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binocular and motion stereo matching. These passive range 
detection techniques will form part of a machine perception 
system for autonomous cross-country navigation. Using 
Datacube image processing boards, we have designed a proto- 
type system for binocular stereo matching that can match 256 X 
256 x 8-bit grayscale image pairs in approximately one second 
using a disparity range of 64 pixels. We have shown the modifi- 
cations needed to perform color stereo matching. The current 
system can easily be condensed to a board and, perhaps, a single 
VLSI chip operating in real-time. 
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Abstract -As part of the multiple autonomous underwater vehicle 
( M A W )  project at the National Institute of Standards and Technology, 
a spatial mapping system has been developed to provide a model of the 
underwater environment suitable for autonomous navigation. The sys- 
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tem is composed of multiresolution depth maps designed to integrate 
sensor data with an a priori model, an object/attribute database for 
storing information about detected objects, and a set of flags to monitor 
abnormal or emergency conditions in the environment. The structure of 
the mapping system and the algorithms used to map terrain and 
obstacles detected by acoustic sonar are described. 

I. INTRODUCTION 
In an autonomous system, the ability to predict, estimate, and 

evaluate the state of the environment largely determines the 
capabilities of the system. Much work has been done in the area 
of sensor fusion to enable autonomous robots to operate effee- 
tively in the world. Levi has discussed sensor fusion techniques 
that have been applied to autonomous vehicle navigation [ 121. 
Luo et al. have presented a good overview of multisensor 
integration and fusion in mobile robots and other intelligent 
systems [131, [141. Multiple sensor systems have been used in 
highly structured applications such as road following [5], [29] as 
well as unstructured environments in both indoor [4] and out- 
door settings [2], [7]. 

For the application of autonomous underwater vehicles, a 
means must be developed to model the world accurately enough 
to perform such tasks as obstacle avoidance, path planning, and 
long-range mission planning with sufficient speed to operate in 
real-time. Research at the National Institute of Standards and 
Technology (NIST) has led to the development of a real-time 
control system (RCS) for multiple autonomous underwater vehi- 
cles (MAUVs) performing cooperative tasks [8]. Based on the 
theory of hierarchical control [l], the system is designed to 
perform both high and low-level planning tasks with a world 
model that provides timely information at multiple resolutions. 
The RCS is divided into several logical levels of complexity; at 
each level, the world model contains six modules: 

1) Update Module-interprets and adds incoming sensor data 
to the model, 

2 )  Data Server-provides requested model information to 
the planner, 

3) Sensor Prediction Module-provides expected sensor data 
estimates for use in validation by the sensor processor, 

4) State Evaluator-monitors emergency conditions and the 
state of each RCS module, 

5) Learning Module-categorizes information supplied by the 
database and other modules, 

6) Database-for storage of information. 

The emphasis of this paper is on describing the update 
module and portions of the database. For information on the 
other modules and the functionality of the world model, refer to 
[SI. 

In its current form, the MAUV world model mapping system 
consists of depth maps of lake bottom terrain, state variables, 
emergency flags, and a database of objects. We will focus 
primarily on the lake bottom and obstacle mapping functions of 
the world model and considerations in their design and imple- 
mentation. The system uses sonar range data to update thc 
terrain maps of the lake bottom. Stewart has done similar work 
in the underwater environment [27], while other researchers 
have used range data in various modeling applications. Grimson 
and Lozano-Perez have used range and tactile data for object 
identification and localization from a set of known objects [61. 
Roggemann et al. [22] and Tong et al. [28] have used laser radar 
and forward looking infrared sensors to segment and enhance 
features of man-made objects in a cluttered environment. 

In the following sections, we discuss requirements of the data 
structures used to represent the underwater environment, and 
then describe the mapping system. Algorithms used in the 
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update module are presented, with an emphasis on the concept 
of confidence-based mapping. Finally, we point out some of the 
strengths and weaknesses of the system and suggest directions 
for further research. 

11. CRll’tRIA FOR DA’TA REPRESENTATIONS 
The first and most important task in the development of an 

effcctive world model is choosing an appropriate data represen- 
tation. In most mapping systems, a primary distinction can be 
made as to whether given information is spatial or non-spatial 
data. Depth maps or other models of a 3-D environment are 
referred to as spatial data structures, whereas structures repre- 
senting objects and their attributes are primarily nonspatial data 
structures. Although most objects in the world contain a spatial 
component, namely a location and 3-D structure in some frame 
of reference, a suitable representation for the associated de- 
scriptive information is an object/attribute database. A simple 
objcct/attribute database has been developed to store data of 
this nature. Each object structfire contains an identification 
number along with a 32-bit mask describing known capabilities. 
A linked list of attributes stores sensed characteristics for each 
object (e.g. X ,  Y ,  Z coordinates; velocity vectors; etc.) with the 
ability to store multiple entries over time in a circular queue. It 
is flexible enough to allow 3-D representations of objects to be 
stored as attributes themselves by storing pointers to the 3-D 
data structures in the attribute list. 

Choosing a data representation to model the underwater 
environment is a more difficult problem. One solution is to 
implement a complete 3-D data structure to model the lake 
bottom and all dctected obstacles. An example of such a repre- 
sentation is the octree [lo], [15], which considers the working 
universe to be one large cubic region. The universe is recursively 
divided into 8 equal cubic sub-regions or “octants” until each 
sub-region is considered to be homogeneous, that is, eithcr 
completely empty space or completely full, containing an object 
or the lake bottom. This approach has been used successfully to 
represent an automated factory environment [9]. However, in 
the application of autonomous underwater vehicles, an octree 
representation cannot keep up with the demands of the real-time 
environment when CPU resources must be shared by more than 
one RCS modulc. The cost of bookkceping is high with octrees, 
as each new sonar reading may cause the trcc to decompose or 
merge several nodes. With cach decomposition, eight new nodes 
must be allocated for the newly created subregions, and every 
merge operation requires the reclamation of unused nodes. 
Considering that the CPU is shared and thc sampling rate for 
thc six sonar sensors on a prototypc vehicle is 0.6 s 1111, a full 
3-D representation was not attempted. 

111. GLOBAL AND LOCAL MAP CONFIGURATION 
A less computationally intensive approach is to use a 2;-D 

representation, storing only depth information for any map 
location. The current autonomous Underwater vehicle (AUV) 
world model uses two types of 2;-D data structures for its 
mapping scheme: a set of global maps, each of which contains 
data for the vehicle’s operational domain, and region-of-interest 
maps, which only store a localized area around the AUV’s 
current location. (Vehicle locations are obtained by triangula- 
tion using an underwater transponder system. Distances to each 
of the transponders are used to compute the global position of 
the vehicle.) The region quadtree [23], which is the 2-D ana- 
logue of an octree, is used to represent depth maps at a global 
level. The root node of thc tree reprcscnts a 2-D square area 
that is recursively decomposed into 4 quadrants, sub-quadrants, 
and so on, until each node contains only one depth valuc. 
Because each branch of the trcc contains half as many nodes as 
an octrec branch, quadtree updatcs are generally faster than 
octrcc updatcs and the structure consumes less storagc as well. 

17 I X  17 

Fig. 1. A region quadtree representation for a n  example depth map. Only 
nodes containing more than one depth value are  furthcr decomposed. 
Each branch of t h e  tree corresponds t o  northwest. northeast, southwest, 
and southeast quadrants of a given region. 
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Fig. 2 Illustration of quadtree implementdtion Each G R A Y  node has loui  
fields, labelled NW, NE, SW, dnd S E  Edch field has 2 whtield\ the vrilue 
and the GRAY/Child discriminator. 

As with octrees, a node is only further decomposed if it is not 
homogeneous. This property leads to storage savings over array 
data structures when the data is sparse, or when the data set 
contains large homogeneous regions such as islands or flat 
regions of a lake bottom (see Fig. 1). The quadtree approach 
also allows point and linear feature data to be represented using 
compatible data structures as described in the following [23]-[25]. 

A.  Global Qicadtree Implementation 
The quadtrec rcpresentation used for this project is a com- 

pact implementation of a pointer-based quadtrcc. The pointer- 
based quadtree explicitly storcs pointers from each internal 
node I to 1’s four children. This is in contrast to the linear 
quadtree which stores a list of leaf node values sorted by block 
location [3]. The linear quadtrec has been found to be effective 
for disk-based applications. However, thc MAUV system brings 
maps into primary memory when in use. 

Our quadtree implementation reduces storage rcquircmcnts 
over the traditional pointer-based quadtree implementation 
which stores four pointer fields and a value field with each node 
of the tree. Instead, we only store pointer fields with internal 
nodes, commonly referred to as G R A Y  nodes. A G R A Y  node G is 
reprcscnted by a block of four contiguous descriptor fields, each 
corresponding to one of G’s children. In the case where a child 
is itself a G R A Y  node, the value stored in the descriptor is a 
pointer to the block of storage representing that child. In  the 
case where a child is a lcaf node, the valuc stored is simply the 
depth value for the block. This representation is illustrated by 
Fig. 2, which shows the storage structure for the quadtree of Fig. 
1. In Fig. 2, cach of the four child fields has an extra bit ficld 
associated with it to distinguish between G R A Y  children (a “0” 
bit) and leaf children (a “1” bit). In actual implcmenlation in 
the C programming language on Motorola 68020 processors, 
G R A Y  nodcs are rcpresentcd by four contiguous 32-bit words. 
The low-order bit of each 32-bit value distinguishes between a 
G R A Y  child and a lcaf child. 

This implementation avoids the wasted storagc of four null 
pointers associated with each leaf node to indicate that no 
childrcn are present. Thc data structure stores a single pointer 
to cach G K A Y  node and a valuc for each lcaf node (i.c., no 
cxplicit pointers to leaf nodcs arc stored). Thus thc total storage 
required is a single 32-bit value for each node in the tree for 
both lcaf nodcs and G K A Y  nodes. Since a quadtrce of L lcavcs 
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requires ( 4 L  - 1)/3 nodes, this is also the number of 32-bit 
words required. 

Three region quadtrees are used to represent different as- 
pects of the global depth maps. One of these is the a priori map, 
which contains data from a survey of the lake bottom and does 
not change during the mission. A priori data was collected for 
an approximate area of 1.6 km2 in Lake Winnapesaukee, NH 
(the 1987 test site). The resulting set of irregularly spaced data 
points was mapped to a regular grid using Renka and Cline’s 
triangulation algorithm [20], [21] and converted to quadtree 
format using a region quadtree construction algorithm [26]. The 
a priori quadtree in this instance does not yield much storage 
savings over a grid structure, as the lake survey data is of low 
resolution and could be represented by an array smaller than 
512 by 512; however, using a quadtree provides a convenient 
means for integrating a priori map information with incoming 
sensor information. 

A separate sensor quadtree is used to store higher resolution 
depth values collected from the AUV sonar sensors during 
vehicle test runs. Both downward- and forward-looking (obstacle 
avoidance) sonars are used in refining the sensor map, which is 
overlaid onto the a priori data to give the most accurate view of 
the world. A third quadtree stores a depth confidence value for 
each node in the tree. The confidence map supports the impor- 
tant function of distinguishing spurious sonar readings caused by 
debris or signal inconsistencies from actual obstacles that must 
be detected and avoided. Additional bit fields in the confidence 
map node value are used as flags to mark the vehicle’s track 
through the water, as well as to record whether a given node has 
been updated with downward or forward-looking sonar. This 
extra information could be useful in classifying newly discovered 
objects and in examining the AUV’s complete path after a 
mission. The region quadtree is particularly efficient for sensor 
and confidence map representation, since unexplored portions 
of those maps are cmpty. Such areas can be represented by a 
small number of nodes in the tree. 

B. Point and Linear Feature Representation 
In addition to the quadtrees used to represent region data, 

point and line storing quadtrees have been implemented to 
provide locations of known objects and topographic features of 
the lake bottom used in high-level path planning. This simplifies 
tasks such as locating the nearest other vehicle to a given 
location or plotting a course along linear topographic features 
like ravines or underwater pipelines. The planner can then 
retrieve information in a region of interest without having to 
search the object/attribute database directly. The global maps 
provide an efficient method for storing large quantities of data 
while maintaining the spatial relationships between different 
types of features. 

Point objects are represented by means of a point region (PR) 
quadtree [23]. The PR quadtree is similar to the region quadtree 
except that its decomposition rule is based on the number of 
point objects located within a block. If a block contains no 
points or a single point, then this block is represented by a 
single leaf node. Otherwise, the block is decomposed into quad- 
rants and sub-quadrants recursively, until each block contains at 
most a single point. Implementation of the PR quadtree is 
identical to that of the region quadtree illustrated in Fig. l(a). 
Each point object is identified in the object/attribute database 
by means of an index number. Leaf nodes of the PR quadtree 
store this index. Operations such as finding the nearest object to 
a specified location and locating all objects within a specified 
distance of a location have been implemented. 

Linear features are represented by means of the PMR (or 
polygonal map, random) quadtree [17]. Upon insertion of a line 
segment into a block B, the PMR quadtree decomposes B 
exactly once if the number of line segments already contained 

within B exceeds some threshold (in our case, the threshold is 
four segments). This does not guarantee that a block will con- 
tain four or fewer segments, since segments lying very close 
together may pass through the same block even after decompo- 
sition; however blocks rarely contain much more than four 
segments. The main objective of this decomposition rule is to 
reduce the number’ of line objects contained within a single 
block so as to make processing efficient. Note that varying 
numbers of line segments may be associated with a single block. 
Our PMR quadtree implementation is identical in structure to 
that of the region and PR quadtree implementations, except 
that leaf nodes store a pointer to a linked list of the line 
segments contained within that node. Operations such as finding 
the nearest line segment to a point have been implemented. The 
PMR quadtree has yet to be integrated into the map representa- 
tion and planning portions of the MAUV system. However, 
availability of the PMR quadtree implementation will enable 
future versions of the planner to operate directly on the higher 
level representation of ridge and trench lines rather than on the 
low level data currently provided by the sensor and confidence 
maps. 

C. Local Maps 
The AUV world model makes use of grid or array data 

structures for storing local region-of-interest maps of varying 
resolutions. Arrays are used for their fast, constant access and 
update time and for ease of implementation. Local maps are 
generated from the global quadtree database, first by extracting 
a priori map data for the region, then overlaying the data stored 
in the sensor and confidence quadtrees, which are presumed to 
be more accurate than the lake survey information since they 
reflect recent sensor input. In fusing these three sets of data, all 
three quadtrees are traversed over the local map region. The 
value stored in the confidence quadtree for any map location is 
used to determine whether or not there is sensor data for that 
area. Because the updating algorithm only stores data in the 
sensor quadtree if it has a confidence measure above the level 
assigned to a priori data, any node for which there is sensor data 
uses the sensed value. The local map uses a priori knowledge 
only if insufficient sensor data has been collected for that node. 
Confidence quadtree values are also copied into the local map 
to be used extensively in the updating algorithm. 

Each map has an offset coordinate which defines its position 
relative to a global origin. As the vehicle moves to within a 
predefined distance of the current local map’s edge (in this case 
64 meters defined as 1/4 the width of the map), a new shifted 
map is generated in a second buffer so as to keep the AUV 
nominally centered. Before this is done, any newly acquired 
sensor and confidence data in the old local map must be written 
to the respective quadtrees, making it available for the new map. 
During the generation process, incoming sonar data is used to 
update the old buffer (still being used by the planner), but is 
also held in a data queue to be applied to the new buffer after it 
has been extracted. When the new map has been completed, the 
software simply swaps the two map pointers and updates the 
global coordinate offsets of the new local map. With this double 
buffering arrangement, the planner can still access current data 
while a new map is being generated. This provides the capability 
for asynchronous world model queries as required in the AUV’s 
multiprocessing environment. 

The algorithm that copies data from the quadtree represent- 
ing the global map to the local map array is a simple directed 
traversal of the quadtree beginning at the root node. If the root 
is a leaf node, then the value of the root is copied to the portion 
of the array overlapped by the root. If the root is a GRAY node, 
the algorithm is recursively called for only those children of the 
root that overlap the local map. Thus, only that portion of the 
global quadtree overlapping the local map is processed. 
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Fig. 3. The  MAUV mapping hicrnrchy. 

Updates of a global quadtree from the local map take place 
when the AUV moves beyond the center region of the local 
map. The quadtree update algorithm is analogous to the array 
update algorithm, except that one can view thc quadtree update 
algorithm as being driven by a traversal of the array rather than 
the quadtree. Each pixel of the array is visited not in raster scan 
order, but in the order that the pixels would be visited by a 
preorder traversal of the corresponding quadtree. The pixel 
addresses for such a traversal are calculated by interleaving the 
bit representation of the x and y coordinates for each pixel, and 
visiting the pixels in ascending order; this is known as Morton 
order. N-order, or Z-order [3]. As each local map pixel is 
visited, it is compared against the corresponding node in the 
global quadtree, whose node value is updated if required. Pro- 
cessing in Morton order ensures that all pixels of the current 
quadtree node will be checked before the next node must be 
located. 

D. The Mapping Hierarchy 
As mentioned in Section 1, the RCS is a hierarchical control 

system, meaning that tasks to be performed are functionally 
decomposed into distinct levels of complexity. Various levels of 
the control hierarchy require different local map resolutions. 
Diffcrent types of data may be needed at each level. Generally, 
the resolution of maps at each level differs by an order of 
magnitude or more. All local maps are implemented as array 
data structures and only the lowest level (highest resolution) 
local map updates the global quadtrces. Fig. 3 shows the map- 
ping hierarchy for a generalized data set. In the current imple- 
mentation, the mission lcvcl map divides the area into a coarsc 
grid of approximately 25x25 picturc elements or pixels per 
square mile, each pixcl storing the average depth of the corre- 
sponding area, along with probabilities of detection and destruc- 
tion of the AUV at each location based only on U priori 
knowledge. I t  functions primarily as a guide in tactical planning. 

The next two levels in the hierarchy, the group and vehicle 
levcls respectively, share the same local map for this data set. 
Each pixel of the local map stores the minimum and maximum 
known depths over a 4x4 meter area. It serves the purpose of 
providing information for high level navigation tasks, such as 
determining the probability that an area is traversable by one or 
more vehicles. This map is updated as new information is added 
to the lowest level map, known as the elemental move or 
"E-move" level map. 

The E-move local map has the highest resolution, and is used 
in dctcrmining the travcrsability of a path between two spccified 
points. The world model returns a probability that the path is 
traversable based on the information in this map and the needs 
of the planner. For example, the output may be a percentage of 
pixels for which the AUV clears the lake bottom ovcr the 
hypothesized path. In the simplest case, the world model can 
provide a probability of 1 if all of the pixels are traversable, or 0 
if any are obstructed. Typically, the pilot planner will query the 
world model for the travcrsability of several paths, using a 
modified A" search algorithm [I91 to choose thc safest, most 
efficient path available. The E-move map is also the level 
updated directly by sensor readings; its modifications are propa- 
gated up through thc hierarchy. 

In addition to the world model maps, a set of emcrgcncy flags 
arc constantly monitored for conditions which require immedi- 
ate action. These flags are raised by the lowest level of the 
sensory processing module when abnormalities are detected in 
sensor data. Each bit in the emergency flag register corresponds 
to a different condition, such as low fuel, water leakage, sensor 
failure, etc. One bit is reserved for an imminent collision condi- 
tion, meaning that the system has not responded quickly enough 
to avoid an obstacle, an oncoming ship, or possibly even another 
AUV. This guards against the inherent delay in detecting obsta- 
cles, adding them to bottom maps, and planning paths around 
them. It also provides a backup safety mcehanism for the case 
that a bug in the software has caused an object not to be 
detected. While the mapping system is designed for use in 
dynamic path planning, its performance in terms of object 
detection delay is ultimately tied to sensor cycle times, CPU 
efficiency, and resource allocation, in addition to the algorithm 
design and implementation. 

Iv. THE MAPPING SYSTEM ALGoKrrHM 
For the first implcmcntation of the mapping system, the 

confidencc assignment algorithm has bccn greatly simplified. A 
complete implementation would includc a stochastic analysis of 
the sonar data, taking into account the increased likelihood of 
error as thc rangc to the targct increases, as well as unccrtain- 
ties in the AUV's navigational data [27]. Here we have assumed 
that the incoming data has been filtered by a sensory processing 
module to minimize such inaccuracies. 

At the beginning of a mission, the AUV initializes the global 
and local maps, reading available a priori knowledge from a 
secondary storagc device. In our prototype, the lake bottom 
survey map is read from an optical disk storage medium into the 
a priori quadtree. The sensor quadtrec is initially composed of a 
single. empty node, though it could also contain sensor data 
stored from previous missions if available. Likewise, the confi- 
dence quadtree is initialized as a single node containing a base 
confidcncc value, unless there is confidcncc data from a previ- 
ous mission. In general, the AUV world model starts up in a 
state of total dependence on a priori knowledge, gradually 
becoming more reliant on the current sensor map as data is 
collected. 

A. Confidence-Based Mappitig 

The conccpt of confidence-based mapping is central to the 
map updating algorithm. By modifying values in the confidence 
map, thc interprctation of incoming sensor data can be con- 
trolled, which in turn influences the vehicle's behavior. Confi- 
dence values are incremcnted or decremented from an initially 
assigned base value as confirming or conflicting information is 
received. The range of values is set by the designer at compile 
time, the default being in the range 0 to 20, where a value of 20 
corresponds to 100% confidcncc. The upper bound on a pixel's 
confidcnce guards against thc problem of not detecting a mov- 
ing object due to overconfidence in data that no longer is 
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accurate. When the system receives conflicting sensor data, the 
local map update module waits until a pixel’s confidence drops 
below a threshold before changing its depth value. The thrcsh- 
old value is a prespecified constant determined by the maximum 
change a single sensor reading can affect. 

The other constants in the algorithm are the base confidence 
values. One is assigned to a priori data; the other, to pixels 
whose depth values have just been modified with sensor infor- 
mation. These constants directly affect the behavior of the 
mapping system by determining the amount of conflicting sensor 
data required to cause a change in the depth map. If the base 
confidence given to the a priori map is relatively high, it will 
take several conflicting sonar readings before a pixel’s depth is 
updated with new sonar information. The higher the a priori 
Confidence, the longer the AUV will take to “see” and subse- 
quently avoid a new obstacle. On the other hand, higher initial 
confidence values reduce the effects of erroneous sensor read- 
ings. 

Another feature of the Confidence algorithm is the ability to 
weight the input of each type of sensor differently. In our 
current implementation, depth sonar readings are able to mod- 
ify a pixel’s confidence by 10% per reading, while obstacle 
avoidance sonars only modify confidence values by 5% per 
reading. Although these particular values are somewhat arbi- 
trary-based on the assumption that depth sonar is more accu- 
rate than obstacle avoidance sonar due to fluctuations in the 
AUV’s orientation-the basic idea has been to create a map- 
ping system whose behavior can be modified by changing its 
parameters, without requiring substantial effort on the part of 
the programmer. 

B. Ei%aluating Sonar Data 
When presented with new information, a world model may 

classify it into one of three categories. The new data may affirm 
knowledge already in the model, causing the confidence in that 
knowledge to be increased; it may present conflicting informa- 
tion, in which case an intelligent world model would decrease its 
confidence in that knowledge; or the incoming data may be 
classified as irrelevant, requiring no action. Our ability to func- 
tion in the world as humans depends heavily on our ability to 
make such judgements. The same is true in autonomous naviga- 
tion. In the AUV prototype, inputs are limited to two types of 
range data; downward-looking sonar and forward-looking obsta- 
cle avoidance sonar. Because of this simplification, data classifi- 
cation of this sort is fairly straightforward. 

Although the return from a sonar source can be somewhat 
eccentric [16], a sonar reading is assumed to represent a conic 
beam of approximately six degrees in diameter, with a coordi- 
nate transformation describing its position with respect to the 
vehicle. The map updating routine currently handles each sen- 
sor separately, using different approaches for the downward and 
obstacle avoidance data to modify the local map. As a first step 
in processing, a sonar beam is projected into the X - Y  plane, 
transforming its coordinates with respect to the vehicle into 
world model coordinates with respect to the global origin. 

1) Depth Sonar: In updating the map from the downward- 
looking sonar, the algorithm first computes an approximate 
neighborhood size of pixels to be updated around the current 
AUV location depending on the width of the beam and the 
distance to the lake bottom. This approach is possible because 
the pitch and roll properties of the vehicles are negligible, 
causing the depth sonar to always point straight downward. 
Given that the beam width of the sonar is fixed and the range is 
returned by the sensor, a closed-form trigonometric solution can 
be performed using a lookup table. Although the 2-D projection 
would be best represented as a circular region, for our purposes, 
a square neighborhood is sufficiently accurate and more effi- 
cient to update. The depth stored at each pixel of the neighbor- 
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Fig. 4. Three stages of a map update from depth sonar: (A) incoming sonar 
data conflicts with the world model. (B)  Confidence values for the corre- 
sponding world model pixels are decremented (depth is not modified yet). 
(C) After repeated conflicting readings, confidence drops below the 
threshold, the depth is  updated, and a new confidence assigned. 
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Fig. 5. Updates from obstacle avoidance sensors remove false obstacles in 
the world model by increasing depth values in the map. Obstacles are 
added by decreasing the depth, in effect, raising the bottom of the lake 
model. 

hood in the local map is compared to the observed sonar 
reading. If the two values are not within an acceptable margin of 
error, the Conflicting data causes the pixel’s confidence to be 
lowered. If the two depth values are in agreement, the confi- 
dence value is incremented unless it has already reached the 
maximum allowed. Whenever a pixel’s confidence value drops 
below the predefined threshold, it takes on the new depth 
reading and is assigned a base confidence value (see Fig. 4). For 
the depth sonar, all information is classifiable as either conflict- 
ing or agreeing with the knowledge already in the model. None 
of the data is irrelevant in this case. 

2) Obstacle Acoidance Sonar: The obstacle avoidance map- 
ping algorithm is more complicated. Here the projection of the 
cone into the two-dimensional plane approximates a triangular 
region. Interior points in the projection are determined using an 
algorithm presented by Newman and Sproull [ 181 given the 
vertices of the triangle. The cone itself is approximated by two 
planar surfaces representing the top and bottom surfaces of the 
cone, calculated at three degrees above and below the central 
axis of the cone respectively. Due to the relatively coarse resolu- 
tion used in the obstacle avoidance algorithm (0.5 m3 per pixel) 
and the narrow width of a sonar beam, this does not introduce 
significant error into the calculations. As with the depth sonar 
algorithm, each pixel in the 2-D projection is examined and 
updated if its confidence value drops below the threshold. 
Forward-looking sonar readings provide two types of informa- 
tion: a given pixel may be clear, or it may be obstructed by an 
obstacle. When the AUV detects an obstacle, the mapping 
algorithm adds the information to the local map by raising the 
modeled bottom of the lake at that location (i.e. making it 
shallower) (see Fig. 5) .  It is also an essential function of the 
world model to be able to remove hypothesized obstacles in the 
local map as well as add them. For each pixel in the triangular 
projection, if the three dimensional distance (measured along 
the sonar cone trajectory) from the sonar source to the current 
pixel being examined is less than the range returned by the 
sensor, the pixel is assumed to be clear. No obstacle was 
detected there, so the depth at that location in the local map 
should reflect this information. Its value should be greater than 
or equal to the depth of the bottom surface of the sonar cone at 
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that location, since any object obstructing the beam would 
presumably cause the sensor to return the range to that object. 
If the local map value is shallower than the beam, it conflicts 
with the new sensor data and the confidence value is decre- 
mented. If this results in a confidence lower than the threshold, 
the pixel is reassigned the depth value of the bottom surface of 
the cone and a new base confidence value. Note however that a 
local map value in agreement with sonar information does not 
necessarily increase its confidence. The sonar beam may be 
projected in front of the vehicle when the AUV is near the 
surface, and a clear reading near the surface would not yield any 
information about the depth of the lake bottom if we already 
have some a priori knowledge that the lake is approximately N 
meters deep. In  this case it would be considered irrelevant data. 

The same is not true for pixels in the projection whose 
distance from thc sonar source is greater than or equal to the 
range returned by the sensor. These pixels correspond to de- 
tected obstacles and the depth values in the local map are 
compared to the top surface of the cone.’ Here the local map 
data should be at least as shallow as the top surface of the beam 
to be in agreement with the sensor reading. If the map data 
does agree, it represents confirmation of an existing obstacle 
and the confidence value should be incremented. It should be 
noted that this confirmation only supports the hypothesis that 
there is an obstacle at the depth it was detected; no conclusions 
can be drawn as to the true height of the object or whether it 
extends all the way to the lake bottom. Although this may lead 
to some innacuracies in the depth map, an array of multiple 
sensors pointing in different directions minimizes this effect. 

In a similar manner, if the model continually disagrees with 
the sensor reading, the confidence is decremented until the 
depth valuc is reassigned to the depth of the top surface of the 
cone, making the model shallower. Its confidence is again initial- 
ized to a base value. 

V. MAPPING SYSTEM PERFORMANCE 
Processing time for a sonar input is roughly proportional to 

the number of pixels that must be examined in the depth map. 
On the software development system used at NIST, a Sun-3 
workstation, obstacle avoidance processing ranges in speed from 
30 milliseconds of CPU time for short distances of approxi- 
mately 10 meters, to 100 milliseconds for the maximum accepted 
reading of 50 mcters. Depth sonar updates are practically in- 
stantaneous, due to the lack of computation required. Since the 
sensor cycle timc is approximately 0.6 s and the vehicles used 
are equipped with an array of 5 obstacle avoidance sensors [ll], 
it is not possible to process each sonar reading separately while 
sharing the CPU with several other processes. To improve 
performancc, a preprocessing filter has been added to the front 
end of the system that combines similar sonar readings from the 
same sensor into a single, more heavily weighted reading. The 
filter passes the average range returned by the sensor, the 
average position of the vehicle, and the number of combined 
readings to the mapping system. Tolerances for what constitute 
similar readings are parameters to the system. Only the confi- 
dence assignment routinc must be modified to accomodate the 
filtered data, multiplying the weighting factor for the current 
sensor by the number of combined rcadings. This filtering 
process cnablcs the system to operate well within hardware 
timing constraints. 

Another time-consuming operation is the transfer of data 
between local maps and global maps. Each time the AUV 
crosses the boundary of the current local map (really 64 m from 

‘One detail worth mentioning i \  that the 2-D projection of the cone is 
extended hy two pixels s o  t h a t  i t  will not o n l y  include the projection o f  the 
beam. hut also a portion of the detected obstacle. 

the map’s edge as described in Section 111-C), the world model 
must examine the entire array for pixels that have been updated, 
modify the sensor quadtree, and extract the new local map. This 
process takes on the order of several CPU seconds. Due to the 
1.5 m per second maximum speed of the vehicle, this occurs 
once every 42 s in the worst case. For best results, a separate 
process should perform this task in the “background” while 
processing of the sensor data continues using the old map 
buffer. As previously mentioned, data collected while the new 
window is being extracted must be stored in a queue to be 
applied to the new local map. Although this feature has not 
been fully implemented yet, it is expected that the queued data 
will not cause the system to fall behind in its processing if filter 
parameters are set properly. If necessary, the algorithm can be 
further modified to only store readings which caused the old 
local map to be updated. 

VI. CONCLUSION 
The MAUV mapping system has been developed to provide 

an effective means for autonomous navigation. During the first 
year of the project, much work has been done on the problem of 
short term planning for obstacle avoidance. The 2;-D depth 
maps using the confidence-based mapping algorithm have proven 
to be an adequate solution. A dynamic planner continuously 
queries the world model for the probability of safe traversal over 
the planned trajectory and is able to modify the vehicle’s path to 
avoid obstacles as soon as they are detected. It typically takes 
3-4 supported readings from the obstacle avoidance sonar be- 
fore the map is modified to show the obstacle, though this 
property can be adjusted by altering the confidence parameters 
of the system. For example, a low base confidence value would 
make the mapping system more responsive to sonar readings, 
decreasing obstacle detection time, but increasing the probabil- 
ity of error due to sensor noise. 

Because of the 2;-D nature of the data structures, the current 
implementation is unable to model underwater formations such 
as caves and ledges. All obstacles are modeled as elevated 
portions of the lake bottom. With this representation, the path 
planning module does not consider routing alternatives which 
would go under detected obstacles. Another drawback of the 
current map updating scheme is that it does not take into 
account the fact that most underwater terrain features are 
smooth. In general, neighboring pixels in the depth map will 
have similar depth values. This information could be used in the 
assignment of confidence or depth values stored at a map 
location, for example, assigning low confidence values to pixels 
in areas of high depth variance. The system also does not yet 
include facilities for representing the 3-D shape of objects; 
however, the locations of objects can be stored in the PR 
quadtree with associated 3-D data maintained in the object/at- 
tribute database. Because the database can be configured to 
store arbitrary parameters for each data type, descriptive infor- 
mation such as volume, centroid location, and number of holes 
may accompany an entry in the PR quadtree. As mentioned 
earlier, one of the entries in the database may even be a pointer 
to an extensive 3-D representation of the object. 

The next generation mapping system will include the full 
integration of the PMR quadtree with the planning modules to 
store route and topographic information. This will enable high 
level planners to follow contours of the lake bottom and find 
paths of minimal risk to the vehicles. Additional sensor data 
from laser ranging devices and underwater cameras for inspec- 
tion of objects may be included as well. Another topic for future 
research is the use of spherical representations of the undenva- 
ter environment in real-time world modeling. Much more work 
is needed to fully test and develop the system, but progress so 
far indicates that this approach will produce a fast and reliable 
system for real-time underwater mapping. 
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Modeling and Control of Underwater Robotic Vehicles 
J. YUH 

Abstract -Remotely operated, underwater robotic vehicles have be- 
come the important tool to explore the secrete life undersea. They are 
used for various purposes: inspection, recovery, construction, etc. With 
the increased utilization of remotely operated vehicles in subsea applica- 
tions, the development of autonomous vehicles becomes highly desirable 
to enhance operator efficiency. However, engineering problems associ- 
ated with the high density, nonuniform and unstructured seawater 
environment, and the nonlinear response of the vehicle make a high 
degree of autonomy difficult to achieve. The dynamic model of the 
untethered vehicle is presented, and an adaptive control strategy for 
such vehicles is described. The robustness of the control system with 
respect to the nonlinear dynamic behavior and parameter uncertainties 
is investigated by computer simulation. The results show that the use of 
the adaptive control system can provide the high performance of the 
vehicle in the presence of unpredictable changes in the dynamics of the 
vehicle and its environment. 

I. INTRODUCTION 
A large portion of the earth is covered by seawater and has 

not been fully explored, so plenty of resources still remain in a 
natural condition. In a recent report [l] to the National Science 
Foundation, seven critical areas in ocean system engineering 
were identified as follows: system for characterization of the sea 
bottom resources; systems for characterization of the water 
column resources; waste management systems; transport, power 
and communication systems; reliability of ocean systems; materi- 
als in the ocean environment; analysis and application of ocean 
data to develop ocean resources. It was also concluded in the 
report that the area of underwater robotics should be supported 
in all of the above areas. It is obvious that all kinds of ocean 
activities, including both scientific ocean related research, and 
commercial utilization of ocean resources, will be greatly en- 
hanced by the development of an intelligent, robotic underwater 
work system. 

Current underwater working methods include scuba, remotely 
operated vehicle (ROV), submarine, etc. During the last few 
years, the use of ROVs has rapidly increased since such a 
vehicle can be operated in the deeper and riskier areas where 
divers cannot reach. In the undersea environment, ROVs arc 
used for various work assignments. Among them are: pipelining, 
inspection, data collection, construction, maintenance and re- 
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