
Recent developments in
linear quadtree-based

geographic information
systems

H Samet, C A Shaffer, R C Nelson, Y-G Huang, K Fujimura
and A Rosenfeld

The status of an ongoing research effort to develop a
geographic information system based on a variant of the
linear quadtree is presented. This system uses quadtree
encodings for storing area, point and line features. Recent
enhancements to the system are presented in detail. This
includes a new hierarchical data structure for storing linear

features that represents straight lines exactly and permits
updates to be performed in a consistent manner. The
memory management system was modified to enable the
representation of an image as large as 16 384 x 16 384
pixels. Improvements were also made to some basic area
map algorithms which yield significant efficiency speed-
ups by reducing node accesses. These include windowing,
set operations with unaligned images, a polygon expansion
function, and an optimal quadtree building algorithm
which has an execution time that is proportional to the
number of blocks in the image instead of the number of
pixels.

Keywords: image processing, linear quadtrees, geographic
information systems

Hierarchical data structures are important represen-
tations in geographic information systems, as well as
in the related domains of computer vision, robotics,
computer graphics, image processing, pattern recog-
nition and computational geometry. The advantage of
hierarchical methods is that their use leads to the aggre-
gation of pixels thereby resulting in algorithms whose
execution times are proportional to the number of aggre-
gated units (e.g. blocks) rather than to the actual size
of the aggregated units (e.g. the number of pixels in
a block). One such data structure is the quadtree. Today,

Computer Science Department and Center for Automation Research,
University of Maryland, College Park, MD 20742, USA

the term quadtree is used in a general sense to describe
a class of data structures whose common property is
that they are based on the principle of recursive
decomposition of space. The various elements of the
class can be differentiated on the basis of the type of
data that they are used to represent, and on the principle
guiding the decomposition process. Currently, variants
of quadtrees are used to store point data, regions, curves,
surfaces and volumes. The decomposition may be into
equal-sized parts (termed a regular decomposition), or
it may be governed by the input. The parts need not
necessarily be disjoint nor must they be at a fixed
orientation relative to each other. In the case of spatial
data, a representation that is related to the quadtree
is the pyramid, which is a multiresolution data structure.
In contrast, the quadtree is a variable-resolution
representation. Figure 1 is an example of a region and
its corresponding region quadtree. A recent survey of
the use of hierarchical data structures has been presented
by Samet’.

For the past four years, members of the Computer
Vision Laboratory at the University of Maryland have
been engaged in a research effort to develop a geographic
information system (GIS) based on quadtrees. The pro-
ject has been conducted in four phases. In this paper
we describe the current state of this effort, but first
the work that has already been completed is reviewed.

In phase 12, a quadtree database was built from a
set of three map overlays representing land use classes,
terrain elevation contours, and a floodplain boundary
from a region in Northern California. The overlays were
hand digitized resulting in three arrays of 400 x 450
pixels. Labels were associated with the pixels in each
of the resulting regions, specifying the particular land
use class or elevation range. The regions were subse-
quently embedded within a 5 12 x 5 12 grid and quadtree
encoded. The results are shown in Figures 24.

0262-8856/87/03187-l 1 $03.00 @ 1987 Butterworth & Co. (Publishers) Ltd

vol5 no 3 august 1987 187

a

Level 3

Level 2

Level I

Level 0

b

-----------_

7 s 9 IO 15 16 17 I6

d

Figure 1. a, region; b, binary array; c, block decomposi-
tions of the region; d, quadtree representation of the blocks

Figure 2. Floodplain map

Algorithms were developed for basic operations on
quadtree-represented regions - set theoretic operations,
point-in-region determination, region property compu-
tation, and submap generation. The efficiency of these
algorithms was studied theoretically and experimentally.

In phase 113, a quadtree-based GIS was partially
implemented, allowing manipulation of images storing
area, point and line data. This implementation included
a memory management system to allow manipulation
of images too large to lit into main memory, a software

Figure 3. Topography map

Figure 4. Land use map

package to allow users to edit and update images, data-
base management and map manipulation functions, and
an English-like query language with which to access the
database. We also extended our testbed by extracting
point and line data from a geographic survey map of
the area used in phase I.

Phase III4 dealt primarily with enhancements and
alterations to the system, an evaluation of some of the
design decisions, and the collection of empirical results
to indicate the utility of the software as well as to justify
the indicated design decisions. Also included was an
initial attempt at developing an attribute attachment
package for storing non-geographic data associated with
geographic objects, and a survey of appropriate point
and linear feature data structures for future investiga-
tion.

Phase IV’ of the project provided more extensions
to the system. A new structure was developed for storing

188 image and vision computing

linear feature data. The attribute attachment package
was extended to store attributes of point and linear
feature data. Existing area map algorithms were
improved to yield significant efficiency speed-ups by
reducing node accesses. In this paper we expand further
on the developments in phase IV.

CZUADTREE MEMORY MANAGEMENT
SYSTEM

The quadtree memory management system, described
in greater detail in phase II of this project3, is based
on use of a structure termed the ‘linear quadtree’6. The
leaf nodes making up the quadtree of an image are stored
in a list. In the variation which we have implemented
each leaf node consists of two 32-bit words. The first
word contains a key which is used to order the node
list. It is formed by interleaving the bits of the binary
representation for the x and y coordinates of the pixel
in the upper left corner of the block represented by the
leaf node. When sorted in ascending order by the value
of the key, the node list will be in an order identical
to that in which the leaves would have been visited by
a depth-first traversal of the original tree. To be able
to determine the size of the leaf, we must also specify
the depth. We use four bits of the 32-bit key to denote
the depth. This means that 14 bits are left for each
of the x and y coordinates. Thus an image as large
as 16 384 x 16 384 pixels can be represented. Each leaf
also contains a 32-bit value field.

One motivation for using a linear quadtree in contrast
to a pointer-based quadtree is that it allows for a
reduction in storage. In particular, a pointer-based
representation requires that we store with each node
four pointers to its children. Some implementations also
store a pointer to its father. This is in addition to the
value field. We have implemented the linear quadtree
in conjunction with a disc-based memory management
system which only needs to maintain a small part of
the image in core at one time. In our system, the sorted
list of quadtree leaves is stored in a B-tree7 with a page
size of 1024 byte, capable of holding up to 120 leaves
in a page.

Another consideration for choosing between a
pointer-based and a linear quadtree representation is
the speed in the execution time of their primitive opera-
tions. Current techniques for storing pointer-based trees
on disc pages are inefficient in comparison with our
linear quadtree/B-tree implementation. However, our
characterization of these operations as requiring an
explicit disc-based implementation may be criticized on
the basis of the availability of a large virtual memory
even in relatively small machines. In other words, a large
pointer-based quadtree could be maintained in ‘core’,
the operating system controlling the swapping of parts
of the tree to disc. This approach trades the ability to
explicitly control which pages are swapped for the
efficiency of the operating system’s swap operation.
Empirical tests have shown that when the virtual
memory system dominates the amount of time required
to perform an operation on the pointer-based quadtree
(i.e. for any operation involving large trees), then explicit
control of the paging system is much more efficient.

The line representation, described below, may result

in associating more than one item of info~ation with
a quadtree block. This requires a variable-size node
implementation. Since the value field of each linear
quadtree node consists of just one 32-bit word, we
choose to store multiple nodes with the same address
field, one node for each item of information that is
associated with the block. This is somewhat wasteful
of space since the information in the address field is
repeated. However, more importantly, this method is
compatible with our area and point representations with
only minor modifications.

A variable-length quadtree node is processed by locat-
ing the first record in a B-tree page with the desired
address, and then visiting successive records until one
with a greater address is encountered. Functions were
written for finding the nth record with a given address
in the B-tree page, for inserting a record with a given
address into the B-tree, and for deleting a record with
a given address and specified contents. manipulating
variable-sized nodes using this scheme is efficient since
cases where multiple records with a given key are split
between B-tree pages are rare. This is true because the
average amount of information associated with a quad-
tree block in our application is small in comparison to
that of the B-tree page.

IMPROVED DATABASE FUNCTIONS

A number of existing database functions were signifi-
cantly improved by being reimplemented using new
algorithms. These include the Within function, the
raster-to-quadtree conversion function and the map
windowing function. In addition, the functions that
implement set operations (e.g. union and intersection)
were extended to work on unaligned images. The new
algorithms are described briefly below.

The Within function

The Within function generates a map which is ‘black
at all pixels within a specified radius of the non-‘white’
regions of an input map. It is used to answer queries
such as ‘Find all cities within 5 miles of wheat growing
regions.’ Such a query would be answered by invoking
the Within function to operate on a map containing
wheat growing regions (i.e. the non-white regions), and
then intersecting the result with a map containing cities.

The algorithm that we used previously4 worked by
expanding each non-white block of the input image by
R units (where R is the radius), and then inserting all
of the nodes making up this expanded square into the
output quadtree. This leads to many redundant node
insertions. In addition, many of the nodes inserted were
small, and were eventually merged to form larger nodes.

The new algorithm is based on a modification of the
chessboard distance transform&. The algorithm does the
following for each node of the input image. If the node
is non-white then it is inserted into the output map.
If the node is white, and is less than or equal to
(R + 1)/2 in width, then it must lie entirely within R
pixels of a non-white node. This is true because one

vu1 5 no 3 augu.G 1987 189

of its siblings must contain a non-white pixel. Thus,
it is made black and inserted into the tree. If the node
is white and has a width greater than (R + 1)/2, then
its chessboard distance transform is computed, i.e. the
exact distance from the node’s centre to the nearest non-
white pixel is determined. If this distance is such that
the node is completely within radius R of a non-white
pixel, then it is inserted as a black node into the output
tree. If the node is completely outside the radius, then
it is inserted as white. Otherwise, the node is quartered,
and the distance transform calculation is recursively
reapplied to each quadrant.

The new algorithm is an improvement over the old
one in part because only large white nodes need excessive
computation. Since most nodes in a quadtree are small,
few nodes generate much work. In addition, there are
far fewer duplicate node insertions in the new algorithm.
Table 1 contains a comparison of the two algorithms
for the floodplain in Figure 2 and the portion of the
land use class map that only shows class ACC as black
(see Figure 5). The algorithm is applied to the two maps
for radius values ranging from 1 to 8 pixels. Notice
that the execution time speed-up is more than linear.

An optimal quadtree construction
algorithm

The naive algorithm for converting a raster image to
a linear quadtree (or a pointer-based quadtree) is to
insert individually each pixel of the raster image into
the quadtree in raster order. Those pixels making up
larger nodes are merged together by the quadtree insert
routine. Previous algorithms9, as well as the one used
previously in our system’, have worked on this principle.
Attempts at increasing efficiency concentrated on how
to improve the insert routine. Table 2 contains the
execution times of the old algorithm when applied to
six test maps. The timings are nearly identical for raster
images with the same number of pixels (i.e node inserts),

Table 1. Execution times for the Within function

Figure 5. ACC land use class map

regardless of the number of nodes in the eventual quad-
tree, i.e. the number of nodes in the output tree has

Table 2. Quadtree building algorithm statistics

Map
name

No. of New Old
nodes

No. of Time No. of Time
inserts (s) inserts (s)

Floodplain 5266 2352 13.8 180000 413.2
Topography 24859 12400 51.2 180000 429.8
Land use 28447 14675 56.9 180000 436.7
Centre 4687 2121 16.1 262144 603.8
Pebble 44950 20770 111.0 262144 630.8
Stone 31969 14612 70.2 262144 629.5

Distance Flood time (s)

New algorithm Old algorithm

ACC time (s)

New algorithm Old algorithm

1 16.1
2 21.0
3 19.3
4 23.5
5 35.3
6 37.2
7 29.5
8 30.1
9 44.4

10 43.3
11 57.6
12 50.8
13 69.8
14 66.0

32.9 11.9 15.3
24.1 15.5 12.8
52.9 15.4 27.8
31.5 18.0 19.7
68.9 28.4 39.2
49.4 29.3 31.5
91.1 26.9 53.3
53.3 27.2 36.6
07.5 40.4 63.4
75.8 39.0 48.0
27.3 58.1 87.8
76.6 50.2 53.0
40.8 66.2 86.4
99.4 58.0 67.3

15 57.1 161.4 56.3 106.0
16 44.4 94.6 45.2 68.5

190 image and vision computing

little or no effect on the time required to perform the
algorithm. Note that for the old building algorithm the
amount of time needed to read the image data is approxi-
mately 1% of the time necessary to insert every pixel.

A new and optimal algorithmrO has been developed
that makes a single insertion for each node in the quad-
tree, ‘Optimal’ means that in the worst case the number
of inserts will be at most the number of nodes in the
resulting quadtree. It is based on processing the image
in raster-scan (top to bottom, left to right) order, always
inserting the largest node for which the current pixel
is the first (upper leftmost) pixel. Such a policy avoids
the necessity of merging since the upper leftmost pixel
of any block is inserted before any other pixel of that
block. Therefore, it is impossible for four sibling blocks
to be of the same colour.

At any point during the quadtree building process
there is a processed portion of the image and an unpro-
cessed portion. Both the processed and unprocessed
portions of the quadtree have been assigned to nodes.
We say that a node is ‘active’ if at least one pixel, but
not all pixels, covered by the node has been processed.
The optimal quadtree building process must keep track
of all of these active nodes. Given a 2” x 2” image,
it has been shown” that the number of active nodes
is bounded by 2” - 1. Using these observations, an
optimal quadtree building algorithm is outlined below.
It assumes the existence of a data structure which keeps
track of the active quadtree nodes. For each pixel in
the raster scan traversal, do the following. If the pixel
is the same colour as the appropriate active node, do
nothing. Otherwise, insert the largest possible, node for
which this is the first (i.e. upper leftmost) pixel, and
(if it is not a 1 x 1 pixel node) add it to the set of
active nodes. Remove any active nodes for which this
is the last (lower right) pixel.

To implement the new algorithm, we need to keep
track of the list of active nodes. This list is represented
by a table, called ‘Table’, with a row for each level
of the quadtree (except for level 0 which corresponds
to the single pixel level; these nodes cannot be active).
Row i of the table contains 2”-’ entries, with row n
corresponding to the full image. Given a pixel in column
j, the value of the active node at row i of the table
is found at position j/2’. Note that shift operations can
be used instead of divisions if speed is important.

The only remaining problem is how to locate the
appropriate active node corresponding to each pixel.
In particular, for a given pixel in a 2” x 2” image,
as many as n active nodes could exist. Multiple active
nodes for a given pixel occur whenever a new node
is inserted, as illustrated in Figure 6. Each pixel will
have the colour of the smallest of the active nodes which
covers it, since the smallest node will have been the
most recently inserted. Finding the smallest active node
that contains a given pixel can be done by searching
from the lowest level in the table upwards until the first
non-empty entry is found. However, this is time consum-
ing since it might require n steps. Therefore, an addi-
tional one-dimensional array, called List, is maintained
to provide an index into Table. List is of size 2”-’ since
single-pixel sized nodes need not be stored. For any
pixel in column j, the List entry at j/2 indicates the
row of Table corresponding to the smallest active node
containing the pixel. At the beginning of the algorithm,

~015 no 3 august 1987

a

Figure 6. Node insertion can create multiple active nodes.
a, node A is active after inserting a single pixel of co/our
C; b, the first two pixels have colour C; pixel 3 has colour
D and its insertion creates active node B; node A is still
active

each entry of List points to the entry of Table corres-
ponding to the root (i.e. row n for a 2” x 2” image).
As active nodes are inserted or completed (and are to
be deleted from the active node table), Table and List
are updated.

Table 2 compares timing results for the new and old
algorithms. As indicated in Table 2, the new algorithm
often requires far fewer calls to the insert routine than
the number of nodes in the resulting output tree. This
is because some calls to insert may cause several node
splits to occur thereby increasing the number of nodes
in the tree. For example, in Figure 6, inserting node
B into the quadtree containing a single node causes seven
nodes to result. If the first pixel inserted into node X
happens to be the same colour as the original node
(A of Figure 6a), then no insertion is required.

To understand why the new algorithm is an improve-
ment over the old one, the cost of both algorithms should
be analysed in terms of the number of insert operations
that they perform. The naive algorithm examines each
pixel and inserts it into the quadtree. Assuming a cost
of Z for each insert operation, and a cost of c for the
time spent examining a pixel, the total cost is then
2’“.(c + I). The new algorithm must also examine each
pixel. However, there will be at most one insert operation
for each of the N nodes in the output quadtree. There-
fore, the cost of the new algorithm is ~2~ + IN, where
c is relatively small in comparison to Z, and N is usually
small in comparison to 22”. In other words, the quantity
IN dominates the cost of the new algorithm. The result
is that using the new algorithm reduces the execution
time from being O(pixels) to O(nodes). Thus the new
algorithm is optimal to within a constant factor. Of
course, this is achieved at the cost of an increase in
storage requirements due to the need to keep track of
the active nodes (approximately 2”+’ for a 2” x 2
image).

Set operations for unaligned maps

In many applications, including geographic information
systems, it is desirable to compute set operations on
a pair of images. For example, suppose a map is desired
of all wheatfields above 30 m in elevation. This can be
achieved by intersecting a wheatfield map and an ele-
vation map whose pixel values are non-white if they
represent an area whose elevation is above 30m. The
resulting map would have non-white pixels wherever the

191

corresponding pixels of the input maps are both non-
white.

In this section we will consider only the case of map
intersection - other set operations such as union or
difference are handled in an analogous manner. Inter-
section of quadtrees representing images with the same
grid size, same map size and same origin is accomplished
by traversing the two trees in parallel. Each node of
the first image is compared with the corresponding
node(s) in the second image. On the other hand, little
work has been done on set operations between unaligned
quadtrees (i.e. quadtrees which have the same grid size
and map size, but differing origins). In particular, the
only prior mentions of algorithms for intersecting
unaligned quadtrees involved translating one of the
images to be aligned with the other, and then performing
an aligned intersection ” In this section, the principles .
underlying an optimal algorithm for the intersection of
unaligned maps are described. ‘Optimal’ means that each
node of the input images is visited only once, and at
most one insertion into the output tree is performed
for each output tree mode.

As with the quadtree building algorithm above, the
intersection algorithm maintains a table of the active
output tree nodes to minimize insertions into the output
tree. We will call this table OUT-TABLE. Unlike the
building algorithm, there are two input quadtrees (call
them 11 and 12) to be considered as well. The basic
algorithm is as follows. 11 is processed in depth-first
traversal order. For each node N of 11, the various nodes
of 12 which cover N are located. Starting with the upper
left pixel of N, the node of 12 which covers that pixel
is located. Next, the largest block contained within both
nodes is computed. The set function is evaluated on
the values of these two nodes, and OUT-TABLE is
queried to determine if the new node should be inserted.
This step is repeated on subsequent portions of N in
depth-first order until all pixels of N are processed.
Figure 7 provides an example.

OUT-TABLE is easily implemented, since nodes will
always be inserted in depth-first order (matching the
progress made in tree 11). During the traversal of the
output tree, the second, third .and fourth subquadrants
of a block at level i will not be processed until the
previous subquadrants are completed (e.g. the SW sub-
quadrant will not be processed until the NW and NE
subquadrants are complete). Thus, at most one node
at each level of the tree can be active. This means that

b

Figure 7. An example of intersection: a, node N (dashed
lines) from the first input tree is intersected with an image
corresponding to the second input tree and compared
against those nodes which it intersects in the second input
tree; b, the decomposition and order of processing for
node N as directed by the image decomposition

for a 2” x 2” image, a table of only n entries is needed
to represent the active nodes. Each entry of OUT_
TABLE contains the location and value of the current
active node at the corresponding level, along with a
field to indicate the quadrant relative to its father in
which the node lies. In addition, a variable is needed
to keep track of the current depth.

The final requirement for the unaligned set function
algorithm is a method for keeping track of the active
nodes of the second input tree. Consider the border
of the nodes of 11 which have been processed at any
given instant. Since these nodes are processed in depth-
first traversal order, the border will be in the form of
a staircase (see Figure 8). The active border, as it crosses
an output map of size 2” x 2”, will form horizontal
and vertical segments such that the sums of the horizon-
tal and vertical segments will each be 2” pixels in length.
The active nodes of 12 will be those nodes which, at
any given instant, straddle the active border. The active
border table for the intersection algorithm is a moditi-
cation of the active border table used by Samet and
Tamminen”. It is composed of two arrays each 2
records wide. Each record contains the location, size
and value of the active node at that position.

As an example of how the unaligned intersection
algorithm operates, Table 3 shows the contents of the
active border tables after processing selected pixels of
node N from Figure 7. N is assumed to be 11’s first
(upper-leftmost) block. In Table 3, records marked with
an asterisk indicate a node that has been located in
12 (i.e. a Find operation has been performed). For exam-
ple, when processing pixel (O,O), no records are initially
in the table. The record for node F (the node containing
pixel (0,O)) is therefore read into Y_EDGE[O] and X_
EDGE[O]. A minus sign in the column marked Y_
EDGE (X-EDGE) means that the indicated position
in the table did not contain a record covering current
pixel (CY,CX) and that the record was copied from
X-EDGE (Y-EDGE). A plus sign indicates the record
from X-EDGE (Y-EDGE) that was copied to the

Figure 8. Active border after processing node R in the
first input tree II

192 image and vision computing

Table 3. Trace table for intersection active nodes Windowing

Pixel
processed

Active node tables

Y-EDGE X-EDGE

(W
(031)

(1,O)

(171)

(092)

Gm

Cl)

(390)

(331)

(252)

~2~3)

~3~2)

(353)

0: F*
0: B*

0: B
1: I*
0: B
1: B-
0: B+
1: B

0: B
1: B
2: K*
0: B
1: B
2: B-
0: B
1: B
2: B
3: c*
0: B
1: B
2: B
3: D*
0: B
1: B
2: B
3: D
0: B
1: B
2: B+
3: D
0: B
1: B
2: B
3: D+
0: B
1: B
2: B
3: D+

0: F*
0: F
1: B*
0: 1*
1: B
0: I
1: B-t
0: I
1: B
2: B-
0: K*
1: B
2: B
0: K
1: B+
2: B
0: c*
1: B
2: B

0: c
1: D*
2: B

0: c
1: D
2: B

0: c
1: D
2: B
3: B-
0: c
1: D
2: D-
3: B
0: c
1: D
2: D
3:D-

* Indicates a node that has been located in 12 (i.e. a Find operation
has been performed)

- Indicates position in the table did not contain a record covering
current pixel (CY, CX). Record was copied from LEDGE
(Y-EDGE)

+ Indicates the record from LEDGE (Y-EDGE) that was copied
to the position marked with (-) in Y-EDGE (LEDGE)

position marked with a minus sign in Y-EDGE (X_
EDGE) e.g. when processing pixel (2,l) relative to N’s
origin (labelled as block 7 in Figure 7b), the active border
table shown in Table 3 contains the record for block
K in Y_EDGE[2] and block B in X_EDGE[l]. Since
block B actually corresponds to pixel (2,1), the record
for B is copied from X_EDGE[l] to Y_EDGE[2], as
indicated by Table 3. Columns two and three are of
the format Position:Node where Node indicates the node
of 12 being stored at position Position. All coordinates
are relative to 11’s origin.

~015 no 3 august 1987

Interestingly, a variant of the unaligned intersection
algorithm described above can also be used to perform
windowing. Windowing is the name given to a function
which extracts a window from an image. A window
is simply any rectangular subsection of the image. Typi-
cally, the window will be smaller than the image, but
this is not necessarily the case as the window could also
be partly off the edge of the image. More importantly,
the origin (or upper left corner) of the window could
potentially be anywhere in relation to the origin of the
input map. This means that large blocks from the input
quadtree must be broken up, and possibly recombined
into new blocks in the ouput quadtree.

Shifting an image represented by a quadtree is a
special case of the general windowing problem; taking
a window equal to or larger than the input image but
with a different origin will yield a shifted image. Shifting
is important for operations such as finding the quadtree
of an image which has the fewest nodes. It can also
be used to align two images represented by quadtrees.
To simplify the following presentation, we will assume
a window of size 2” x 2” taken from an image of size
2” x 2” where m < n.

To see the analogy between windowing and the inter-
section of two unaligned images, let 11, corresponding
to the first image, be a black block with the same size
and origin as the window. Let 12, corresponding to the
second image, be the image from which the window
is extracted. The resulting image would have the size
and position of 11, with the value of the corresponding
pixel of I2 at each position. The equivalence between
windowing and unaligned set intersection should be
clear. In fact, the windowing algorithm would be
simpler, since a single black node of the appropriate
size would take the place of 11 in the algorithm. Such
an algorithm is optimal in the sense that it locates (only
once) those nodes of the input tree which cover a portion
of the window, and performs at most one insert opera-
tion for each output node.

REPRESENTATION OF LINEAR FEATURES

One of the goals of the research effort described here
was the development of a uniform representation for
data corresponding to regions, points and vector
features. Uniformity facilitates the performance of set
operations such as intersecting a vector feature with an
area. Use of a linear quadtree for point and region data
is well understood, but this is not the case for vector
features. For vector features, a good linear quadtree
representation must also have the following three
properties. First, straight line segments should be repre-
sented exactly (not in a digitized representation). Second,
updates must be consistent, i.e. when a vector feature
is deleted, the database should be restored to a state
identical (not an approximation) to that which would
have existed if the deleted vector feature had never been
added. Third, the structure should allow the efficient
performance of primitive operations such as insertion
and deletion of vector data elements, and should
facilitate the performance of more complex operations
such as edge following, intersection with a region and

193

point-in-polygon, though these are somewhat applica-
tion dependent.

In phase II of this project we implemented a variation
of the edge quadtree of Shneier13, termed ‘linear edge
quadtree’. In our implementation of the edge quadtree,
the leaf nodes of the quadtree are stored as single records
in the B-tree. Each node contains three fields: an address,
a type and a value field. The address field describes
the size of the node and the coordinates of one of the
corners of its corresponding block, as in our area rep-
resentation. The type field indicates whether the node
is empty (i.e. white), contains a single vertex, or contains
a line segment. The value field of a line segment indicates
the coordinates of its intercepts with the borders of its
containing node. Vertices are represented by pixel-sized
nodes with the degree of the vertex stored in the value
field. Unlike Shneier’s formulation, a line segment may
not end within a node since in our existing implemen-
tation the value field is not large enough to contain
the location of an interior point as well as the intercepts.
Thus endpoints and intersection points are represented
by single pixel-sized point nodes. Figure 9 illustrates
the linear edge quadtree representation.

Figure 9. Linear edge quadtree

A serious drawback of the edge quadtree is its inability
to handle the meeting of two or more edges at a single
point (i.e. a vertex) except as a pixel corresponding to
an edge of minimal length. This means that all vertices
are stored at the lowest level in the digitization i.e. in
deep nodes in the tree. Thus, vertices cannot be
distinguished from short line segments. Moreover,
boundary following and deletion of line segments cannot
be handled properly in the vicinity of a vertex at which
several edges meet.

To overcome these shortcomings we developed a new
representation, termed a ‘PMR quadtree’, which is a
variation on the PM quadtree14. The PMR quadtree
makes use of probabilistic splitting and merging rules,
one for splitting and one for merging, to organize the
data dynamically. The splitting rule is invoked whenever
a line segment is added to a node. The node is split
once into four quadrants if the number of segments it
contains exceeds n (four in our implementation). Note
that this rule does not guarantee that each subquadrant
will contain at most n line segments. The corresponding
merging rule is invoked whenever a segment is deleted.
The node is merged with its siblings if together they
contain fewer than n distinct line segments. The merge
operation can be performed more than once. This
scheme differs from our other quadtree structures in
that the tree for a given data set is not unique, but
depends on the history of manipulations applied to the
structure. Certain types of analysis are thus more diffi-
cult than with uniquely determined structures. On the
other hand, this structure allows the decomposition of
space to be based directly on the linear feature data
stored locally. Figure 10 shows an example of PMR
quadtree construction.

The PMR quadtree makes use of variable-size nodes
(the implementation of variable-size nodes in our
memory management system was described above).
When the graph represented by the set of line segments
is planar (which is the case for polygonal maps and
most geographical situations), the average number of
segments per node in the PMR decomposition is limited
by topological considerations to some small number (for
our map data, the average is less than three). This makes
practical an implementation of the node as a list. In
an application where this is not the case, other splitting
rules can ensure that the number of segments in a node

a b
Figure IO. Building a PMR quadtree from the segments of Figure 8 with threshold = 2: a, three segments have
been inserted causing the plane to be quartered once as indicated by the small circle; b, segments l-7 inserted causing
three blocks to split; c, segments 8 and 9 inserted causing five more blocks to split

194 image and vision computing

does not become too high. For linear quadtrees, where
an address is calculated for each quadrant and used
to order it in the list, the simplest way of implementing
variable node sizes is simply to duplicate the addresses,
as described above.

The PMR quadtree induces a decomposition of the
space that may split a line segment into many portions.
Each portion that lies within a quadtree node is termed
a q-edge. The q-edges that are stored with each node
are represented by a pointer to a record corresponding
to the entire line segment of which they are a part.
This solves the problem of how to represent accurately
the intersection of a q-edge with a quadrant boundary
without loss of precision. Since each node containing
a q-edge of a given line segment stores the same descrip-
tor, tracking the line from block to block is simple and
operations such as deletion can be easily implemented.
Note that using a pointer to a record describing each
line segment leads to more flexibility since it allows stor-
ing an arbitrary amount of information about the line
segment without increasing the size of the B-tree record.
It also enables this information to be concentrated in
one place rather than repeated in every node which refers
to the line segment.

The problem of how to represent a line segment that
has been broken into fragments must also be addressed.
This situation arises in a geographical application when
a line map is intersected with an area. Since the borders
of the area may not correspond exactly with the end-
points of the segments defining the line data, certain
segments may be cut off (e.g. Figure 11). Such a partial
line segment is referred to as a ‘fragment’ ahd the artifi-
cial endpoints produced by such an intersection are
referred to as ‘cut points’. The locations of such cut
points must be represented in some fashion. One idea
is to introduce an intermediate point at the node inter-
cept. In continuous space, the remaining line segment
can then be exactly represented as a new line segment
which is collinear with the original one, but has at least
one different endpoint. In discrete space, however, this
is not always possible because the continuous coordi-
nates at the intercept do not, in general, correspond
exactly with any coordinates in the discrete space. If
the new line segments are represented approximately in
the discrete space, then the original information is
degraded, and the pieces cannot be rejoined reliably.
Note that these were precisely the problems that were
encountered with the linear edge quadtree. Moreover,
if an intermediate point were to be introduced to produce
new segments, then the line segment descriptor would
have to be propagated to all quadrants containing the
original statement. This is likely to be a time-consuming
operation.

The approach that we took retains the original

I- tl
a b C

Figure 11. Intersection ofi a, a region; 6, a line segment,
producing c, a fragment with one cut point

~015 no 3 august 1987

pointers, and uses the spatial properties of the quadtree
to specify what parts of the corresponding segments (i.e.
q-edges) are actually present. We observe that even
though a node contains a pointer to a line segment,
it is not necessarily true that the entire line segment
is present as a linear feature. Instead, the line segment
descriptor contained in a node is interpreted as only
implying the presence of the corresponding q-edge. The
original line segment of which the q-edge is a part is
termed the ‘parent segment’. The fragments, therefore,
may be represented by a collection of q-edges. The pres-
ence or absence of a particular q-edge is completely
independent of the presence or absence of those q-edges
representing other parts of the line segment. Hence,
linear features corresponding to partial segments can
be represented simply by inserting the appropriate collec-
tion of q-edges. Since the original pointers are retained,
a linear feature can be broken into pieces and rejoined
without loss or degradation of information. Within the
quadtree structure, q-edges may represent arbitrary frag-
ments of line segments. Since all the q-edges bear the
same segment descriptor, they are easily recognizable
as deriving from the same parent segment. This solves
the problem of how to split a line or a map in an easily
reversible manner. The use of this principle to represent
the linear feature produced by the intersection of Figure
11 is shown in Figure 12.

Properly dealing with entities such as cut points and
fragments requires that the splitting and merging rules
of the PMR quadtree are modified in the following
manner. Nodes are split until no block contains a cut
point in its interior, and then once more if a quadrant
contains more than four q-edges. The merge condition
is invoked both when a q-edge is deleted and when a
q-edge is inserted (since a fragment may be inserted
which restores a larger piece). Merges occur when there
are four or fewer distinct line segments among the
siblings and the q-edges are compatible.

To evaluate the performance of the PMR quadtree
we compared it with three other data structures for
handling linear features using the road network of Figure
13. This network has 684 vertices and 764 edges. The
three data structures used in the comparison are the
MX quadtree15, the edge quadtree, and the PM, quad-
tree14. For a 2” x 2” image, the MX quadtree for a
collection of line segments treats every pixel that is inter-
sected by a line as black and all remaining pixels as
white. Merging is applied to the white pixels to create
larger nodes. The MX quadtree, like the edge quadtree,
is really not suitable for our applications but it is useful
for comparison purposes. The PM, quadtree is based
on the principle that the space is decomposed until there
is only one vertex in each quadrant. To deal with cut
points and fragments, this decomposition rule is modi-
fied by splitting until no block contains a cut point (i.e.
all cut points must lie on the boundaries of blocks) and
no block contains more than one segment endpoint
attached to a q-edge. The PM, and the PMR quadtrees
are closely related. Table 4 shows the building times
for the various quadtrees, the total number of leaf nodes,
and the number of q-edges (termed q-nodes in the table
and meaningless for the MX and edge quadtrees). Note
that the storage requirements for the PMR quadtree
are smaller than for the PM, quadtree as is the quadtree
building time. This is not surprising since the PMR quad-

195

W

Figure 12. The quadtree representation of a fragment:
a, a region decomposition with a line segment super-
imposed; b, the minimal set of five q-edges which make
up the fragment of Figure IO

tree will not be as deep as the PM, quadtree, nor as
deep as the MX and edge quadtrees.

We also compare the performance of the four data
structures for line-area intersections. The road network
map was intersected with several area maps. Once again,
the PMR quadtree required the least amount of space.
However, depending on the complexity of the maps,
the execution times for the PMR quadtree were slower
than those for the PM3 representation by factors of up
to 50%. The MX and edge quadtrees were more efftcient
from the standpoint of execution time than either PM
representation. Again, this is not surprising since by
having fewer nodes, the PMR quadtree reduces the op-
portunity for pruning and also has a more complex node
structure. To summarize, since the PMR quadtree
enables correct execution of the intersection operation,

Figure 13. Road network

Table 4. Building times and sizes for the road network

Type of quadtree Time (s) Leaves Q-nodes

MX 31.5 19699 _

Edge 27.4 7723 -
PM, 39.0 3939 2350
PMR 25.8 2078 874

the fact that it is slower than the edge and MX quadtrees
for certain operations is irrelevant. The relative slowness
of the PMR quadtree with respect to the PM3 quadtree
is a direct result of the time-against-space trade-off
between the two representations.

CONCLUDING REMARKS

Our goal was to demonstrate the utility of hierarchical
data structures for use in the domain of geographic infor-
mation systems. To accomplish this goal we have built
a prototype geographic information system which repre-
sents images with a linear quadtree. This system is
capable of manipulating area, point and linear feature
data in a reasonably efficient manner. All of these
features are implemented in a consistent manner. Our
experience has been that while area and point data are
easily handled by an area-based representation, the
correct treatment of linear feature data is considerably
more difficult. We have developed a new data structure
termed a PMR quadtree which meets our requirements,
and have incorporated it into our system. Future work

196 image and vision computing

includes more research into facilities for dealing with
attribute data as well as larger images and faster
quadtree memory management systems.

ACKNOWLEDGEMENT

The support of the US Army Engineer Topographic
Laboratories under contract DAAK-70-81-C-0059, and
of the US National Science Foundation under grant
DCR-86-05557, is gratefully acknowledged.

REFERENCES

Samet, H ‘The quadtree and related hierarchical data
structures’ ACM Comput. Surveys Vol 16 No 2 (June
1984) pp 187-260
Rosenfeld, A, Samet H, Shaffer C and Webber R E
‘Application of hierarchical data structures to
geographical information systems’ Computer Science
TR-1197, University of Maryland, MD, USA (June
1982); see also IEEE Trans. Syst. Man Cybernetics
Vol 13 No 6 (November/December 1983) pp 1148-
1154
Rosenfeld, A, Samet H, Shaffer C and Webber R E
‘Application of hierarchical data structures to
geographical information systems phase II’ Computer
Science TR-1327, University of Maryland, MD, USA
(September 1983); see also Patt. Recogn. Vol 17 No
6 (November/December 1984) pp 647656
Samet, H, Rosenfeld A, Shaffer, C & Nelson, R C
and Huang, Y G ‘Application of hierarchical data
structures to geographical information systems phase
III’ Computer Science TR-1457, University of
Maryland, MD USA (November 1984)

5

6

7

8

9

10

11

12

13

14

15

Samet, H, Rosenfeld, A, Shaffer, C A, Nelson, R C,
Huang, Y G and Fujimura, K ‘Application of hier-
archical data structures to geographical information
systems phase IV’ Computer Science TR-1578,
University of Maryland, MD, USA (December 1985)
Gargantini, I ‘An effective way to represent quad-
trees’ Comm. ACM Vol 25 No 12 (December 1982)
pp 905-910
Comer, D ‘The ubiquitous B-tree’ ACM Comput.
Surveys Vol 11 No 2 (June 1979) pp 121-137
Samet, H ‘Distance transform for images represented
by quadtrees’ IEEE Trans. PAM1 Vol 4 No 3 (May
1982) pp 298-303
Samet, H ‘An algorithm for converting rasters to
quadtrees’ IEEE Trans. PAM1 Vo13 No 11 (January
1981) pp 93-95
Shaffer, C A and Samet, H ‘Optimal quadtree con-
struction algorithms’ Comput. Vision, Graph. Image
Process. Vo137 No 3 (March 1987) pp 402-419
Gargantini, I ‘Translation, rotation, and super-
position of linear quadtrees’ Znt. 1. Man-Machine
Studies Vol 18 No 3 (March 1983) pp 253-263
Samet, H and Tamminen, M ‘Computing geometric
properties of images represented by linear quadtrees’
IEEE Trans. PAMZ Vol 7 No 2 (March 1985) pp
229-240
Shneier, M ‘Two hierarchical linear feature represen-
tations: edge pyramids and edge quadtrees’ Comput.
Vision, Graph. Image Process. Vol 17 No 3
(November 1981) pp 21 l-224
Samet, H and Webber, R E ‘Storing a collection of
polygons using quadtrees’ ACM Trans. Graphics Vol
4 No 3 (July 1985) pp 182-222
Hunter, G M and Steiglitz, K ‘Operations on images
using quad trees’ IEEE Trans. PAMI Vol 1 No 2
(April 1979) pp 145-153

~015 no 3 august 1987 197

