions, while half
to three quarters indicated occasional use of AVs in such classes.

At SIGCSE’10 (a major CS education conference, held in Milwaukee dur-
ing March 2010), the authors conducted a new survey to determine instructor
attitudes toward AVs and their use in the classroom. For details, see Shaf-
fer et al. (2011). The survey was designed in the spirit of the 2000 surveys
reported in Naps et al. (2003b) and the findings are consistent with those
earlier results. In 2010, 41 of 43 respondents agreed or strongly agreed that
AVs can help learners learn computing science, with two neutral. However,
just over half had used AV in a class within the past two years. It is not clear
that all of the “yes” answers refer to what we might consider to be AVs.
However, they probably all refer to some sort of dynamic software visual-
ization run on a computer, as was the case in the 2000 survey. The authors
did not ask about frequency of use of AVs in class.

The third survey question asked what respondents see as the greatest
impediments to using AVs in courses. Roughly half the responses relate
to finding suitable AVs to use. The other half of the responses relate to
issues in integrating AVs into the courses. These results are roughly the
same as reported in Naps et al., 2003a, Naps et al., 2003b, and Rössling
et al., 2006. Such issues are much harder to deal with, and are representative
of well-known problems for adoption of educational technology in general
(Hew & Brush, 2007). While it is easy to give students pointers to AVs as
supplemental material, it is much harder to integrate AVs into lectures, labs,
and assignments. This comes as a result of factors like lack of time on the
instructor’s part to make course changes, lack of time within the course to
spend additional time on a given topic, and inconsistencies between the
course textbook and the AV.

D
ow

nl
oa

de
d

by
 [

V
ir

gi
ni

a
Po

ly
te

ch
ni

c
In

st
itu

te
 a

nd
 S

ta
te

 U
ni

ve
rs

ity
],

 [
C

lif
fo

rd
 A

. S
ha

ff
er

]
at

 0
6:

26
 1

9
A

pr
il

20
12

Visualization in Computer Science Education 111

AV use in the classroom is highly dependent on the instructor’s willing-
ness to integrate AVs into his/her class material. Levy and Ben–Ari (2007)
studied adoption of Jeliot by instructors. They grouped instructors into four
categories. One group used Jeliot regularly during a school year, and two
groups were asked to use Jeliot at least once in an exercise. All instructors
were acquainted with Jeliot but had no prior experience with using an AV in
their classroom. They classified instructors’ experience using AVs into four
categories, each category defined by a specific attitude toward the use of
AVs in the classroom:

• Internalization: Instructors who found Jeliot useful and consistent with
their teaching approach. They used the system frequently and integrated
it into their class materials and activities.

• By-the-book: Instructors who found Jeliot useful but did not integrate it
well with the class. These teachers relied on the textbook and used the AV
only occasionally.

• Rejection: Jeliot was perceived by these instructors as having limited edu-
cational benefits, thus they did not use it in their class.

• Dissonant: Instructors who experienced Jeliot with mixed feelings. They
professed enthusiasm about the system but were disinclined to use it in
their classroom, and these instructors used it only when required to do so.

To better the experience of instructors using AVs, Levi and Ben–Ari
advocated for a higher integration (by designers) of AVs into existing class
materials like textbooks. This was also recommended by Naps et al. (2003b),
who encouraged AV designers to create supporting Web sites along with the
AV to ease the integration process.

An important resource for instructors seeking to use AVs is the AlgoViz
Portal (AlgoViz.org, 2011). AlgoViz provides a gateway for users and devel-
opers to AV-related services, collections, and resources. It includes a catalog
of over 500 AVs, and a large bibliography of related research literature. Al-
goViz attempts to address issues raised in the instructor surveys regarding
lack of information about AV availability and use. AlgoViz allows the com-
munity to add value beyond information embodied in a simple AV catalog.
This value comes as a byproduct of direct communication between com-
munity members. While forums are one obvious method for this, there is a
deeper communication involving community ratings and recommendations
for content entries and sharing experiences on how to make the best use of
content. A major concern for instructors according to the surveys is deciding
whether a given educational resource is of good quality, and knowing how
to use it. Therefore, user feedback on resources is as important as the catalog
entries. AlgoViz also provides the field report, which gives a convenient way
for instructors who have used an AV in a class to share their experience.
Field reports supplement the evaluation data in the AV catalog, since catalog

D
ow

nl
oa

de
d

by
 [

V
ir

gi
ni

a
Po

ly
te

ch
ni

c
In

st
itu

te
 a

nd
 S

ta
te

 U
ni

ve
rs

ity
],

 [
C

lif
fo

rd
 A

. S
ha

ff
er

]
at

 0
6:

26
 1

9
A

pr
il

20
12

112 E. Fouh et al.

AV ratings are not typically based on real-world classroom experiences. A
field report can thus provide empirical evidence to strengthen or qualify a
recommendation.

Important technological factors contribute to making AVs easier to use
in the classroom than in prior years. More AVs are available than ever before
(Shaffer et al., 2010), backed up by improved research studies and improved
access both through general Internet search and at the AlgoViz portal. In-
creased access to the Internet by students and instructors, both in and out of
the classroom, makes AV use more practical. For example, at Virginia Tech,
while it has been possible to project Internet material from a computer in
class for over a decade, it has only been in the past few years that such
access has become both ubiquitous and reliable in all of our classrooms.
This makes a huge difference in the confidence of mainstream instructors
for using such technology, in contrast to early adopters (Hew & Brush, 2007).
From discussions with instructors and from comments on the surveys, we
know that even now not all schools have sufficient classroom support infras-
tructure to allow broadcasting of Internet presentations in typical classrooms.
This is still an evolving technology.

Another potential factor in favor of increased use of AVs is ubiquitous
availability of laptops and mobile devices. For example, all engineering ma-
jors at Virginia Tech are required to own a tablet PC, and most also have
mobile devices including smartphones, eBook readers, or iPads. However,
there is also a downside to the non-PC devices, in that they have various tech-
nology limits on how courseware content can be provided. So while there
is ubiquitous access to the Internet among our target audience, there are
still limits. For example, Java applets cannot be displayed on most such de-
vices. However, recent widespread adoption of the HTML5 Internet standard
makes it easier than before to develop interactive content. Content devel-
oped under the new standards will run on all major browsers without the
need for specialized plugins, and will automatically be adapted to viewing
on a variety of mobile devices. This means unprecedented ability for AV
developers to reach a broader audience along with easier adoption of such
innovative courseware by that audience.

THE FUTURE: ELECTRONIC TEXTBOOKS

Many in the CS community share the dream to create hypertextbooks, on-
line textbooks that integrate AVs, assessment exercises, and traditional text
and images. Efforts to create hypertextbooks have been ongoing for two
decades. Goals include improving exposition through a richer collection of
technologies than are available through print textbooks, and increasing stu-
dent engagement with the material to get them to learn at a higher level in
Bloom’s taxonomy. See Rössling et al. (2006), Ross and Grinder (2002), and

D
ow

nl
oa

de
d

by
 [

V
ir

gi
ni

a
Po

ly
te

ch
ni

c
In

st
itu

te
 a

nd
 S

ta
te

 U
ni

ve
rs

ity
],

 [
C

lif
fo

rd
 A

. S
ha

ff
er

]
at

 0
6:

26
 1

9
A

pr
il

20
12

Visualization in Computer Science Education 113

Shaffer, Akbar, Alon, Stewart, and Edwards (2011) for background on efforts
to define and implement the hypertextbook.

Hopefully the technology is in place to finally achieve these goals in the
near future. As noted, HTML5 sets the stage as never before. The real game-
changing potential that the computer brings to education is its ability to allow
the student to interact in non-passive ways with information, and the ability
to provide immediate feedback to the student based on these interactions.
The vision goes beyond simply creating an interactive eTextbook. Many
in the community embrace the concept of a true creative commons for
textbook creation, not just in terms of licensing but in terms of allowing for
community creation of artifacts. The goal is to allow instructors to modify
existing eTextbooks by adopting major portions and then changing sections,
or taking chapters from different books and combining them. This aspect
of an eTextbook creative commons is already in place with the Connexions
(2011) project. However, existing eTextbooks available from Connexions are
not heavily interactive in the way that advocates of AV hope to see.

The survey results presented herein lead us to the conclusion that it
is easier to integrate a complete block of instruction (either a complete
topic or even a semester course) than it is to fit a new piece of instruction
such as an AV into an existing presentation on that topic. Instructors are
used to the concept of adopting a new textbook for new courses that they
teach, and often welcome lecture notes and other class support artifacts.
Even for courses taught previously, instructors will adopt new textbooks
and new presentations for various topics in the course. A key aspect is
that adopting a new chunk of content allows the instructor to completely
replace or populate a block of course time, as opposed to squeezing new
content or presentation techniques on top of existing material. In the past,
most AV developers have implicitly taken the approach that their AV will
be integrated into existing presentations. A typical example might be an AV
presenting a sorting algorithm, with no tutorial explanation of the algorithm.
The idea seems to have been that this visualization can be slipped into
lecture or used by students to supplement the textbook for self-study. But this
approach has led to the problems noted above, particularly dissonance with
other course materials. In contrast, a complete unit of instruction (including
AVs) can more easily replace an unsatisfactory existing presentation of the
topic.

The final piece of the vision is to have students also participate in the
eTextbook creative commons. They could do so by supplying comments,
tagging, and rating of content at a detailed level such as for a particular topic,
subtopic, or exercise. By interacting with each other and their instructors,
they can give direction to improving course materials by drawing attention
to what does and what does not work. This enables both a higher level of
engagement by the students, and a huge motivating force for improvement
of instructional material.

D
ow

nl
oa

de
d

by
 [

V
ir

gi
ni

a
Po

ly
te

ch
ni

c
In

st
itu

te
 a

nd
 S

ta
te

 U
ni

ve
rs

ity
],

 [
C

lif
fo

rd
 A

. S
ha

ff
er

]
at

 0
6:

26
 1

9
A

pr
il

20
12

114 E. Fouh et al.

REFERENCES

AlgoViz.org Bibliography. (2011). Annotated bibliography [of AV literature]. Re-
trieved from http://algo-viz.org/biblio

Alice Web Site. (2011) Retrieved from http://www.alice.org
AlViE Web Site. (2011). AlViE 3.0 [software]. Retrieved from http://alvie.algoritmica.

org/
Baecker, R., & Sherman, D. (1981). Sorting out sorting. Retrieved from http://video.

google.com /videoplay?docid=3970523862559774879
Bloom, B. S., & Krathwohl, D. R. (1956). Taxonomy of educational objectives: The

classification of educational goals. Handbook I: Cognitive domain. Harlow,
England: Longmans.

Brabec, F., & Samet, H. (2003). Maryland spatial index demos Web site. Retrieved
from http://donar.umiacs.umd.edu/quadtree/

Brown, M. H. (1988). Exploring algorithms using Balsa-II. Computer, 21(5), 14–36.
Brown, M. H., & Sedgewick, R. (1985). Techniques for algorithm animation. IEEE

Software, 2(1), 28–39.
Byrne, M. D., Catrambone, R., & Stasko, J. T. (1999). Evaluating animations as stu-

dent aids in learning computer algorithms. Computers & Education, 33(4), 253–
278.

Champine, G. A. (1991). MIT project Athena: A model for distributed campus com-
puting. Newton, MA: Digital Press.

Connexions Web site. (2011). Retrieved from http://cnx.org/
Cooper, S., Dann, W., & Pausch, R. (2000). Alice: A 3-D tool for introductory pro-

gramming concepts. Journal of Computing Sciences in Colleges, 15(5), 107–115.
Crescenzi, P., Gambosi, G., & Grossi, R. (2006). Strutture di dati e algoritmi. Upper

Saddle River, NJ: Pearson Education, Addison–Wesley.
Crescenzi, P., & Nocentini, C. (2007). Fully integrating algorithm visualization into a

CS2 course: A two-year experience. In J. Hughes, D. R. Peiris, & P. T. Tymann
(Eds.), Proceedings of the 12th Annual SIGCSE Conference on Innovation and
Technology in Computer Science Education, ITiCSE’07 (pp. 296–300), Dundee,
Scotland.

Dittrich, J.-P., van den Bercken, J., Schafer, T., & Klein, M. (2001). DSN: Data
structure navigator. Retrieved from http://dbs.mathematik.uni-marburg.de/
research/projects/dsn/

Furcy, D. (2007). JHAVEPOP. Retrieved from http://jhave.org/jhavepop/
Furcy, D. (2009). JHAVEPOP: Visualizing linked-list operations in C++ and Java.

Journal of Computing Sciences in Colleges, 25(1), 32–41.
Galles, D. (2006). Data structure visualization. Retrieved from http://www.cs.usfca.

edu/galles/visualization
Gettys, J., Newman, R., & Scheifler, R. (1989). The definitive guides to the X Window

system (Vol. 2) (Xlib Reference Manual for Version 11). Sebastopol, CA: O’Reilly.
Gustafson, B. E., Kjensli, J., & Vold, J. M. (2011). Binary treesome Web site. Retrieved

from http://www.iu.hio.no/∼ulfu/AlgDat/applet/binarytreesome
Hendrix, T. D., Cross, J. H., II, & Barowski, L. A. (2004, March 3–7). An extensible

framework for providing dynamic data structure visualizations in a lightweight
IDE. In D. T. Joyce, D. Knox, W. Dann, & T. L. Naps (Eds.), Proceedings of

D
ow

nl
oa

de
d

by
 [

V
ir

gi
ni

a
Po

ly
te

ch
ni

c
In

st
itu

te
 a

nd
 S

ta
te

 U
ni

ve
rs

ity
],

 [
C

lif
fo

rd
 A

. S
ha

ff
er

]
at

 0
6:

26
 1

9
A

pr
il

20
12

Visualization in Computer Science Education 115

the 35th SIGCSE Technical Symposium on Computer Science Education (pp.
387–391), Norfolk, VA.

Hew, K., & Brush, T. (2007). Integrating technology into K12 teaching and learning:
Current knowledge gaps and recommendations for future research. Educational
Technology Research and Development, 55, 223–252.

Hundhausen, C. D., & Brown, J. L. (2005). What you see is what you code: A rad-
ically dynamic algorithm visualization development model for novice learners.
Proceedings of the 2005 IEEE Symposium on Visual Languages/Human-Centric
Computing (pp. 163–170), Dallas, TX.

Hundhausen, C. D., & Brown, J. L. (2008). Designing, visualizing, and discussing
algorithms within a CS1 studio experience: An empirical study. Computers &
Education, 50, 301–326.

Hundhausen, C. D., Douglas, S. A., & Stasko, J. T. (2002). A meta-study of algorithm
visualization effectiveness. Journal of Visual Languages and Computing, 13(3),
259–290.

Jain, J., Cross, J. H., Hendrix, T. D., & Barowski, L. A. (2006). Experimental evaluation
of animated-verifying object viewers for Java. In M. Burnett & S. Diehl (Eds.),
Proceedings of the 2006 ACM Symposium on Software Visualization (pp. 27–36),
Brighton, UK.

Jarc, D. J. (1999). Interactive data structure visualization. Retrieved from
http://nova.umuc.edu/jarc/idsv.

Kaila, E., Rajala, T., Laakso, M.-J., & Salakoski, T. (2009). Effects, experiences and
feedback from studies of a program of course-long use of a program visualiza-
tion tool. Informatics in Education, 8(1), 17–34.

Kann, C., Lindeman, R. W., & Heller, R. (1997). Integrating algorithm animation into
a learning environment. Computers & Education, 28(4), 223–228.

Korhonen, A., Malmi, L., Silvasti, P., Nikander, J., Tenhunen, P., Mård, P., . . .
Karavirta, V. (2003). TRAKLA2. Retrieved from http://www.cs.hut.fi/Research/
TRAKLA2/

Laakso, M.-J., Myller, N., & Korhonen, A. (2009). Comparing learning performance of
students using algorithm visualizations collaboratively on different engagement
levels. Educational Technology & Society, 12(2), 267–282.

Laakso, M.-J., Salakoski, T., Grandell, L., Qiu, X., Korhonen, A., & Malmi, L. (2005).
Multi-perspective study of novice learners adopting the visual algorithm simu-
lation exercise system TRAKLA2. Informatics in Education, 4(4), 49–68.

Lahtinen, E., & Ahoniemi, T. (2009). Kick-start activation to novice programming—A
visualization-based approach. Electronic Notes on Theoretical Computer Science,
224, 125–132.

Levy, R. B.-B., & Ben–Ari, M. (2007). We work so hard and they don’t use it: Ac-
ceptance of software tools by teachers. Proceedings of 12th Annual SIGCSE
Conference on Innovation and Technology in Computer Science Education
(pp. 246–250), Dundee, Scotland.

Levy, R. B.-B., Ben–Ari, M., & Uronen, P. A. (2003). The Jeliot 2000 program anima-
tion system. Computers & Education, 40, 1–15.

Ma, L., Ferguson, J., Roper, M., Ross, I., & Wood, M. (2009). Improving the mental
models held by novice programmers using cognitive conflict and Jeliot visuali-
sations. SIGCSE Bulletin, 41, 166–170.

D
ow

nl
oa

de
d

by
 [

V
ir

gi
ni

a
Po

ly
te

ch
ni

c
In

st
itu

te
 a

nd
 S

ta
te

 U
ni

ve
rs

ity
],

 [
C

lif
fo

rd
 A

. S
ha

ff
er

]
at

 0
6:

26
 1

9
A

pr
il

20
12

116 E. Fouh et al.

Meier, A., Spada, H., & Rummel, N. (2007). A rating scheme for assessing the quality
of computer-supported collaboration processes. International Journal of Com-
puter Supported Collaborative Learning, 2(1), 63–86.

Moreno, A., Joy, M., Myller, N., & Sutinen, E. (2010). Layered architecture for au-
tomatic generation of conflictive animations in programming education. IEEE
Transactions on Learning Technologies, 3, 139–151.

Moreno, A., Sutinen, E., Bednarik, R., & Myller, N. (2007). Conflictive animations as
engaging learning tools. In R. Lister & Simon (Eds.), Seventh Baltic Sea Confer-
ence on Computing Education Research (Koli Calling 2007) (pp. 203–206), Koli
National Park, Finland.

Moskal, B., Lurie, D., & Cooper, S. (2004). Evaluating the effectiveness of a new
instructional approach. SIGCSE Bulletin, 36, 75–79.

Myller, N., Bednarik, R., Sutinen, E., & Ben–Ari, M. (2009). Extending the engagement
taxonomy: Software visualization and collaborative learning. Transactions on
Computing Education, 9(1), 1–27.

Naps, T. L., Cooper, S., Koldehofe, B., Leska, C., Rossling, G., Dann, W., . . . McNally,
M. F. (2003a). Evaluating the educational impact of visualization. SIGSE Bulletin,
35(4), 124–136.

Naps, T. L., Eagan, J. R., & Norton, L. L. (2000). JHAVÉ—An environment to actively
engage students in Web-based algorithm visualizations. SIGCSE Bulletin, 32,
109–113.

Naps, T. L., Rossling, G., Almstrum, V., Dann, W., Fleischer, R., Hundhausen,
C. D., . . . Velazquez–Iturbide, J. (2003b). Exploring the role of visualization
and engagement in computer science education. SIGCSE Bulletin, 35(2), 131–
152.

Pane, J. F., Corbett, A. T., & John, B. E. (1996). Assessing dynamics in computer-
based instruction. In R. Bigler, S. Guest, & M. J. Tauber (Eds.), Proceedings of
the ACM Conference on Human Factors in Computing Systems (pp. 197–204),
Vancouver, BC, Canada.

Pierson, W. C., & Rodger, S. H. (1998). Web-based animation of data structures using
JAWAA. SIGCSE Bulletin, 30, 267–271.

Rajala, T., Laakso, M.-J., Kaila, E., & Salakoski, T. (2007). ViLLe–A language-
independent program visualization tool. In L. Raymond & Simon (Eds.), Seventh
Baltic Sea Conference on Computing Education Research (Koli Calling 2007),
Koli National Park, Finland.

Rajala, T., Laakso, M.-J., Kaila, E., & Salakoski, T. (2008). Effectiveness of program vi-
sualization: A case study with the ViLLE tool. Journal of Information Technology
Education, 7, 15–32.

Rodger, S.H. (2008). JFLAP Web site. Retrieved from http://www.jflap.org.
Rodger, S. H., Wiebe, E., Lee, K. M., Morgan, C., Omar, K., & Su, J. (2009). Increasing

engagement in automata theory with JFLAP. In S. Fitzgerald, M. Guzdial, G.
Lewandowski, & S. A. Wolfman (Eds.), Proceedings of the 40th ACM Technical
Symposium on Computer Science Education (pp. 403–407), Chattanooga, TN.

Ross, R., & Grinder, M. (2002). Hypertextbooks: Animated, active learning, compre-
hensive teaching and learning resources for the Web. In S. Diehl (Ed.), Software
visualization (Lecture notes in Computer Science 2269) (pp. 269–284). Berlin,
Germany: Springer.

D
ow

nl
oa

de
d

by
 [

V
ir

gi
ni

a
Po

ly
te

ch
ni

c
In

st
itu

te
 a

nd
 S

ta
te

 U
ni

ve
rs

ity
],

 [
C

lif
fo

rd
 A

. S
ha

ff
er

]
at

 0
6:

26
 1

9
A

pr
il

20
12

Visualization in Computer Science Education 117

Rössling, G., Naps, T. L., Hall, M. S., Karavirta, V., Kerren, A., Leska, C., . . .
Velazquz–Iturbide, J. (2006). Merging interactive visualizations with hypertext-
books and course management. SIGCSE BULLETIN, 38(4), 166–181.

Rossling, G., Schuler, M., & Freisleben, B. (2000). The ANIMAL algorithm animation
tool. In J. Tarhio, S. Fincher, & D. Joyce (Eds.), Proceedings of the 5th Annual
SIGCSE/SIGCUE ITiCSE Conference on Innovation and Technology in Computer
Science Education (pp. 37–40), Helsinki, Finland.

Sanders, D., Heeler, P., & Spradling, C. (2001). Introduction to BlueJ: A Java develop-
ment environment. Journal of Computing Sciences in Colleges, 16(3), 257–258.

Shaffer, C. A., Akbar, M., Alon, A., Stewart, M., & Edwards, S. H. (2011). Getting
algorithm visualizations into the classroom. SIGCSE Bulletin, 11, 129–134.

Shaffer, C. A., Cooper, M., Alon, A., Akbar, M., Stewart, M., Ponce, S., & Edwards,
S. H. (2010). Algorithm visualization: The state of the field. ACM Transactions
on Computing Education, 10, 1–22.

Shaffer, C. A., Naps, T. L., & Fouh, E. (2011). Truly interactive textbooks for com-
puter science education. In G. Rossling (Ed.), Proceedings of the 6th Program
Visualization Workshop (pp. 97–103), Darmstadt, Germany.

Stasko, J. T. (1990). Tango: A framework and system for algorithm animation. Com-
puter, 23(9), 27–39.

Stasko, J. T. (1992). Animating algorithms with Xtango. SIGACT News, 23, 67–71.
Stasko, J. T., Badre, A., & Lewis, C. (1993). Do algorithm animations assist learning?

An empirical study and analysis. In S. Ashlund, K. Mullet, A. Henderson, E.
Hollnagel, & T. N. White (Eds.), Proceedings of the INTERACT ‘93 and CHI ‘93
Conference on Human Factors in Computing Systems (pp. 61–66), Amsterdam,
The Netherlands.

Stasko, J. T. (1997). Using student-built algorithm animations as learning aids. In C.
M. White, C. Erickson, B. J. Klein, & J. E. Miller (Eds.), Proceedings of the 28th
SIGCSE Technical Symposium on Computer Science Education (pp. 25–29), San
Jose, CA.

Stasko, J. T. (1998). JSamba. Retrieved from http://www.cc.gatech.edu/gvu/softviz/
algoanim/jsamba/

Stasko, J. T. (2001). Polka animation system. Retrieved from http://www.cc.gatech.
edu/gvu/softviz/par-viz/polka.html

Stern, L. (2001). Algorithms in action. Retrieved from http://www.cs.mu.oz.au/aia/
Urquizza–Fuentes, J., & Velazquez–Iturbide, J. (2009). A survey of successful evalu-

ations of program visualization and algorithm animation system. ACM Transac-
tions on Computing Education, 9(2), 1–21.

Virginia Tech Algorithm Visualization Research Group Web site. (2011). Retrieved
from http://research.cs.vt.edu/AVresearch/

D
ow

nl
oa

de
d

by
 [

V
ir

gi
ni

a
Po

ly
te

ch
ni

c
In

st
itu

te
 a

nd
 S

ta
te

 U
ni

ve
rs

ity
],

 [
C

lif
fo

rd
 A

. S
ha

ff
er

]
at

 0
6:

26
 1

9
A

pr
il

20
12

