
Component Frameworks for Problem Solving Environments
in Computational Science

Clifford A. Shaffer, Layne T. Watson, and Dennis G. Kafura
Department of Computer Science

Virginia Tech
Blacksburg, VA 24061

{shaffer,watson,kafura}@cs.vt.edu

ABSTRACT

We describe some persistant problems in software infras-
tructure encountered by scientists and engineers work-
ing in application domains requiring extensive computer
simulation and modeling. These problems may be miti-
gated by use of a Problem Solving Environment. We ar-
gue that such a Problem Solving Environment can best
be implemented using a component-based approach.

KEYWORDS: Problem Solving Environments, Compu-
tational Science, Components.

Many scientific and engineering research groups depend
on simulation and modeling as the core of their research
effort. We are familiar with research groups in diverse
disciplines such as aircraft design, materials science, bi-
ological modeling, hydrology, wireless communications
systems design, and manufacturing processes for wood-
based composites, all with roughly the same operating
paradigm. This operating paradigm is to design and im-
plement computer models and simulations of complex
physical phenomenon, from which are inferred new dis-
coveries about the real-world process being modeled, or
to create new materials and products. While the form
and application of the models may vary in significant
ways, the approach and problems of these researchers
as it relates to software development and infrastructural
needs are surprising similar.

The purpose of this paper is to describe in further de-
tail the complex of problems that appear to be univer-
sal within academic research labs conducting this sort
of software model-based research. I then go on to de-
fine the needs of these researchers in terms of a Prob-
lem Solving Environment. I conclude by describing how
a workspace environment implemented within a com-
ponent framework may some day provide an effective
solution.

THE PROBLEM IN COMPUTATIONAL SCIENCE

For many scientists and engineers today, the most an-
noying computing challenge is not creating new high-
performance simulations or visualizations. Often the
scientists feel competent to develop such software, and

funding to support model development is widely avail-
able. Rather, many scientists and engineers are express-
ing frustration that their software and computing re-
sources are a heterogeneous mix of incompatible sim-
ulations and visualizations, often spread across differ-
ing computer hardware. The specialized software that
drives a given lab’s research is typically incompatible
with that of potential collaborators. Thus, researchers
today do not make the most of their existing software
and computing resources. Nor does their computing
environment yet support on-line, real-time collabora-
tion between researchers seeking to do multidisciplinary
work.

The researchers typically voice the following complaints.

1. It is difficult to integrate software from multiple disci-
plines developed by a diverse group of people on mul-
tiple platforms located at widespread locations.

2. It is difficult to share software between potential col-
laborators in a multidisciplinary effort — difficult even
for a team to continue using research software once the
author has left the group.

3. Current tools for synchronous collaboration are inad-
equate.

These issues are of concern throughout a wide research
community, as evidenced by numerous NSF workshops
and conferences on topics such as Problem Solving Envi-
ronments, Workflow, and Process Management for sci-
entific and engineering environments. The field of Com-
puter Supported Cooperative Work also has much to
offer in solving the communications problems involved
in multidisciplinary efforts.

Integrating codes from different disciplines raises both
pragmatic and conceptual issues. Pragmatically, the is-
sue is how best to support the interoperability of indep-
endently-conceived programs residing on diverse, geo-
graphically distributed computing platforms. Another
pragmatic concern is that large, complicated codes now
exist that cannot simply be discarded and rewritten for



a new environment. However, interoperability is best
achieved by adherence to common protocols of data in-
terchange and the use of clearly identified interfaces.
The notions of interfaces and protocols lead directly to
the domains of object-oriented software and distributed
computing. Thus, a key issue is how to unify legacy
codes, tied to specific machine architectures, into an ef-
fective whole. Conceptually, the key issue is how to fos-
ter coordinated problem solving activities among multi-
ple experts in different technical domains, and leverage
existing codes and computer hardware resources con-
nected by the Internet.

PROBLEM SOLVING ENVIRONMENTS

A Problem Solving Environment (PSE) provides an in-
tegrated set of high-level facilities that support users en-
gaged in solving problems from a proscribed domain.[1]
PSEs allow users to define and modify problems, choose
solution strategies, interact with and manage the ap-
propriate hardware and software resources, visualize and
analyze results, and record and coordinate problem solv-
ing tasks.

Based on experiences with the various disciplines listed
above, the following is a list of particular issues that
should be addressed by a PSE for any Computational
Science application.

Intranet Accessibility to Legacy Codes The initial reason
why a scientist or engineer in one of these computational
science domains approaches our research group is that
they would like to make their legacy modeling code web-
accessible. In its simplest form, this typically means
creating a Java applet as a front end for filling in a
form. The contents of this form are passed to a server
on the host storing the legacy code which, typically by
means of a perl script, invokes the legacy code with the
appropriate parameters and input files. WBCSim [7, 3]
is a typical example of this, though many other similar
efforts are now available.

Visualization Users of these models typically wish to vi-
sualize the output, rather than simply analyze the num-
bers and text produced by the program. Sometimes the
visualization may be generated by a generic tool, but
more often an ad hoc visualization tool has been pro-
duced along with the modeling code. Regardless, the
researcher would like to integrate the visualization pro-
cess with invocation of the model.

Experiment Management The focus of the research can
often be cast as an attempt to solve an optimization
problem. A given run of the model is typically an eval-
uation at a single point in a multi-dimensional space.
In essence, the goal is to supply to the model that vec-
tor of parameters that yields the best result under an
objective metric. It is not unusual for members of the

research team to spend considerable time in the follow-
ing loop: Feed a parameter vector to the model; observe
the results; generate a new parameter vector based on
past history; repeat until exhaustion sets in. Under this
operating procedure, the user would like to have the re-
sults of the simulation runs be stored automatically in
some systematic way that permits recovery of previous
runs along with the parameters that initiated the run.
Ideally, a mechanism for annotating the results, and a
method for searching based on inputs, results, or anno-
tations, would be provided.

Multidisciplinary Support An eventual goal of PSE re-
search is to support the ability of researchers to com-
bine together to form larger, multidisciplinary teams.
In practice, this means that the models from the vari-
ous disciplines involved should be combinable in some
way. Perhaps this would be done by linking individual
PSEs for the disciplines, or perhaps the various models
would operate within the same PSE environment.

Collaboration Support Researchers would like to work
together, either when initiating/steering the computa-
tion, or when analyzing the results. While the ability
to save and restore prior results can be used to provide
asynchronous collaboration, ideally a PSE would allow
multiple users at multiple workstations to be working
together in the PSE at the same time.

Optimization As noted above, these research efforts are
often cast in the form of an optimization problem. As
such, the research effort can often be improved by ap-
plying automated optimization techniques. In some dis-
ciplines, this is well known and optimizers are an inte-
grated part of the model. But many other disciplines
do not typically use optimization techniques. A PSE
would ideally allow various models to be combined with
various automated optimization techniques.

High Performance Computing Often, simulations used
by computational scientists require access to significant
computing resources, such has a parallel supercomputer
or an ”information grid” of computing resources. In
such cases, the PSE should integrate a computing re-
source mangagement subsystem such as Globus or Le-
gion.

Usage Documentation An aspect of providing improved
interfaces for simulation codes is implicit and explicit
documentation for use of the code, specifically with re-
spect to parameters and other inputs. The simulation
interface could provide advice on reasonable interactions
of parameters, or which submodels to use in particu-
lar circumstances. At the PSE creation level, PSE-
building tools could provide a convenient mechanism for
adding and accessing such documentation. Document-
ing is in part a matter of programmer discipline. Con-



ceivably, PSE implementation tools could enforce good
documenting discipline.

Preservation of Expert Knowledge Just like books in li-
braries, computer programs codify and preserve expert
knowledge about the application domain. A PSE can
serve two important roles in this regard. First, by using
and preserving legacy code, the expert knowledge em-
bodied in the legacy codes continues to be (indirectly)
employed. Second, state-of-the-art codes are often nigh
impossible for nonexperts to use productively, and by
providing advice (via an expert system shell) the PSE
can make the legacy codes and knowledge usable by non-
experts. For multidisciplinary work this expert advice
for nonexpert users is indispensable.

Integration While each feature described in this list is
important in its own right, the important aspect of a
PSE for computational research such as we have de-
scribed would be the synergy that should result from
integrating these features into a single system. In par-
ticular, a collaborative system that provides internet-
based access (perhaps through a web browser) to an
integrated set of models, optimizers, visualizations, and
experimental results database, would be a powerful tool
indeed.

COMPONENT FRAMEWORKS AND PSES

Readers familiar with components and distributed inter-
net-based applications will recognize that many of the
goals of the PSE described above are also goals of other
distributed applications. While the details differ, the
fundamental goals of integrating various sub-sections of
an application, and access to a database (in this case
the database of experimental runs) are not unique to
computational science. While supporting legacy code is
often central to computational science applications, this
need is by no means novel.

However, the combination of issues embodied in the PSE
described above presents novel problems. These include
the fact that individual runs of a simulation can take
hours; the extensive use of visualization; the inherently
distributed nature of the computation (i.e., certain sub-
models may need to run on differing systems for reasons
related to resource needs, or simply because they are
legacy codes written for differing systems); the desire
for synchronous collaboration; and the needs of multi-
disciplinary users, no one of which is an expert in all
aspects of the larger system.

Most component technology today is aimed at helping
programmers to build better programs. The motivation
is that users will be given better applications, but de-
velopers are only now considering how components will
otherwise affect users. In other words, the program-
mer generally develops as though these better programs

would operate within the same non-component environ-
ments as we have today. This view misses much of
the potential benefits of a component-based paradigm.
Components could support users as much as program-
mer.

Part of our own research efforts have been aimed at de-
veloping an environment in which to create PSEs much
as described above.[4, 5] We embody the PSE in a (col-
laborative) workspace, in which the user places var-
ious objects. The fundamental interface objects are
components that represent individual simulations, opti-
mizer tools, visualization tools, etc. These components
are linked together by the user to form networks that
indicate the flow of data or control. For example, a
component representing an input file on some computer
might be linked by an arrow to another component rep-
resenting a model/optimizer combination. Another ar-
row links the model/optimizer combination to a visu-
alizer. The intent is that the PSE will cause the in-
put file to be moved to the machine storing the model
and optimizer, and the model/optimizer will then be in-
voked. The output of this process will then be fed to
the visualization, with the results displayed on the user’s
screen. The fundamental interface design is similar to
that of a Modular Visualization Environment[6, 2] or
the Khoros[8] image processing system.

CONCLUSIONS

The computational science problems described in this
paper are real, serious, and widespread. A PSE as de-
scribed herein is not a panacea for all the problems faced
by computational science researchers. Aside from is-
sues related to constructing themselves, there will still
remain problems of translating incompatable data for-
mats, the common occurance of poor software engineer-
ing practices, and the natural inertia that results in
poor or outdated documentation. Nonetheless, there
is an opportunity here for component frameworks and
distributed internet-based applications to play an im-
portant role in computational science.

REFERENCES

1. E. Gallopoulos, E. Houstis, J.R. Rice, Problem-
solving environments for computational science,
IEEE Computational Science & Engineering 1,
1994, 11–23.

2. D.S. Dyer, A Dataflow Toolkit for Visualization,
IEEE Computer Graphics and Applications 10,
4(July, 1990), 60–69.

3. A. Goel, C. Phanouriou, F. A. Kamke, C. J.
Ribbens, C. A. Shaffer, and L. T. Watson, “WBC-
Sim: A prototype problem solving environment for
wood-based composites simulations”, to appear in
Engineering with Computers.



4. P.L. Isenhour, J. Begole, W.S. Heagy, and C.A.
Shaffer, Sieve: A Java-based collaborative visual-
ization environment, in Late Breaking Hot Topics
Proceedings, IEEE Visualization’97, Phoenix, AZ,
October 1997, 13–16.

5. A. Shah and D. Kafura, Symphony: A Java-
Based Composition and Manipulation Framework
for Problem Solving Environments in Proceedings of
International Symposium on Software Engineering
for Parallel and Distributed Systems (PDSE’99),
May 17-18, 1999, Los Angeles, CA.

6. C. Upson, T.A. Faulhaber, Jr., D. Kamins, D. Laid-
law, D. Schlegel, J Vroom, R. Gurwitz, and A.
van Dam, The Application Visualization System:
A Computational Environment for Scientific Visu-
alization, IEEE Computer Graphics and Applica-
tions 9, 4(July, 1989), 30–42.

7. WBCsim, URL: wbc.forprod.vt.edu/pse/.

8. M. Young, D. Argiro and J. Worley, An Object
Oriented Visual Programming Language Toolkit,
Computer Graphics 29, 2(May 1995), 25–28.


