
Buffer Pools and File Processing Projects for an
Undergraduate Data Structures Course

Clifford A. Shaffer
Department of Computer Science

Virginia Tech
Blacksburg, VA 24061

ABSTRACT
This paper presents a family of programming projects ap-
propriate to a sophomore-level data structures course, cen-
tered around the concept of a buffer pool serving as the
access intermediary to a disk file. These projects provide
a meaningful vehicle for practicing object-oriented design
techniques and teach fundamental material on file process-
ing and manipulating binary data. I begin with a concrete
example, a heap stored on disk and mediated by a buffer
pool. Several important intellectual concepts introduced by
such a project are enumerated. Significant extensions and
alternatives to the basic project are then described. I con-
clude with some observations on the role of file processing in
modern CS curricula, and the significance of recent trends
away from coverage of these topics.

Categories and Subject Descriptors
D.2 [Software Engineering]: Design Tools and Techniques
– object-oriented design methods; D.4 [Operating Systems]:
Communications Management – buffering ; E.5 [Data]: Files
– organization/structure

General Terms
Algorithms, design

Keywords
Buffer pools, heaps, object-oriented design, file processing,
data structures

1. INTRODUCTION
The sophomore or junior-level data structures course (re-

ferred to sometimes as “CS7” [9]) plays a central role in
many computer science departments. In surveys of Virginia
Tech computer science alumni, the data structures course
stands out as one of the two most important to their profes-
sional careers (the other cited course is Operating Systems).
Students returning from technical job interviews regularly
report data structures as being the most important topic in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’04, March 3–7, 2004, Norfolk, Virginia, USA.
Copyright 2004 ACM 1-58113-798-2/04/0003 ...$5.00.

technical interview questions for software development po-
sitions.

At Virginia Tech, this course [3] is normally taken in the
student’s second semester of the sophomore year, following
traditional CS1/CS2 courses in the first year and an object-
oriented design course at the beginning of the second. As
is typical, our students also get some introduction to data
structures topics in our second freshman-year (CS2) course.
The primary learning goals of our sophomore data struc-
tures course are to gain proficiency with fundamental data
structures and introductory algorithm analysis, and to ac-
quire enough self sufficiency so that students can select a
suitable data structure for a task or analyze the suitability
of a data structure for a task.

Over the years, design issues (particularly related to ob-
ject-oriented design) have become an increasingly important
part of the data structures course as I have taught it. De-
spite the fact that our data structures course is preceded by
a course whose stated purpose is to teach object-oriented de-
sign, the projects encountered in the data structures course
are often the first assignments that make a student explore
significant design choices. The reason for this is that the
type of projects that we elect to use are (a) of sufficient size
and complexity to give rise to an opportunity for significant
interactions between objects, and (b) have by nature a col-
lection of objects whose boundaries of concern are open to
some interpretation.

In recent years, there has been a trend away from topics in
lower division CS curricula that ground students in the fun-
damental workings of their computers. For example, where
years ago separate courses in data structures and in file pro-
cessing were standard in many CS departments, today the
Joint Taskforce Computing Curriculum 2001 [5] does not in-
clude anything equivalent to the standard CS7 course, and
true file processing topics primarily appear in an elective on
implementing database systems. The basic background for
file processing (primitive data representation, disk and file
system architecture, memory hierarchy, caching and buffer-
ing) does appear in the CC 2001 body of knowledge, but is
scattered among different content subcategories and much
of the most fundamental material does not appear in any of
the suggested required courses. Thus, it seems likely that in
the future, students will receive even less instruction in these
topics than they do now. Examining popular data structures
textbooks of appropriate level for CS7 courses [4, 6, 7, 8, 10]
shows that while some still maintain significant coverage of
such topics, others do not give more than a cursory mention
of them, and these are clearly inadequate in preparing stu-

dents to write programs that either involve processing data
files or any form of binary data.

In this paper, I show that there is no natural antagonism
between training students in object-oriented design (which
tends towards abstracting away physical details) and train-
ing students in file processing techniques (which requires
some appreciation for the physical characteristics of comput-
ers). Within the context of a data structures course, file pro-
cessing topics naturally force students to address separation
of concerns between entities, which makes for interesting
and significant exercises in object-oriented design. I present
a family of projects that deal with many fundamental issues
of basic file processing. These projects are extremely prac-
tical in the material that they convey to students who will
later be professional programmers, they have much intrinsic
interest to students, they address fundamental topics that
should be at the heart of any data structures course, and
they naturally support instruction in object-oriented design.

2. THE DISK-BASED HEAP PROJECT
In this section I present one of the simplest instances of

a project using a buffer pool [7] to mediate access to a file
structure. The file structure is a heap. This project appears
deceptively simple, yet it still manages to introduce a num-
ber of important concepts that will be enumerated in the
Section 3. Section 4 suggests some related, more difficult
projects and the additional ideas that they introduce.

The most important entity in this project is the buffer
pool. The buffer pool is an intrinsically important data
structure, since it introduces a concrete implementation for
the concept of caching. Caching is important due to its real-
world relevance to computer performance. The buffer pool
concept demonstrates the concept of a hierarchy of memory.
In particular a relatively large, slow, cheap memory (in this
case a disk file) is supported by a relatively small cache of
fast, expensive memory (in this case the buffer pool in main
memory).

The task is to implement a heap data structure on disk.
The idea is that the heap is too large to fit in main mem-
ory (although for practical reasons this is not actually true
for most tests of the project). Recall that a heap is most
typically implemented as an array. For this project, the ar-
ray is stored in a file on disk, and the array must not be
directly accessed by the heap’s client. Instead, the heap
may only be accessed via calls to a buffer pool object. The
array is broken into physical blocks or pages of some pre-
determined size, typically equal to the disk sector size or a
multiple of the disk sector size. (Recall that a disk sector is
the basic unit of I/O permitted at the physical level, though
the programming language or operating system might hide
this fact from programmers via its own buffering scheme).
Each page corresponds to the amount of data to be stored
in a single buffer of the buffer pool. Accesses to elements in
the heap are mapped to pages of the file, which the buffer
pool will read into memory as necessary. Typically in my
own formulations of the assignment [3], the buffer pool will
be managed using a standard Least Recently Used (LRU)
buffer replacement scheme.

The physical implementation of the buffer pool might use
an array of buffer pointers, or a linked list of buffers. While
I normally give no preference to either (there is no practi-
cal performance difference), variations on the project could
ask students to experiment with the alternatives, or with

variations on the LRU buffer replacement policy.

3. KEY PEDAGOGICAL ISSUES
This section identifies the key pedagogical issues relevant

to the disk-based heap project described in the previous sec-
tion.

Binary Data and Random Access: The heap typ-
ically stores binary data (perhaps a simple integer), and
thus the file containing the heap is a binary file. For nearly
all students, any previous file I/O experience will strictly be
stream (i.e., sequential) processing of ASCII files. Thus, this
project introduces students to basic binary file I/O (which
always take place in this project as reads or writes of disk
blocks corresponding to the buffer pool pages). To a limited
extent, students will see the use of (for example) integer vari-
ables stored as integers on disk rather than as their ASCII
representation. However, this simple version of the project
does not bring out this particular concept so strongly as
projects described later. Students will also see an example
of file processing that is not simply streaming (sequential)
in nature. Random access to the heap is required.

Independent Entities: The buffer pool is independent
in a significant sense both from its client and from the file
that stores the heap. This project strongly motivates OOP
concepts, in that the buffer pool really cannot help but act
as an independent agent standing between the client and the
file structure. Most previous projects seen by these students,
while they might incorporate OOP, typically could just as
well be done procedurally. Here, the buffer pool can be
viewed as a cooperating agent with the file and the heap’s
client.

Design Choices: Design choices are important to this
project, most notably as they relate to the buffer pool inter-
face. When implementing buffer pools, there are two basic
approaches that can be taken regarding the transfer of infor-
mation between the client of the buffer pool and the buffer
pool class itself. The first approach is to pass “messages” be-
tween the two. In this case, the client provides space for the
message and a value for the amount of data requested. Dis-
advantages of this approach are that the size of the message
needs to be known by the client, and there can be consid-
erable overhead in copying the messages. The alternative
approach is to have the buffer pool provide to the client a
direct pointer to a buffer that contains the necessary infor-
mation. In this approach, the client is made aware that the
storage space is divided into blocks of a given size, where
each block is the size of a buffer. The client requests specific
blocks from the buffer pool, with a pointer to the buffer
holding the requested block being returned to the client.
The client may then read from or write to this space. If the
client writes to the space, the buffer pool must be informed
of this fact. The reason is that, when a given block is to
be removed from the buffer pool, the contents of that block
must be written to the file if it has been modified. If the
block has not been modified, then it is unnecessary to write
it out. A further problem with the second approach is the
risk of stale pointers. When the client is given a pointer
to some buffer space at time T1, that pointer does indeed
refer to the desired data at that time. If further requests are
made to the buffer pool, it is possible that the data in any
given buffer will be removed and replaced with new data. If
the client at a later time T2 then accesses the data referred
to by the pointer given at time T1, it is possible that the

data are no longer valid because the buffer contents have
been replaced in the meantime. Thus the pointer into the
buffer pool’s memory has become “stale.” To guarantee that
a pointer is not stale, it should not be used if intervening
requests to the buffer pool have taken place.

Logical vs. Physical Existence: There does not ex-
ist any single physical locus for the heap. The binary file
is merely backing storage for the buffer pool, it is not nec-
essarily the heap in its entirety. At most times, the heap
does not physically exist in any one location. Rather, it is
merely a logical construct spread across the totality of the
buffer pool and the file. This is quite an intellectual hurdle
for many students.

Pointers: The concept of a “pointer” has changed, and
to some extent is more fully exposed to the student than
has likely ever occurred to them before. This will hopefully
make them confront some of their typical assumptions. For
example, being sloppy about the use of “null” pointers can
catch up to students here, since the most naive implementa-
tion for a null pointer is to use a value (zero) that in fact is a
legal position within the binary file. However, the use of file
locations in place of pointers is fairly weak in this variation
project, since all accesses are probably viewed in terms of
array indices instead of pointers. See Section 4 on project
extensions for scenarios that better bring out the concept of
byte position in place of pointers.

Multiple Views of Data: Computer memory is muta-
ble. The buffer pool sees the data and a buffer as a collection
of bytes accessed using void or char pointers (if implemented
in C++). In contrast, the the client sees its own object type
(an array of heap elements). A key part of the buffer pool
interface design is the necessary information hiding to make
the buffer pool a generic container that has no knowledge of
the client’s data type.

Abstraction in Design: Abstract thinking is required
for success in several places. First, the heap data structure
is inherently a good example of physical versus logical rep-
resentations. [7, 1] On the one hand, the most likely physi-
cal implementation for the heap is as an array, while on the
other hand its logical representation and the view it provides
via its ADT is a tree. The factors listed above about how
the heap structure is never physically instantiated in any
one physical location also forces the student toward more
abstract thinking, relying on viewing the program as cooper-
ating ADTs rather than viewing the program in its entirety
at the physical level. For many students, this could be the
first time they must view a program at this abstract level
if they hope to succeed. Thus, this program helps to push
students away from using programming-language oriented
thinking, and toward programming-free thinking. [1]

4. FURTHER PROJECT IDEAS
The heap-based project described in Section 2 (or using

a file that essentially stores any other form of a large array)
represents a relatively easy version of the general problem
of using a buffer pool to mediate a file structure. Most
importantly, there are no significant memory management
issues, since (1) the heap elements are of fixed size and (2)
the heap grows and shrinks naturally from the end. Thus,
there are no gaps within the file to track; only the size of
the heap needs to be remembered.

In my own course, I typically give four projects during a
15-week semester. The disk-based heap project is typically

the easiest of the four, and is used as an introduction to
file processing. I normally give it as the third project, with
the fourth building additional file processing techniques, as
described below. I normally give students about two weeks
to complete it, which nearly all can do easily. The total
project code is probably about five pages long.

Many variations on this project are possible, most of them
being more difficult to implement. In some semesters, I’ve
begun with a project that required students to implement
some key data structure in main memory in the “normal”
way (perhaps a tree structure), then had students implement
a buffer pool package in a second project, and finally had
students use the buffer pool to mediate a disk-based version
of the original data structure in a capstone project.

One simple step up in difficulty from the heap would be a
tree structure with fixed-size nodes. For example, a binary
search tree (BST) could be implemented where all nodes
store the same-sized data element such as an integer. When
nodes are deleted from the BST, their position in the file
must be remembered somehow or else a “storage leak” will
have occurred. A simple solution is to implement a freelist.
One of the “pointers” of the BST nodes can be used to
connect together the freelist. Nodes are simply added to
the freelist when removed from the BST, and new nodes
inserted to the BST can be taken from the freelist if any
are available (otherwise the file is expanded to “make” more
nodes). Of course, the buffer pool serves as a mediator for
the freelist just as it does for the rest of the program.

The project’s difficulty can be increased by making tree
nodes be of variable size. Now instead of a simple freel-
ist, a full-blown memory manager [7] must be implemented.
Variations such as first-fit vs. worst fit can be explored, or
buddy-method implementations. Many choices are possible.
Fortunately, the complexities of the memory manager can
be divorced from the difficulty of the tree structure itself.
Students might have implemented (for example) a BST in
memory, then a buffer pool, and finally the disk-based BST.

The greatest difficulty can be achieved by combining an
intrinsically difficult data structure, such as a B-tree, with
the memory manager and buffer pool. This is by far the
most difficult project that I’ve ever given to an undergrad-
uate class. Typically only about two thirds of my students
are capable of completing a basic disk-based B-tree project.
Fortunately, it is possible for students to successfully demon-
strate completion of subsets of the full project, such as an
implementation without a completely functional memory
manager.

5. THE ROLE OF FILE PROCESSING
Most students now complete their undergraduate CS pro-

gram without ever encountering the most basic concepts of
file processing. Over the past ten years or more, I’ve oc-
casionally polled the students taking my graduate-level al-
gorithms class. Not counting those who came through our
own program, typically three quarters or more profess to
have never written a program using binary file I/O. This
observation holds for both foreign and US students.

In theory, there is no reason to discuss file processing,
since the effects are “merely” constant-factor differences,
and not changes in asymptotic behavior. However, since the
cost to access data on disk is approximately a million times
greater than to access data in memory, such differences re-
sult in great practical effects on real programs, and on how

disk-bound programs should properly be implemented. In
fact, the obvious time costs associated with file-based pro-
gramming provide one of the few clear demonstrations of
efficiency principles that students will encounter in their un-
dergraduate programming career (in other words, their own
programs run too slow if they don’t do it right).

The other aspect of “file processing” topics that is of key
importance is the practical aspect of working with binary
data. Topics related to representation of integers versus
ASCII data are part of the Computing Curriculum 2001, and
are commonly taught at the freshman level. However, my
experience has been that a large majority of students are un-
able to relate this information to actual programming, that
is, they cannot make any practical use of the concepts. A
large majority of students come to my sophomore-level data
structures class unable to grasp the concept that UNIX text
files are slightly (but significantly) different from MS Win-
dows text files. Nor do they truly understand that an int

variable represents an integer in a form that is radically dif-
ferent from its ASCII (print) representation, even if they can
quote back 1’s and 2’s complement representations on de-
mand. It is only once students implement a simple program
that reads in an ASCII integer value (from a command line
parameter or ASCII data file), stores it in an int variable
(i.e., in binary format), writes that value in a file on disk,
reads it back, and then prints it out again (thus recovering
its ASCII representation), that they will grasp these issues.
All computer science majors and minors should be required
to do this fundamental exercise as part of some program-
ming assignment during their lower division instruction.

One of the most striking results from a class doing any
variation of the buffer pool project is the enormous range
in running time among the students’ implementations. It is
well known that there is high variance in the run-time per-
formance of programs produced by different programmers
even when they are at the same level of professional ex-
perience [2]. It appears that this performance variation is
even greater than usual for students being introduced to file
processing. There can easily be an order of magnitude or
more difference in the time required between the fastest and
slowest programs in a typical class. Unlike typical memory-
based projects, the performance difference caused by a poor
implementation is great enough for students to notice in typ-
ical program testing and debugging. For many students, it
is the first time that they have an intrinsic motivation to
improve the efficiency of their own program, if only to get
the debugging time down to something manageable.

At the same time as instruction in file processing tech-
niques has clearly been declining, there also appears to be a
trend in the programming tools used by programmers such
that efficient file processing becomes more difficult. This
is related to the trend toward greater abstraction in pro-
gramming languages and the thinking of programmers. The
ability to handle abstraction is of fundamental importance,
and one of the things that distinguishes computer scientists
from hack programmers. And refocusing programming lan-
guages toward higher-order tasks can hope to lead to greater
programmer productivity by taking away as much mechan-
ical burden as possible. However, it is important that our
programming tools and languages achieve this abstraction in
ways that do not seriously compromise program efficiency.

A good illustration of the potential pitfalls to the combina-
tion of greater abstraction in programming tools combined

with less understanding of the underlying computer by pro-
grammers appears with the Java programming language’s
support for file I/O. In general I find that Java is much eas-
ier to use than C++, in part because it abstracts away the
right things. However, in the case of the Java file I/O classes
the particular implementation used, combined with a lack
of understanding of the most basic file processing principles,
leads to inefficient programs.

Java file I/O makes heavy use of the wrapper design pat-
tern. The idea is that there is a basic file class with primitive
functionality, and additional functionality can be provided
by composing this basic file class with others. Typically,
there will be several layers of classes wrapped within classes
to achieve the desired functionality and interface. Unfor-
tunately, the most fundamental buffering capability is not
provided unless the right class is included at some point in
the composition. Thus, the default is no buffering for a sim-
ple I/O stream. Simple buffering is automatic in C++ and
most other programming languages. Programmers who have
never had instruction in the fundamentals of file processing
will not realize that the use of buffering is nearly always de-
sired when doing basic sequential file I/O, but the default
is not to have buffering in Java. The result is that typical
programmers, if untrained in the basics of binary file I/O,
will write grossly inefficient programs in Java whenever they
do any file processing.

6. REFERENCES
[1] D. Aharoni. Cogito, ergo sum! cognitive processes of

students dealing with data structures. In Proceedings
of SIGCSE 2000, pages 26–30, Mar. 2000.

[2] F. Brooks, Jr. The Mythical Man-Month. Addison
Wesley Longman, 1975.

[3] Department of Computer Science, Virginia Tech.
CS2604 data structures and file processing website.
Available at courses.cs.vt.edu/~cs2604, 2003.

[4] M. Goodrich and R. Tamassia. Data Structures and
Algorithms in Java. John Wiley & Sons, 1998.

[5] J. T. on Computing Curricula. Computing curricula
2001 computer science final report, Dec. 2001.

[6] B. Preiss. Data Structures and Algorithms with
Object-Oriented Design Patterns in Java. John Wiley
& Sons, 2000.

[7] C. Shaffer. A Practical Introduction to Data Structures
and Algorithm Analysis. Prentice Hall, second edition,
2001.

[8] T. Standish. Data Structures in Java. Addison Wesley
Longman, 1998.

[9] A. Tucker, B. Barnes, R. Aiken, K. Barker, K. Bruce,
J. Cain, S. Conry, G. Engel, R. Epstein, D. Lidtke,
M. Mulder, J. Rogers, E. Spafford, and A. Turner.
Computing Curricula ’91. Association for Computing
Machinery and The Computer Society of the Institute
of Electrical and Electronics Engineers, 1991.

[10] M. Weiss. Data Structures & Algorithm Analysis in
C++. Addison Wesley Longman, 1999.

