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An algorithm is presented that changes to ‘black’ those 
‘white’ pixels within a specified distance of any ‘black’ 
pixel in an image represented by a linear quadtree. This 
function is useful for answering queries in a geographic 
information system such as ‘Find all wheat fields within 

five miles of a flood plain.’ The algorithm works by com- 
puting the chessboard distance to nearby black pixels for 
large white nodes, and either leaves them white, changes 
them to bIack or repeats the process on each subquadrant, 
as required. Small white nodes are a priori within the 
given radius and require no further calculation. Thus only 
a small percentage of the nodes of the quadtree need 
extensive processing. The algorithm is easily applied to 
multicoloured images by treating all nonwhite coiours as 
‘black ‘. 
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A useful feature for a geographic information system 
is the ability to generate a map which is ‘black’ at all 
pixels within a specified distance of the black regions 
of an input map. For the sake of discussion, the ‘black’ 
pixels of the input map are defined as those pixels 
initially within the regions of interest, while those pixels 
outside such regions are defined as ‘white’. In the case 
of a multicoloured image, consider that all ‘nonwhite 
pixels are in the regions of interest and that those white 
pixels within a specified distance of a nonwhite pixel 
will be set to black. The process which performs this 
task is sometimes referred to as region dilation or 
expansion. In this paper, the process will be referred 
to as the Within function. This function is important 
for answering queries such as ‘Find all wheat fields 
within five miles of a flood plain.’ Such a query would 
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be processed by applying the Within function to a map 
whose black regions represent flood plains and then 
intersecting the result with a map representing the wheat 
fields. To simplify the presentation, it is assumed in the 
remainder of this paper that the function is performed 
on a binary image. 

The quadtree data structure has proved useful for 
representing cartographic data. Today, the term 
‘quadtree’ is used in a general sense to describe a class 
of data structures whose common property is that they 
are based on the principle of recursive decomposition 
of space. This paper is concerned with the ‘region quad- 
tree’ as defined by IClinger” and will use the term quad- 
tree to refer to it. Figure 1 is an example of a region 
and its corresponding quadtree. For a comprehensive 
survey of quadtrees and related hierarchical data struc- 
tures, see Samet2. 

Quadtrees are of interest, in part, because they enable 
the solution of problems in a manner that focusses the 
work on the areas where the information is of the 
greatest density. The Within algorithm presented in this 
paper takes advantage of the quadtree structure to 
decrease the number of nodes for which expensive pro- 
cessing must be performed. This is accomplished by 
recognizing that only white nodes need processing (black 
nodes will not be modified) and that sufficiently small 
white nodes will always be within a given distance of 
a black pixel. 

The linear quadtree technique3s4 has become quite 
popular since it allows the storage of quadtrees in such 
a way that they may be manipulated efficiently as disc 
files. The technique is currently being used to store maps 
in an experimental geographic information system at 
the University of Maryland, USAS. In the linear quad- 
tree, leaf nodes are represented by use of a locational 
code corresponding to a sequence of directional codes 
that locate the leaf along a path from the root of the 
tree. This collection is usually stored as a list sorted 
in increasing order of locational codes. Such an ordering 
is useful because it is the order in which the leaf nodes 
of the quadtree would be visited by a depth-first traversal 
of the quadtree. The Within algorithm described here, 
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Figure 1. a, A region; b, its binary array; c, b~#ck 
~~ecorn~~~~it~o~ qf the region in a ~block~ it? the region are 
shadedj ; d, qu~dtree representation of the bi~cks in c 

while easily modi~able for use with pointer-based 
quadtrees, is designed for use with the linear quadtree. 
Therefore it is important for the reader to realize that 
in the algorithm presented here there is a distinction 
made between functions that manipulate node addresses 
and functions that manipuIate the node list that repre- 
sents an actual quadtree. 

The next section presents necessary definitions and 
notation. Following this, an algorithm for computing 
the Within function is presented. 

DEFINITIONS AND ROTATION 

The Iinear quadtree is implemented by first 1a~lIing 
each pixel of the quadtree with an address. The address- 
ing schemes most commonly used are variations on one 
suggested by Morton6 for use in indexing maps in the 
Canada Geographic Information System7. Such schemes 
will be referred to as ‘Morton sequencing’. Their applica- 
tion to quadtrees was realized independently by 
Gargantini3 and Abel and Smith4. Morton sequencing 
makes use of an addressing scheme which is equivalent 
to interleaving the bits of the binary representations of 
the s and f coordinates (each represented by a fixed 
number of digits) of a representative pixel in the node’s 
block. In Figure 2, for example, 3-bit binary representa- 
tions of the row and column coordinates are indicated 
along the bottom and right sides of an 8 x 8 array. 
The locational code of each pixel is formed by inter- 
leaving the bits so that the y bit precedes the x bit 
at each position. In Figure 2, these pixel addresses are 
represented with base-4 digits (i.e. each pair of x and 
J’ bits corresponds to a single base-4 digit). When the 
addresses of the pixels are sorted in increasing order, 
the result is equivalent to a depth-first traversal such 

110 220 221 230 231 320 321 330 331 

111 222 223 232 233 322 323 332 333 
i 

Figure 2. Norton code address scheme for 1abe~Ii~g pixels 

that quadrants are visited in the order NW, NE, SW 
and SE. 

Several linear quadtree variants have been proposed 
that differ in terms of what specific leaf nodes will be 
stored. For example, the original formulation3 observes 
that the white nodes of the quadtree may be regenerated 
from the positions of the black nodes. There are various 
space/time tradeoffs involved*. In this paper, the linear 
quadtree is delined to explicitly store all leaf nodes. 

Given the above method for addressing pixels, node 
addresses can in turn be generated by stipulating that 
each node will be given the address of the least valued 
pixel contained within the block that it represents. Figure 
3 shows the block decomposition for the image in Figure 
1 with each block given the address (in base 4) of the 
least valued pixel contained within that block. Note that 
the node in the NW quadrant of the image in Figure 
3 has a 0 value in the most signi~cant position (indicating 
a NW branch), all nodes in the NE quadrant have a 
I value in the most signi~cant position, etc. This method 
of addressing blocks is incomplete as there is no 
indication of the block size. However, there are a number 
of ways to remedy this, one of which is to append to 
the address the level at which the block is found. Regard- 
less of the method used to address quadtree blocks, the 
list of quadtree blocks is kept sorted in increasing order 
of locational code. 

Figure 3. Morton code addre~ses.~~r the blacker of Figure I 
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Given this sorted list of quadtree blocks, some means 
must be found to organize it so that insertions, deletions 
and node searches may be performed efficiently. In addi- 
tion, it is important that the organization method lends 
itself to offline storage of large images. The B-tree9 is 
a data structure that meets these requirements. B-trees 
are very efficient in that the number of accesses necessary 
to retrieve a given key from secondary storage is kept 
low. This is partly because the tree is always balanced, 
and partly because the branching factor is very high. 
Both Abel and Smith” and Samet et ~1.~ use a linear 
quadtree encoding in conjunction with B+-trees to store 
images. 

Throughout, this paper will use the ‘chessboard dis- 
tance metric” O, which is defined as max(d,, d,.) where 
d, and dy are the horizontal and vertical distances, respec- 
tively, between two points. Thus, the locus of points 
within chessboard distance R of a point will form a 
square of side length 2R. In the authors’ algorithm, the 
‘distance between two nodes’ refers to the minimum 
chessboard distance between their borders. Although the 
Euclidean distance might be considered to be more 
accurate, the chessboard distance metric is more suited 
to the quadtree representation. Therefore only the latter 
will be treated in this paper. 

procedure WlTHIN(INTREE, OUTTREE, RADIUS); 
p Create a map OUTTREE which is BLACK for all WHITE pixels of INTREE wthm 

RADIUS units of B non-WAITE pnxl. */ 
begin 

global node list INTREE, OUTTREE; /* input and output quadtrees */ 
global integer RADIUS; /* radius value */ 
node pointer ND; /* pointer to current node */ 

for ND in INTREE do 

if TYPE(ND) = ‘BLACK’ then INSERT(OUTTREE, ND), 
else 1’ WHITE node *; 

if width < (RADI~S~I)~~ then l~S~~T(O~l~R~E, ND); 
else ;” A large M’IIITE node *j 

DOLARGE( 
end, 

procedure DOLARGE( 
/’ Process a large WAITE node */ 
begin 

node pointer ND; 

global node list INMAP, OUWAP; 
global integer RADIUS; 
integer D; !’ chessboard distance *! 
quadrant I, 

D - Chessboard distance from the center of N to the border of 
the nearest BLACK node in the direction of N’s nelehbors 
in the 8 principal directvans; 

if D+WIDTH(ND)/I? < RADIUS then INSERT(OUTTREE, SET(ND, ‘BLACK’)), 
efse if D-~~71DTH(ND)/Z > RADIUS then INS~RT(OU~REE, ND), 

for I in {‘h’W’,~NE’,‘SW’,‘SE’} do 
WITHIN(SON(NI),I)); 

end. 

Figure 4. Outline of an algorithm to compute the Within 
function. 

‘WITHIN’ ALGORITHM 

The Within function changes to black those white pixels 
of an image which are within distance R of a black 
pixel. The authors have previously reported’ l an 
algorithm for computing the Within function which 
works by expanding each black block of the input image 
by R units (where R is the radius) and inserting all 
the nodes making up this expanded square into the out- 
put tree. This leads to many redundant node insertions. 
In addition, many of the nodes inserted are small, and 
are eventually merged to form larger nodes. A polygon 
dilation algorithm has recently been presentedi which 
traverses the image in two passes, modifying the values 
of white nodes based on the values of the nodes seen 
previously during the current pass through the node 
list. 

The new algorithm presented here is based on the 
chessboard distance transform algorithm of Samet*“. An 
outline of the algorithm is given in Figure 4, and a 
more detailed encoding is given in Appendix 1. The 
difference between the two algorithms is that the detailed 
version shows how many of the calculations can be 
performed in an efficient manner. This is crucial in 
obtaining satisfactory performance. 

The algorithm does the following for each node N 
of the input quadtree. If N is black, then it is inserted 
into the output tree. If N is white, and its width is 
less than or equal to (R + 1)/2, then it must lie entirely 
within R pixels of some black node. This is true because 
one of the siblings of N must contain a black pixel whose 
distance to the border of N is at most (R - 1)/Z. Thus 
N is made black and inserted into the tree. If N is white 
and has a width greater than (R + 1)/2, then the distance 
from the border of N to the borders of nearby nodes 
(i.e. a subset of those nodes within radius R) is computed. 
If this distance is such that N is completely within radius 
R of a black pixel, then N is inserted as a black node 

into the output tree. If N is completely outside that 
radius, then it is inserted as white. Otherwise, portions 
of N will be inserted as black and portions as white. 

When N is a white node of width greater than 
(R + 1)/Z, the distance computation is performed as 
follows. First, consider the horizontal and vertical 
neighbours of N. The diagonal neighbours of N will 
be considered later. For each direction d in {N,E,S,W}, 
the address of the equal sized neighbouring block D 
in that direction is computed, and the actual block in 
the linear quadtree node list (say 0’) is then located. 

If the d-direction equal sized neighbour of N does 
in fact exist (i.e. N is not on the d edge of the image), 
then there are three cases to consider: D is white, grey 
or black. If D is white, then normally there will be no 
black pixels in direction d that are within distance R 
of N. A special case occurs when the width of N is 
less than R (but greater than (R + 1)/Z>. In this case, 
if the actual neighbouring node D’ also has width less 
than R, it is possible that the neighbour of D’ in direction 
d will contain black pixels which are closer to some 
parts of N than any other black pixels (e.g. the upper 
rightmost pixels of node N in Figure 5). Thus the neigh- 
bour of D’ in direction d must also be visited if the 
widths of N and D’ are equal and are less than R and 
if d is white. 

If D is grey, then its subquadrants are visited to deter- 
mine whether they contain black blocks within distance 
R of N. ‘Grey’ means that the equal sized neighbour 
of N is actually made up of more than one leaf block. 
For each black subquadrant of D (say D’) within distance 
R of N, N will be decomposed as necessary, with those 
portions within distance R of D’ inserted as black. 

If D is black, then the distance from N to D is 0. 
In such a case, if the width of N is less than R, then 
N is inserted as black into the output tree. Otherwise, 
each quadrant of N is compared in turn against D. If 
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Figure 5. ~uad~ree block decomposition for an image 
whose pixeIs 1, 2 and 3 are black, with all other pixels 
being white. The shaditig shows all pixels within a distance 
c!J‘Jire pixels qf the black nodes. Note that the rightmost 
pixels at the top qf‘node N are within ,fi:ve pixels distance 
elf nodes 2 and 3, but not within ,five pixels distance qf 
rlode I 

the quadrant is entirely within distance R of D, then 
it is inserted as black. If the quadrant is both partially 
within and partially outside of distance R from D, then 
N is subdivided further. 

In a similar manner, the neighbours of N in each 
direction d in {NW, NE, SW, SE} must also be visited. 
As with the adjacent neighbour case, if the equal sized 
neighbour D is white, then normally D will not affect 
N. However, if N and D have widths less than R, and 
D is white. then neighbours of L) may contain black 

Table 1. Execution times for the Within function 

pixels within distance R of certain pixels of N. These 
neighbours must also be visited. As an example, if D 
is the NW neighbour of N, then the N, W and NW 
neighbours of D may need to be visited. Grey corner 
neighbours of N must have their subquadrants examined 
to locate any black pixels within distance R of N, again 
possibly causing a decomposition of N. When D is black, 
it will be at distance 0 from the border of iv, thereby 
possiblv causing a decomposition of N. 

Table 1 compares execution times for new and old 
algorithms on the images shown in Figures 6 and 7. Both 
images are represented by 512 x 512 pixel quadtrees. 
The quadtree of Figure 6 contains 4693 nodes while that 
of Figure 7 contains 3253 nodes. The times in Table 
1 represent the number of CPU seconds required to 
execute the algorithms on a Vax 1 l/785 running BSD 
4.3 Unix. Each algorithm is applied to the two images 
for radius values ranging between 1 and 16. 

The new algorithm is an improvement over the old 
one for two reasons. First, only large white nodes need 
excessive computation; since most nodes in a quadtree 
are small, very few nodes generate much work. Secondly, 
although input nodes may be visited several times when 
neighbouring nodes compute their chessboard distances, 
the number of duplicate insertions for a newly created 
black node will be greatly reduced. 

In certain extreme cases, it is possible for the old 
algorithm to perform more efficiently than the new 
algorithm. This occurs when the image contains rela- 
tively few black nodes, and these nodes are spaced well 
apart. For such images, the numbers of merges and 
duplicated insertions required by the old algorithm are 
minimized, while the number of large white nodes requir- 
ing additional computation by the new algorithm is 
maximized. This can be seen in Table 1 for radius 2 
expansion on the ‘ACC’ land use image. In this case, 
the old algorithm is slightly faster than the new 
algorithm. However, as illustrated by the remainder of 
the test data, such situations are rare and are significant 
only for smalf radius values. 

Distance 
Figure 6 time (seconds) Figure 7 time (seconds) 

New algorithm Old algorithm New algorithm Old algorithm 

1 14.5 32.9 10.9 15.4 
2 19.4 23.7 14.7 13.7 
3 18.5 53.0 14.7 28.5 
4 22.7 30.3 17.6 20.0 
5 34.0 68.5 26.9 39.3 
6 35.1 49.6 28.9 30.2 
7 29.1 90.2 27.0 53.4 
8 30.3 52.6 26.4 36.3 
9 43.3 103.1 39.3 63.9 

10 41.7 75.2 37.0 46.8 
11 53.4 126.1 49.7 77.4 
12 49.0 76.3 44.4 53.1 
13 67.2 138.8 63.1 87.4 
14 60.2 98.3 54.7 65.7 
15 51.3 161.7 52.1 101.9 
16 45.2 94.9 44.9 68.9 
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Figure 6. FIoodp~~~n map 

Figure 7. ‘ACC’ land use class map 

A new algorithm has been presented which computes 
the Within function for a linear quadtree. This algorithm 
is a considerable improvement over an earlier naive 
algorithm which simply expanded each black node and 
inserted the result as a series of quadtree nodes. Given 
a distance R for which the Within function is being 
computed, the new algorithm computes the chessboard 
distances to nearby black nodes only for white nodes 
larger than (R -I- 1)/2, changing subquadrants to black 
as required. 
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APPENDIX 1: FULL VERSION OF THE 
‘WITHIN’ ALGORITHM 

The Within algorithm presented here assumes the 
existence of a number of functions for accessing the 
linear quadtree and manipulating quadtree nodes. The 
edges of a block in the quadtree are labelled N, S, E 
and W for north, south, east and west respectively. The 
quadrants are named NW, NE, SW and SE. NIL is 
the null pointer (in this algorithm, a value of NIL is 
returned by neighbour-finding functions if the desired 
node does not exist). INSERT(TREE, NODE) inserts 

166 image and vision computing 



NODE into node list TREE at the correct position, 
splitting or merging nodes as necessary to maintain a 
region quadtree. FIND_NEIGHBOR(TREE, NODE, 
D, ABUT) returns the actual existing neighbour of 
NODE in direction D (which may be of any size), specifi- 
cally at the corner where side D meets side ABUT. 
DIAGONAL(NODE, QUAD) manipulates the address 
field of NODE to return the address of the equal sized 
neighbour in the diagonal direction QUAD. 
FIND(TREE, NODE) returns the actual node in TREE 
which contains the address of NODE. FIND_ 
DIAGONAL(TREE, NODE, QUAD) is equivalent to 
performing a FIND operation on the node created by 
DIAGONAL. NODETYPE(NODE) returns the type of 
the node (e.g. the colour). FATHER(NODE) modifies 
the address field of NODE so as to return the address 
for the father of NODE. SON(NODE, QUAD) modifies 
the address field of NODE so as to return the address 
for the son of NODE in quadrant QUAD. WIDTHOF 
(NODE) returns the width of NODE (always a power 
of two). XOF(NODE) and YOF(NODE) return the x 
and 1’ coordinates for the upper left corner of NODE, 
respectively. COPY_FIELDS~ODE 1, NODE2) 
copies all fields of NODE1 to NODE2, and returns 
a pointer to NODEZ. SETNODE(ND, X, Y, DEPTH, 
VALUE) sets the descriptor for ND to have upper left 
corner (X, Y), depth DEPTH and value VALUE. 
QUAD(D1, D2) returns the quadrant bounded by sides 
Dl and D2; CSIDE(D) returns the side in the clockwise 
direction with respect to side D; and CCSIDE(D) returns 
the side in the anticlockwise direction with respect to 
side D. log(N) returns the base 2 logarithm of N. 

When reading the following algorithm, it is important 
to keep in mind that the algorithm operates on a linear 
quadtree. Thus most node operations manipuIate the 
address or value fields of a node template without 
actually querying or modifying the node list. Only 
INSERT modifies the node list; only FIND, FIND_ 
NEIGHBOR and FIND-DIAGONAL query the node 
list. 

The full listing of the Within algorithm is as foIlows. 

global node list INTREE 01ITTREE: ; i* tnpur snd output qu:*dtrws ‘;’ 
global integer RADIUS; * radms value r; 
value node point.er ND- * pcmtcr to large L\‘HlTE node being prowsed *, 
value integer X. Y, WID: I* posltton and width of current nitir *; 
node pointer Q, DNEIGH DREAL. DPTR, ,‘* local node pomters *: 
direction D II* current nrlghhor dlrertion * 1 

Q - create(nodei: DRl:AL - create(nade), 
for D in {‘N’. ‘E‘. ‘9‘, ‘W} do 
begin ‘* fur each cardcnal d,r.sr,on *i 

COPY_FIELDS(ND, (2). ,‘* make a copy for temporary “sag? * 
DNEIGH + FIND_NElGHBOR(INTREE, Q, D, CCSIDE(D)), 
if (DNEIGH neq NIL) and (NODETYPE(DNEIGH) = WHITEi and 

(RADIUS->W~DTHOF(DNEIGH)) and (WID=WIDTIIOF(~,NEI~~~~~~~ then 
‘* must v,s,t DNEIGH’s D directron seiahboi *, 

DNEIGH - FlND_NElGHBOR(lNTRE~. DNEIGH. D. CCSfDE(D)). 
CHE~~_NOD~l~D, DNEIGH, S. Y, WID). 

:* visit dmggonal nezghhoi in dirertmn QU/\D(D. Ci;lDE(D)) * 
COPY_FIELDS(ND.QI; * make a copy for trmporarv llsag~ * 
DNEIGH + DIAGON.4I,(Q. QUAD(D, CSIDE(D))) 
if DNEIGH neq NIL then 
begin Al* DNElGll IS in lhe trer *’ 

COPY_FIELDS(DNEIGH, DREAL), : * WP want to pr*s<we DNEICH * 
DPTR - FINDJINTREE. DREAL): I* f tn< f e WB/ nrighhor block in tree *: J h 
CHEfli_NODE(ND. DPTR. X, Y, WIDi. 
if (RADIUS 1~ \~lDTllOF(ND)) and ~~~OD~FYl’l;(Dl’TK) I iVlllTE1 then 
begin :* DPTR 1s small - must wit DPTR’s nmghhors *, 

COP>-_FIELDS(DNElGH. DREAL). 
DPTR - FlND_NEIGHBOR(lNTREE, DREAL. D. rCSlDC(D)); 
CHECK_iiODE(ND. DPTR. X. Y, WID,. 
COPY_FlELDS(DNElCH. DREAL), 
DPTR - FIND_DIAGONAL(INTREE, DRE.4L. Q~AD(D. C’SfD~(Dil). 
CHECK_NODE(ND, DPTR, X, Y, WID). 
COPY_~lELDS(DIIEIGH. DREAL), 
DPTR - Fl~D_~~lCHBOR[lNTREE.DRE:-\L.CSlnE(D),~~Sl~E(~~~lD~(D))), 
~HEC~N~D~(ND, DPTR. X. Y, WID). 

end, 
end; 

end, 
end, 

procedure CHECK_NODE(ND, Q, X, Y, WID); 
:’ Examine Q, 8 node within RADIUS p,xcls of ND. ND has upper left corner (X, Y) 

and width WlD. If Q 1s GRAY, then apply DIST_NODE to the ancestor of Q which 
is an equat-sized neighbor of ND. If Q is non-WliITE, change the appropriate par- 
tions of ND’s blork to BLACK. l ; 

begin 
value node pointer ND, (1, 
value integer X, Y, WID, 

if(Q neq NIL) then 
begin 

if ~VIDTHO~(ND) > ~VIDTHOF(Q) then 
begin j* Q is GRAY - be.. composed of subblccks smaller than ND *: 

while WiDTHOF > WIDTHOF da Q - FATHER(Q), 
DIST_NODE(Q, WlDTHOF(Q). X, Y. WID); 

end, 
else if NODETYPE neq WHITE then i* Q IS non-WHITE leal node */ 
begin 1: compute distance, and either insert 01 spht ND */ 

T - SCOMPARE(XOF(Q), YOF(Q), WIDTHOF( X, Y, WID); 
if T + WIDTHOF 5 R then i* node uithm radios *! 
begin 

NODETYP~(ND~ - BLACK, lNSERT(OUn-f~EC,Nt,!: 
end, 

eise if T c. R then i* node beyond radius *i 
SPLlTDIST(X. Y. \+‘lD. XOF(Q). YOF(Q), \VlDTllOF(Q)l. 

end. 
:I* else 0. is a ‘LVIIITC node - do nothlng *, 

end. 
end. 

procedure DIST_NODE(Q, WID, X, Y, W): 
‘* Find the dtstance from node Q with width WID to the b!ock wrth upper left corner 

(X, Y) and width W * 
begin 

global node list OIITTREE, /* output quadtrer * 
global integer RIZDIUS, !I* radius value * ’ 
value node pointer Q, * current node *. 
value integer WlD, X, Y. W; /* width of Q and hlork drscriptor * 
node pointer QSON, :* loccal node pointer * ’ 
integer SDIST. i* dritarrce lo QSON *: 

QSO?; - create(node). 

COPY(ND. QSON), 
if WIDTHOF(QSON) neq 1 then /* not a plXeI-siZed node *: 

FIND(lNMAP, QSON - SON(QSOU, SW)), 
else FIND(INMAP, QSON). 
if \ClDTHOF(QSON) = WID then i* found the leaf nod? *’ 

if NODETYPEJQSONI neq WHITE then 
begin 

SDIST - S~~~.Lrf’AI~C(XOF(QSO~),YOfJQSON).\”;lnT~; 
if SDIST + W < RADICS then 

INSERT(OI ‘ITREE. CREATE_NODE(X, Y, log(WlD), Bti\CK)); 
else if SDI.ST c: R then 

SPLITDIST(S. Y, \V XOF(QSOr), YOF(QSO91, WlDTHOF(QSO~i). 
return. 

end, 
else 

return: 
\VID t WlD !‘), ,-. 
if SCOh~P,4RE(~OF(ND), YOF(ND), WID, X. Y, %‘] ~: R then 

DiST_NODE(SON(C#PY_Fl~l,~S(ND, QSOU), St%?, WlD. 1, %I’, \Vl. 
if SCO~lPAR~(~_OF(~D)+~~D~Y_OF(ND~,~~lD,X,Y.~V) c R then 

DlST_NODE(SON(COPY_FlELDS(ND, QSON), SE). WlD. X, Y. I+‘); 
if SCOMPARE(X_OF(ND).Y_OF(ND)+WlD,WlD,X,Y W) i R then 

DlST_NODE(SON(COPY_FlELDS(ND, QSON), NW), M’ID. X. Y. W), 
if SCOMPARF~(X_OF(ND)+WID,Y_OF(NDiWID,WII~,~,Y,~V) ‘: 1~ then 

DlS’~_NODE(SON(C0PY_FlELDS(ND, QSON). N\‘E:i, %?I). x. \i, w); 
end, 
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procedure SPLITDIST(CX. GY, GW, FX, FY, FW); 

:* Change to BLACK that part of the block described by GX, GY, and GW that 1s 
within RADIUS of the block represented by FX, FY, and F\V */ 

begin 
value integer GX, GY. GW, FX, FY, FW. 
integer M’ID, T, 
node pointer ND; 

HD - createjnode); 
\vm _ nw/3 

T -: SC;M&RE(GX, GY, WID, FX, FY, FW); 
ifT+WID<Rthen 

INSERT(O??TTREE, SETNODE( GX, CY. log(WID), BLACK)); 
else if T < R then SPLlTDlST(GX, GY, WID, FX, @Y. F’W), 
T +-. SCO~PAREiG~+WlD. GY. WID. FX. F-i. FWI: , ,. 
iFT + WID < R then 

INSERT(OUTTREE, SETNODE(ND,GX+WID,GY,LOG(WID),BC.4CK)); 
else if T < R then SPLITDIST(GXi-WID, GY, WID, FX, FY, FW), 
T - SCOMPARE(GX. GY+WID. WlD, FX. FY. FWI, 
ifT+WIff <Rt‘hen 

1NSERT~OVTTREE,SETNODE(~D,GX,GYiWIL1,1)); 

else if T < R then SPLITDIST(GX, GY-tWlD, WID, FX, FY, FW), 
T - SCOMPARE(GX~WlD, GYiWID, WID, FX, FY, FW); 
ifT+WlD~Rthen 

INSERT(OUTTREE, SETNODE(ND,CX+WlD,GY+WID,LOG(WlD),BLACK)), 
ele.e if T c R then SPLITDlST(GX+WID, CY+WID, WID. FX, FY. FW); 

end; 

integer procedure SGOMPARE(X1. Yl, Wi, X2, Y2, WP); 
,i* Find the chessboard distance between two squares (closest approach) *! 
begin 

value integer Xl, Yl, WI, /* descnplm for square 1 */ 
value integer X2, Y?, W2; I* descnptmn for square 2 */ 
integer SDIST, YDlST; 

if X1 < X2 then XDIST +- X2 - (XI + WI); 
else XDIST + XI - (X2 i W2); 
if Yl < Y2 then YDIST - Y2 - (Yl -+ Wl); 
else YDIST - Yl - (Y2 , W?), 
retura(max(XDIST. YDIST)); 

end; 
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