
Algorithm Visualization: The State
of the Field

CLIFFORD A. SHAFFER
Virginia Tech
MATTHEW L. COOPER
Microsoft Corp
ALEXANDER JOEL D. ALON, MONIKA AKBAR, MICHAEL STEWART,
SEAN PONCE, and STEPHEN H. EDWARDS
Virginia Tech

We present findings regarding the state of the field of Algorithm Visualization (AV) based on our
analysis of a collection of over 500 AVs. We examine how AVs are distributed among topics, who
created them and when, their overall quality, and how they are disseminated. There does exist
a cadre of good AVs and active developers. Unfortunately, we found that many AVs are of low
quality, and coverage is skewed toward a few easier topics. This can make it hard for instructors
to locate what they need. There are no effective repositories of AVs currently available, which
puts many AVs at risk for being lost to the community over time. Thus, the field appears in
need of improvement in disseminating materials, propagating known best practices, and informing
developers about topic coverage. These concerns could be mitigated by building community and
improving communication among AV users and developers.

Categories and Subject Descriptors: E.1 [Data Structures]: E.2 [Data Storage Representa-
tions]: K.3.2 [Computers and Education]: Computer and Information Science Education

General Terms: Algorithms, Measurement, Design

Additional Key Words and Phrases: Algorithm animation, algorithm visualization, AlgoViz Wiki,
community, data structure visualization, free and open source software

An early version of this article was published as Shaffer et al. [2007].
This work is supported in part by the National Science Foundation under Grant Nos. DUE-
0836940, DUE-0839837, DUE-0937863, and DUE-0946644. Any opinions, findings, conclusions,
or recommendations expressed in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation.
Author’s address: C. A. Shaffer, Department of Computer Science, Virginia Tech, Blacksburg, VA
24061; email: shaffer@cs.vt.edu.
Permission to make digital or hard copies part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permission may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701, USA, fax +1 (212) 869-0481, or permissions@acm.org.
c© 2010 ACM 1946-6626/2010/08-ART9 $10.00 DOI: 10.1145/1821996.1821997.

http://doi.acm.org/10.1145/1821996.1821997.

ACM Transactions on Computing Education, Vol. 10, No. 3, Article 9, Pub. date: August 2010.

9: 2 · C. A. Shaffer et al.

ACM Reference Format:
Shaffer, C. A., Cooper, M. L., Alon, A. J. D., Akbar, M., Stewart, M., Ponce, S., and Edwards, S. H.
2010. Algorithm visualization: The state of the field. ACM Trans. Comput. Educ. 10, 3, Article 9
(August 2010), 22 pages. DOI = 10.1145/1821996.1821997.
http://doi.acm.org/10.1145/1821996.1821997.

1. INTRODUCTION

Algorithms and data structures form one cornerstone of an undergraduate com-
puter science education. A technique for improving instruction in this critical
area is to include algorithm and data structure visualizations and animations
(hereafter referred to as “algorithm visualizations” or “AVs”) into the curricu-
lum. AVs have a long history in computer science education, dating from the
1981 video “Sorting out Sorting” by Ronald Baeker and the BALSA system
[Brown and Sedgewick 1984]. Since then, hundreds of AVs have been imple-
mented and provided free to educators, and scores of papers have been written
about them [AlgoViz.org 2010]. Good AVs bring algorithms to life by graphi-
cally representing their various states and animating the transitions between
those states. They illustrate data structures in natural, abstract ways instead
of focusing on memory addresses and function calls.

AVs are naturally attractive to educators, who nearly universally view them
positively [Naps et al. 2002]. They are also consistently “liked” by students
[Gurka and Citrin 1996; Stasko et al. 2001]. But an important question per-
sists: Are they effective at educating computer science students? There has
been some debate in the literature as to whether AVs are effective in practice.
Some studies have shown the classic dismissal for many technological interven-
tions in education: “no significant difference” [Gurka and Citrin 1996; Hund-
hausen and Douglas 2000; Jarc et al. 2000]. Other studies have shown that AVs
can indeed improve understanding of the fundamental data structures and al-
gorithms that are part of a traditional computer science curriculum [Lawrence
et al. 1994; Byrne et al. 1996; Hansen et al. 2000; Grissom et al. 2003]. An im-
portant conclusion from the literature is that to make AVs pedagogically useful,
they must support student interaction and active learning [Naps et al. 2002].

Certainly, many AVs exist and are widely (and freely) available via the Inter-
net. Unfortunately, those of high quality can be lost among the many of lower
quality.

So we see that (a) while many AVs exist, relatively few are of true value,
and (b) some AVs can be demonstrated to have pedagogical value, yet it is
also quite possible to use AVs in ways that have no pedagogical effect. These
results indicate that creating and deploying effective AVs is difficult. There is a
growing body of literature that investigates how to create pedagogically useful
AVs [e.g., Hundhausen et al. 2002; Saraiya et al. 2004a; Naps et al. 2002, 2003;
Rössling et al. 2006]. Yet, there is still much to be done before we are at the
point where good quality AVs on most topics of interest are widely recognized
and adopted.

The purpose of this article is to provide a summary of the state of the field
in terms of existing AV artifacts. To bound the content area, we focused our
ACM Transactions on Computing Education, Vol. 10, No. 3, Article 9, Pub. date: August 2010.

Algorithm Visualization: The State of the Field · 9: 3

attention on AVs for topics commonly taught in undergraduate courses on data
structures and algorithms. We seek an understanding of the overall health
of the field as represented by what AVs are currently available, and present
a number of open research questions that we and others can work on in the
future. Some examples of the questions we seek to address are the following.

—What AVs are available?
—What is their general quality?
—Is there adequate coverage of the major topic areas covered in data structures

and algorithms courses?
—How do educators find and use effective AVs?
—Is the field active and improving?
—Is there adequate infrastructure for archiving and disseminating AVs?
—Is there adequate support for a community of AV developers and users?

The remainder of the article is structured as follows. Section 2 presents
a brief review of the history of AV development, a survey of some major
AV systems, and discussion on the literature of AV pedagogical effectiveness.
Section 3 describes the methods that we used to survey the current state of the
field, primarily through the data collected and cataloged at the AlgoViz Wiki.
Section 4 presents our main findings on the current state of the field of AVs.
Section 5 presents our conclusions and future plans.

2. LITERATURE REVIEW

In addition to many hundreds of individual AVs created over the years, there
have also been many systems created to support AV development. A signifi-
cant amount of research has been devoted to understanding the pedagogical
effectiveness of AVs. We examine some of the literature in this section.

2.1 Algorithm Visualization Development

A number of AV development systems have become well known within the CS
educational community. We can divide their history into two parts: what came
before the rise of Sun’s Java programming language and widespread uptake of
content delivered via the Internet, and what came after. See Saraiya [2002] and
Wiggins [1998] for a more complete treatment of older or presently inaccessible
systems.

Since the widespread use of Java, development seems to have moved away
from AV authoring toolkits, and towards suites of “canned” AVs. Pre-Java sys-
tems often came packaged with pre-generated AVs, but allowed educators and
even students the freedom to implement other AVs in a scripting language or
by annotating a real program. Today’s systems are frequently distributed as
collections of AVs not tied to any operating system or environment. Some of
these collections come as part of AV development systems and some do not.

Brown ALgorithm Simulator and Animator (BALSA) introduced the concept
of using program-generated animations to teach fundamental computer science

ACM Transactions on Computing Education, Vol. 10, No. 3, Article 9, Pub. date: August 2010.

9: 4 · C. A. Shaffer et al.

concepts [Brown and Sedgewick 1984]. Besides undergraduate education, the
system was also used for debugging and research in algorithm analysis. Later
systems developed by Brown include Zeus [Brown 1992] and JCAT [Brown
et al. 1997].

XTANGO [Stasko 1992] is the most recent version of the TANGO visualiza-
tion system. Developed by John Stasko at Georgia Tech, its goal is to allow
students who are not experts in graphical systems to create algorithm ani-
mations by implementing the algorithm in C and then adding special calls
to the XTANGO graphical library. XTANGO is still maintained and distrib-
uted (making it one of the few non-Java AV development systems still avail-
able). POLKA (Parallel program-focused Object-Oriented Low Key Animation)
[Stasko and Kraemer 1992], another Georgia Tech project, is described as “a
general purpose animation system that is particularly well-suited to building
algorithm and program animations” [Stasko 2001]. Like XTANGO before it,
POLKA allows nonexperts to author AVs without deep knowledge of graphics
programming.

Swan [Shaffer et al. 1996], developed at Virginia Tech, provides visualiza-
tions of C and C++ programs annotated with calls to SAIL, the Swan Anno-
tation Interface Library. Unlike most program annotation systems, SWAN
supports the ability to provide significant user control over the behavior of the
annotated program.

ANIMAL (A New Interactive Modeler for Animations in Lectures) [Rössling
et al. 2000] incorporates lessons learned from pedagogical research (see
Section 2.2). Developed at the University of Siegen in Germany, ANIMAL’s
developers believe that visualization systems should supplement (instead of
supplant) traditional approaches to CS education. Animal AVs tend to have
limited user interaction, which is not crucial when used as a lecture aid.

JAWAA (Java And Web-based Algorithm Animation) [Pierson and Rodger
1998] was developed at Duke University by Willard Pierson and Susan Rodger.
It is a Java applet-based system that runs on script files generated by any pro-
gramming language. It is similar to Animal in that the AVs it generates provide
little user interaction. JAWAA assists the animation developer by providing
primitives in a range of granularities, from basic graphics (circles, squares) up
to data structures (arrays, trees). Generally only a few lines of JAWAA script
are required to animate an algorithm: one to create and display the structure,
the others to perform operations on it.

JHAVÉ (Java-Hosted Algorithm Visualization Environment) [Naps et al.
2000] is a client-server AV system written in Java, and most typically run as
a Web-start application from the browser. JHAVÉ does not itself provide an
animation system, but rather a network-based framework into which anima-
tion systems can be (and have been) embedded. This network model provides
delivery of the AV as well as a question-and-answer platform to improve the
pedagogical effectiveness of the animation plugin [Naps et al. 2000]. JHAVÉ
represents some key initial steps in attempting to support interoperability with
other AV development systems, such as Animal.

AlViE 3.0 [Crescenzi 2010] is maintained by Pilu Crescenzi at University
of Florence. AlViE is a “post-mortem” algorithm visualization environment,

ACM Transactions on Computing Education, Vol. 10, No. 3, Article 9, Pub. date: August 2010.

Algorithm Visualization: The State of the Field · 9: 5

presenting a series of “interesting events.” The AVs are tied to a widely-used
Italian data structures textbook [Crescenzi et al. 2006], and so AlViE has many
users.

Animal, JAWAA, JHAVÉ, and AlViE are all similar in that they provide
frameworks for playing AV “scripts,” where these scripts can be generated in
various ways independent of the system (such as by instrumenting output from
actual programs). By their nature of running scripts, they tend to be limited
in their ability to support sophisticated user interaction such as steering the
algorithm or running it on user-supplied data. In contrast, a number of other
systems take the approach of providing a canned suite of AVs. This limits
the ability of those outside the project (such as instructors wishing to use the
system) to create their own AVs, but it often provides greater design flexibility
to “expert” developers.

Developed in Germany at the University of Marburg, the Data Structure
Navigator (DSN) is a project intended to “facilitate the understanding of all
kinds of data structures” [Dittrich et al. 2000]. Instructors might find it to
be a good starting point for a suite of AVs to be used during an entire data
structures course. A major drawback of DSN is that it cannot load and save
data structures to disk, and development appears to have ceased.

Data Structure Visualization (DSV) [Galles 2006] was created at the Univer-
sity of San Francisco by David Galles. DSV aspires to be a comprehensive suite
of AVs. DSV provides animations for a wide variety of algorithms and data
structures, including several sorts, multiple varieties of trees, and a number of
graph algorithms.

Interactive Data Structure Visualizations (IDSV) [Jarc et al. 2000] was cre-
ated by Duane Jarc while at George Washington University. It is a collection
of Java applets covering a range of topics related to search trees, graph algo-
rithms, and sorting algorithms. IDSV is Similar to JHAVÉ in that it periodi-
cally gives the user questions to answer while viewing the animation.

A large collection of AVs for spatial data structures is available from the
University of Maryland [Brabec and Samet 2003].

The Algorithms in Action project [Stern 2001] is directed by Linda Stern of
University of Melbourne. The original version was made available in 2000, and
was quite sophisticated for its time in its use of multiple windows in a Java
applet to track pseudocode, the visualization, and supporting explanatory text.
An extensive collection of additional applets was released in early 2010 after
classroom testing.

The TRAKLA2 project [Korhonen et al. 2003] is directed by Ari Korhonen
and Lauri Malmi of the Software Visualization Group at the Helsinki Univer-
sity of Technology. TRAKLA2 is particularly innovative in its extensive use
of interactive exercises where students demonstrate their proficiency with an
algorithm by providing information about the various key events that happen
during execution. This is done through a variety of graphical interface actions
such as dragging values to various nodes or array positions, selecting from a
list of choices, etc. While the current collection of exercises tends to work better
for simpler algorithms and data structures, this approach points the way for-
ward towards deeper student interaction with the AV. TRAKLA2 is widely used

ACM Transactions on Computing Education, Vol. 10, No. 3, Article 9, Pub. date: August 2010.

9: 6 · C. A. Shaffer et al.

throughout CS Departments in Finland, and as such has perhaps the highest
number of (student) users of any AV system.

2.2 Pedagogical Effectiveness of Algorithm Visualizations

AVs can provide a compelling alternative to other types of instruction, partic-
ularly written presentations such as pseudocode and real code. In lecture sit-
uations, students routinely report liking AVs [Gurka and Citrin 1996; Stasko
et al. 2001], and faculty appear to strongly support them in principle [Naps
et al. 2002]. The literature, however, has not demonstrated that AVs are always
effective in practice. Results form a continuum from “no significant difference”
[Gurka and Citrin 1996; Hundhausen and Douglas 2000; Jarc et al. 2000] to
demonstrations that AVs can indeed improve understanding of data structures
and algorithms [Shaffer et al. 2007; Lawrence et al. 1994; Hansen et al. 2000;
Hundhausen et al. 2002]. The existing body of research helps to illuminate
some of the features of AVs that make them effective.

Gurka and Citrin [1996] found little to no evidence that visualizations are ef-
fective teaching tools in a survey of previous experiments. They point out that
while many fields are concerned with false positives in evaluation, the visual-
ization community may need to concern itself with false negatives. They sug-
gest repeating some “failed” experiments from previous projects with tighter
controls on issues such as usability, algorithm difficulty, animation quality, and
experimental design. They caution, however, that the community must be pre-
pared to accept an ultimate finding of “no significant difference.”

Hundhausen and Douglas [2000] found that students who construct their
own visualizations might be distracted by the creation process. Their exper-
iment was based on the finding that learner involvement increases effective-
ness, but technology does not necessarily improve the result. They found that
student-created low-fidelity visualizations made of art supplies had no less im-
pact on educational outcomes than high-quality computer-mediated AVs also
created by the students.

Jarc et al. [2000] found no difference in educational outcomes for students
who used an interactive AV system compared to their peers who did not. While
AV users performed better on some questions, they performed worse overall,
despite spending significantly more time with the educational materials than
the nonusers.

In contrast to these studies, a growing body of evidence indicates that cer-
tain uses of AVs do have a measurable impact on student learning. The most
important factor appears to be engagement of the students’ attention [Naps
et al. 2002; Hundhausen et al. 2002]. Work in this area continues to home in
on exactly what features make for effective AVs.

Saraiya et al. investigated a number of features that might or might not
make AVs effective. They found that the ability to control the pace of the vi-
sualization, versus watching an animation, had the single greatest impact on
AV effectiveness of the factors studied [Saraiya et al. 2004b; Saraiya 2002].
Other features such as the presence of a good data set and logical break-down
of steps also showed promise as indicators of effectiveness. However, providing
ACM Transactions on Computing Education, Vol. 10, No. 3, Article 9, Pub. date: August 2010.

Algorithm Visualization: The State of the Field · 9: 7

pseudocode with an AV did not appear to improve understanding despite the
fact that it made the students spend more time with the content.

Lawrence et al. [1994] found that allowing students to create their own visu-
alizations led to better test results compared with students who merely viewed
AVs or did not access any visualizations. Students who viewed but did not in-
teract with the visualization actually did slightly worse than students who only
listened to the lecture. Again, this points to engagement as a differentiating
factor.

Hansen et al. [2000] found that although traditional approaches to AV use
had at best mixed results, a particular approach could lead to significant pos-
itive impacts on student learning. Specifically, Hansen’s group leaned heavily
on pedagogical theories such as learning objectives, scaffolding, and chunking.
They point out the use of analogies for priming students’ understanding of the
underlying algorithm.

In 2002, Hundhausen et al. performed a metastudy of 24 studies of AV use.
By breaking the studies into analytical groups based on educational theory
espoused, Hundhausen found that how students use an AV has more effect
on learning outcomes than what they see. They concluded that AVs are an
effective tool when used to actively engage students’ attention.

3. DATA COLLECTION AND THE ALGOVIZ WIKI

The major source of data for our investigation into the state of the field of
algorithm visualization is the AlgoViz Wiki [2010]. This growing collection
of curated resources includes the largest AV link collection ever created. This
section outlines the data collections available, and the process used to collect
the data. Section 4 presents analysis of the dataset.

3.1 Data Contents: The Collections

A wiki is a user-editable Web site, usually supporting a simplified markup syn-
tax and directed towards a particular topic. The AlgoViz Wiki is built on the
MoinMoin Wiki Engine [Waldmann and Hermann 2010]. The wiki concept is
preferable to a standard HTTP server for the goals of the original AlgoViz site
because it allows for the community access and editing that we desire.

The primary content of the AlgoViz Wiki is its catalog of links to AVs.
Section 4 gives information on topic coverage and other summary statistics
about the catalog. We now give a brief description of the other resources col-
lected in the wiki.

The wiki contains a list of related software including major AV projects,
toolkits for authoring AVs, and visual debuggers. Many of the toolkits include
collections of AVs, so they are represented multiple times: once for each topic
they cover and once on the Toolkits page. Visual debuggers superficially resem-
ble data structure visualizations in that they present information about data
paths and memory contents in a step-by-step, visual manner. However, visual
debuggers are distinct from AVs because they show physical, machine-specific
implementation details about code execution for the purpose of creating and

ACM Transactions on Computing Education, Vol. 10, No. 3, Article 9, Pub. date: August 2010.

9: 8 · C. A. Shaffer et al.

debugging software, rather than conceptual views of data structures for the
purpose of education [Stasko et al. 1998; Diehl 2007].

The other major component of the wiki is an annotated bibliography of AV-
related research [AlgoViz.org 2010]. In creating this bibliography, we seek to
provide a starting point for newcomers to the field as well as a repository of
important work to which practitioners can refer. The annotated bibliography
now contains more than 500 papers with BibTeX citations for all and brief
descriptions and reviews for about 100 of the papers.

3.2 AV Catalog Information

Our catalog of AV links is a valuable resource in its own right. However, we
have taken the idea of a collection a step further by summarizing, describing
the benefits, and evaluating a given AV. While not all entries currently possess
descriptions and evaluations, the ultimate goal is to create a curated catalog.
This section will describe in further detail some of the characteristics that we
collect about each AV.

Key information about AVs includes topic, author data (names and institu-
tions), delivery mechanism (e.g., Java applet), when created, what project (if
any) the AV is part of, and language of presentation (e.g., English, German).
Fields are also available to provide screenshots of the AV and references to
publications about the AV.

After an AV has been evaluated, it is assigned an editors’ recommendation
rating of “Recommended,” “Has Potential,” or “Not Recommended.” These rat-
ings are intended to help instructors rapidly find a suitable AV for teaching
while also providing concise feedback to creators of AVs about where to allo-
cate resources for improvement. The small set of categories reflects the fact
that it is difficult to place a visualization into a finer-grained categorization
(such as a 1–10 rating or A–F grade scheme). Having only three buckets (be-
sides “Unrated”) allows us to reduce the amount of subjectivity.

Subtly different than a recommendation is the idea that different AVs can
be “Good For” different purposes. The catalog currently identifies several (not
mutually exclusive) “Good For” labels.

—Teaching the Concept. An instructor could use this visualization as part of
a lecture or give instructions in a homework/lab assignment for students to
follow. It must include a good default dataset that shows some interesting (or
at least typical) behavior of the algorithm. These AVs tend to be conceptual
rather than focused on implementation.

—Exploring the Concept. As students gain knowledge about the concept, this
visualization can be used to experiment on their own without explicit direc-
tion. Often, it allows users to enter their own data. It might be conceptual or
focused on implementation.

—Debugging. The AV serves to illustrate the exact steps that a student’s code
should follow or outcome that it should produce. The student can then debug
her output by comparing it to the visualization. These AVs tend to focus on
implementation, but their output may be conceptual or machine oriented.

ACM Transactions on Computing Education, Vol. 10, No. 3, Article 9, Pub. date: August 2010.

Algorithm Visualization: The State of the Field · 9: 9

On rare occasion, an AV might support an API or mechanism for plugging
into student code, so students can see visually what their code is doing in the
machine.

—Comparison. Students or instructors could use the AV to illustrate the differ-
ences and similarities between competing data structures or algorithms that
operate in the same domain.

—Lecture Aid. The AV is best used during lecture by an instructor who is using
it to illustrate an algorithm that he or she is simultaneously explaining to the
class. Without this accompanying explanation by an instructor, the AV itself
does not sufficiently explain or make clear the algorithm that it portrays.

—Lab Exercise. The AV offers ways of interactively testing the learner’s un-
derstanding of the algorithm. Examples would be pop-up questions that ask
the viewer to predict what will happen next in the algorithm’s execution or
the opportunity to create input data sets that exercise the algorithm in some
prescribed fashion.

—Self Study. The AV is provided in the context of supplementary text that de-
scribes the algorithm in a fashion that could replace a textbook explanation
of the algorithm.

The “ActivityLevel” field indicates whether the AV is purely an animation
or whether the user has control over the pacing; whether the data sets are
predetermined, random, or input by the user; and whether the user answers
questions or otherwise provides interactive feedback.

Originally, the catalog had only a single “Description” field where subjective
and objective information intermingled. As we added more links to the col-
lection, it became apparent that these two were quite distinct and should be
recorded as such. “Description” has been reduced in scope to only objective, de-
scriptive text about an AV. “Evaluation” was added to capture more subjective
statements about AVs. Even if a user of the catalog disagrees with the subjec-
tive evaluation of the AV, she can be sure that she is also receiving an objective
description and make up her own mind.

3.3 Populating the Catalog

There are two distinct ways to go about finding an AV on a given topic. One
is to “Google for it”, that is, use a favorite Internet search engine to search on
keywords that will hopefully find what you need. The other is to look in an AV
collection, a courseware repository, or a curated link collection.

Assume that there exists on the Internet a suitable AV on a specific topic.
In that case, one hopes that standard Internet search technology will allow
educators to find it. If so, this might alleviate the need to create and maintain
specialized repositories or link collections for courseware in general, and AVs
in particular. Unfortunately, whether any given instructor will be able to find
an existing artifact depends a lot on the instructor’s ability to supply the right
keywords to yield successful results.

Internet search keywords need both to capture the desired artifacts (known
as recall) and avoid generating overwhelming numbers of false-positive

ACM Transactions on Computing Education, Vol. 10, No. 3, Article 9, Pub. date: August 2010.

9: 10 · C. A. Shaffer et al.

responses (known as precision). Therefore, keywords must identify both the
type of material desired (AVs as opposed to syllabi, static tutorials, or project
descriptions), and the topic or content area desired. Some keywords, while tech-
nically specific, might lead to a wealth of non-related information. For example,
looking for “Huffman Trees” is likely to give results related to the data struc-
ture, while looking for terms such as “lists,” “queues,” “sequences,” or “trees”
is likely to return information unrelated to computer science. Unfortunately,
some data structures have common, everyday names.

AVs constitute only a small part of the courseware materials available on the
Internet. Far more artifacts can be described as content presentations (lecture
materials or tutorials), projects or exercises (assignments), or course manage-
ment materials such as syllabi. Thus, to find a given AV, restrictive keywords
are necessary for searches on most topics. Unfortunately, the providers of
“visualizations” often do not label them as such, nor is there any standard
alternative synonym that captures the typical visualization, although “anima-
tion” sometimes works (especially for older systems). Since the vast majority
of AVs written since the mid-1990s were written in Java, and many of these
are delivered as applets, “applet” is often a successful choice of keyword. Un-
fortunately, this will tend to leave out those AVs that exist within a visual-
ization system, since they are not typically presented to the world labeled as
“applets.”

In one experiment, we counted the number of sorting AVs that appear in the
first 30 responses from Google searches on various keywords. “Sorting visual-
ization” yielded only seven AVs, while “sorting applet” yielded 20, and “sorting
animation” yielded 21.

Unfortunately, using “applet” as a keyword results in generating a self-
fulfilling prophecy in that if you search for applets, then the only AV presenta-
tion mechanism you will find will be applets. Initially, this skewed the balance
of the materials found in our catalog away from projects with integrated ap-
plications, since non-applets were intrinsically harder to find. Since then, a
conscious effort has been made to catalog non-applets, and these now make up
a significant fraction of the current total in our catalog.

The main alternative to keyword-based Internet search is to look in course-
ware repositories or link collections. Unfortunately, there is currently little in
the way of good repositories for AVs. Repositories were not a significant factor
in developing the AlgoViz catalog, although we believe their potential impor-
tance could be great.

We used a number of techniques to locate AVs for the catalog. We began
with a list of all AV systems that we were aware of from our general knowledge
of the field. We developed a topic list based on our experiences teaching rele-
vant courses. We considered what search terms would be most productive for
locating AVs via Internet searches. Based on our topic list, we then performed
searches using Google to find whatever we could. Once we had generated a
base of AV links, we then examined these pages to try to locate other AVs, since
developers of a given AV often have others available. Sometimes we could find
these other AVs from direct references on the pages we already had, and other
times we could deconstruct the URLs to find more AVs. Whenever we came

ACM Transactions on Computing Education, Vol. 10, No. 3, Article 9, Pub. date: August 2010.

Algorithm Visualization: The State of the Field · 9: 11

Fig. 1. Sample graph output from the query tool showing AV counts by topic.

across a page that had links to collections of AVs, we would follow those links
to capture any new ones not yet in our collection.

3.4 Analysis Tools

We created a number of tools to automatically extract data from the AlgoViz
catalog, including a catalog query tool and a link checker. The query tool loads
each AV entry in our catalog and reformats its data as a row in a comma-
separated values file. The user can make queries against this file that cause
the tool to return a histogram of the AV entries that match the query. Figure 1
shows a sample graph generated by the tool.

Our link checker tests each link in the catalog and records its HTTP status
code. This allows us to track AV disappearance over time. While there are a
variety of possible HTTP codes, we only need to separate Web server responses
into three buckets. “200 OK” means the page was found normally; “301 Moved
Permanently” and “302 Found” mean that the page has been moved (with redi-
rection to the new location). Any other code (in particular those with return
values of 0 or 404) indicates that access to that AV is likely lost. The link
checker allows us to track data about the rate at which AVs are lost, as re-
ported in Section 4. We run our link checker once per week and archive the
results.

ACM Transactions on Computing Education, Vol. 10, No. 3, Article 9, Pub. date: August 2010.

9: 12 · C. A. Shaffer et al.

4. THE STATE OF THE PRACTICE

This section reports our findings regarding the state of the practice in AV de-
velopment, derived from analyzing the data contained in the AV catalog. From
data generated using the catalog, we seek an understanding of the overall
health of the field.

4.1 How Many Are Available?

As of March, 2010, the collection contains links to more than 500 AVs. Many of
these are individual applets or programs, but a significant fraction appear as
parts of integrated AV collections (see “Who Makes Them?” below).

We found considerable difficulty in deciding what to count as separate AVs
for the purpose of defining catalog entries. Some collections come packaged as
single applets or applications containing a number of different visualizations
(perhaps a collection of sorting algorithm visualizations packaged along with
search tree data structure visualizations). If a given applet or program con-
tains multiple AVs (for example, a single Java applet that embodies separate
AVs for various sorting algorithms), it is counted multiple times—once for each
distinct AV.

At the other extreme, separate URLs might be provided for what is other-
wise the same visualization program presented in different languages, or for
examples of the same visualization run on different input data. We classify
these under a single entry. Some “gray area” cases are difficult to assign. For
example, we decided to provide a single entry under “quadratic sort” for sys-
tems that provide insertion, selection, and bubble sorts, since many systems do
provide all three.

Although it is difficult to accurately define (much less determine) how many
distinct programs or pieces of software are represented, one way of determining
this information is to count the number of unique links in the collection. By this
metric, there are more than 450 distinct programs.

These totals do not include many older systems like XTANGO and Balsa.
Due to difficulties in getting these older systems to run in modern computers,
we have not yet integrated their AVs into the main part of the catalog, although
the wiki does contain information about many of these systems. Cataloging the
AVs embodied in older systems would add over one hundred more entries.

Given the level of effort that we have devoted to populating the catalog (see
Section 3.1), the amount of publicity that the catalog has received, and the
number of AV developers and users that we have interacted with over the past
four years, we believe that we have so far captured the bulk of what is publicly
available, including the vast majority of easily found, better-known AVs. The
search procedure models the process an educator would employ for locating
an AV. If an AV cannot be found by our methods, it seems unlikely that an
instructor would easily locate it via standard Internet search engines either.
We continue to actively collect new links.

ACM Transactions on Computing Education, Vol. 10, No. 3, Article 9, Pub. date: August 2010.

Algorithm Visualization: The State of the Field · 9: 13

4.2 How Are They Implemented?

Virtually all AVs and AV toolkits that we located with creation dates since the
mid-1990’s were implemented in Java. Just over two thirds of available AVs can
be viewed directly in a Web browser. Most often they are delivered as applets or
initiated using Java Webstart, but a few are presented using Flash, Javascript,
or other mechanism through a Web page. Of the other third, nearly all are
Java applications that must be downloaded and opened locally, while only about
three percent of AVs developed since the mid-1990s are implemented any other
way.

We believe that AVs directly available on Web pages will get more atten-
tion from potential users, since they need not go through the additional step of
downloading and unpacking an AV or AV system. Thus, these are more likely
to be linked by others, resulting in a higher profile among search engines. On
the other hand, a significant number of links in the collection were located via
AV link collections or AV systems provided as downloads.

4.3 How Are They Disseminated?

Almost none of the AVs in the catalog are available from large, organized repos-
itories. Many AVs are cataloged by link sites, such as the AlgoViz catalog, that
attempt to link to AVs that the site’s managers consider “worthy.” However,
most of these link sites are small in scale, linking to perhaps 10–20 favorite AVs
for some course or textbook. A small number of efforts exist to produce com-
prehensive catalogs of AVs. These include the Hope College collection [Hope
College 2001] (last edited in 2001) with approximately 100 entries, and Guido
Rössling’s collection [Rössling 2006] (last edited in May 2006), containing 233
entries. The AlgoViz catalog now incorporates nearly all entries from Rössling’s
collection that are still available on the Internet.

4.4 What Are They About?

The catalog’s topic list was originally seeded with subjects typically covered
in freshman and sophomore courses on data structures and algorithms. Over
time, we have widened the scope of topics to accept everything that might be
considered computer science. However, we have found that few AVs have been
created on topics other than traditional data structures and algorithms. While
we have found AVs covering areas such as networks, operating systems, pro-
gramming languages, and numerical algorithms, they are rare. Our top-level
categories for grouping AVs, along with their current population counts, are
given in Tables I and II. Each major category shows the total number of corre-
sponding AVs in the catalog, along with a breakdown into major subcategories.

As Figure 1 and Tables I and II show, there is wide variation in level of cov-
erage. About 9% of all AVs demonstrate linear structures such as stacks and
queues, even though these probably present less difficulty to students than
many other topics. Over a quarter of all collected AVs demonstrate sorting

ACM Transactions on Computing Education, Vol. 10, No. 3, Article 9, Pub. date: August 2010.

9: 14 · C. A. Shaffer et al.

Table I. Counts by Major Category (with Significant
Subcategories) for Visualizations of Data Structures in

the AlgoViz Catalog

Linear Structures 46
Lists 13
Stacks & Queues 32

Search Structures 76
Binary Search Trees 16
AVL Trees 8
Splay Trees 9
Red-Black Trees 13
B-Trees and variants 17
Skiplist 6

Spatial Search Structures 31
Point representations 13
Rectangle representations 10

Other Data Structures 25
Heap/Priority Queue 11

Table II. Counts by Major Category (with Significant
Subcategories) for Visualizations of Algorithms in the

AlgoViz Catalog

Search Algorithms 18
Linear/Binary Search 5
Hashing 11

Sort Algorithms 130
Sorting Overviews 8
Quadratic Sorts 25
Shell Sort 13
Quicksort 24
Mergesort 25
Heapsort 16
Radix and Bin Sort 14

Graph Algorithms 68
Traversals and Searches 15
Shortest Paths 20
Spanning Trees 17
Network Flow 4

Compression Algorithms 18
Huffman Coding 13

Networking & OS 10
Dynamic Programming 9
Computational Geometry 20
String Matching 6
NP-complete Problems 9
Other Algorithms 47

Recursion & Backtracking 10
Mathematical Algorithms 8

algorithms. While sorting is a key topic for undergraduate data structures and
algorithms courses, this disproportionate representation overstates its impor-
tance. Further, many of these sorting AVs are variations on the classic “Sorting
Out Sorting” video [Baecker and Sherman 1981] and merely show bars being
swapped. In contrast, most specialized and advanced topics are poorly covered.
ACM Transactions on Computing Education, Vol. 10, No. 3, Article 9, Pub. date: August 2010.

Algorithm Visualization: The State of the Field · 9: 15

Table III. Counts for Projects or Institutions Producing Significant Numbers of AVs

“One-offs” (1–5 visualizations) 161 31%
Small shops (6–10 visualizations) 52 10%

Algorithms In Action Project (Melbourne) 6
Borowski’s Sorting Demos 6
University of Pittsburgh 6
JAVENGA 6
Michael Goodrich’s Collection 7
University of Patras 7
Kovac’s Tree Project 7
JCAT 7

Prolific teams (10+ visualizations) 127 25%
Jacobs’ Animated Lectures 12
University of Oldenburg/OLLI 13
University of Auckland 15
IIT Kanpur 18
Virginia Tech 19
University of Canterbury 22
University of Maryland Spatial Data Structures 28

Major Visualization Project 182 35%
JAWAA and JFLAP (Duke University) 11
IDSV (University of Maryland, University College) 12
Data Structures Navigator (Phillips-University, Marburg) 15
JHAVÉ (University of Wisconsin, Oshkosh) 22
TRAKLA2 (Helsinki University of Technology) 28
ALVIE (University of Florence) 30
Animal (TU Darmstadt) 31
Data Structures Visualization (University of San Francisco) 33

For instance, only 18 AVs (3.5%) cover compression algorithms and 13 of those
are on Huffman coding. Even worse, a fundamental topic for upper-division
courses like NP-completeness gets attention in only 9 AVs (< 2%). This imbal-
ance shows a need for new AVs that address underrepresented areas.

4.5 Who Makes Them?

Just under one third of all AVs in our catalog are essentially single efforts by
their respective authors. Another 10% are provided by “small shops” that have
created 5–10 AVs, mostly by hand, often as individual Java applets. These
might have each been created by the same individual over some number of
years (typically a faculty member who is teaching relevant courses), or they
might have been developed by a small number of students working for a faculty
member. About 60% of all AVs in our catalog are created by groups who have
developed over 10 AVs. In the majority of these cases, they are part of an
AV development system, but a significant minority are parts of collections we
cannot characterize as a system. Table III lists the major developers of AVs
since the mid-1990s.

In addition to categorization problems for how to define distinct entries in
the catalog as described above, there is also the question of when to draw the

ACM Transactions on Computing Education, Vol. 10, No. 3, Article 9, Pub. date: August 2010.

9: 16 · C. A. Shaffer et al.

Table IV. Year of Last Change by Project

Year 96 97 98 99 00 01 02 03 04 05 06 07 08
Project 1 1 1 3 4 2 3 2 1 1 3 1 8
Smaller 16 16 13 14 5 6 7 2 6 10 6 1 3

line on what is an AV and what is static course material. We are still strug-
gling with how to decide this. We also note that because our search procedure
consisted of a great deal of manual link following and URL manipulation, once
a single AV from a collection or small shop was added to the catalog, the en-
tirety of that collection was soon added. This ensures that we probably have
cataloged AVs from the groups and projects with at least some visibility. The
AVs we missed are presumably heavily skewed towards one-offs and smaller
efforts.

4.6 When Were They Made?

Some well-known systems were developed in the early 1990s for creating AVs
[Brown and Sedgewick 1984; Stasko 1992; Stasko and Kraemer 1992; Hansen
et al. 2000]. However, most of these are now no longer available or so diffi-
cult to access due to changes in computer operating systems that they are not
currently a factor in education. Considering primarily the development of AVs
since the mid-1990s (i.e., Java), AV development as indicated by last-changed
dates appears to be continuing relatively evenly over the years. Table IV shows
a table of the last-change dates for those AVs in the catalog for which the in-
formation is available. These counts are “by project” rather than by individual
AV, in that if a given AV or AV system provided visualizations for multiple algo-
rithms, then it only counts once in the table. Note that AV developers rarely do
a good job of documenting their development histories, and so there is a lot of
inference and some guessing on these dates. While these data appear to show
a decrease after 1999, it is important to look at the effects of large projects
versus smaller “one-off” AV production. The large numbers in the late 1990s
mostly come from individual AVs, rather than from major projects or active
groups. The number of smaller efforts has dropped off in later years. In con-
trast, the last-changed dates for larger efforts is roughly steady, with a number
of large projects still active. The big increase recorded for 2008 merely indi-
cates that a number of projects have not stopped maintaining their software.
Unfortunately, ongoing projects do not appear to be attuned to addressing gaps
in topical coverage.

We speculate that students were readily available to create AVs during the
Java boom of the mid to late 1990s, when Java and applets were new and the “in
thing” for students to learn. But now there are other “in things” competing for
students’ attention. The nationwide drop in computer science enrollment might
also mean that there are fewer students available to do such projects. This is
not necessarily a bad outcome, as such student-driven one-off implementations
tend to be of low pedagogical value. Larger projects appear to be ongoing at
rates similar to 10–15 years ago.
ACM Transactions on Computing Education, Vol. 10, No. 3, Article 9, Pub. date: August 2010.

Algorithm Visualization: The State of the Field · 9: 17

4.7 Will We Find Them Again?

Like everything on the Internet maintained by individuals, AVs have a
turnover rate in their accessibility. To measure this, we track the status of
the links on our catalog. Each week, a snapshot of each link’s accessibility is
recorded. These weekly checks have been performed since May 2007. At var-
ious points in time, we have analyzed the link data and attempted to recover
AVs at broken links. For instance, as of August 2009, there were 382 unique
links in our catalog (multiple entries in the catalog can share the same link).
Of these, 60 had become lost at some point (15.7%). Fortunately, many of those
links were recoverable with some searching—they had been moved but their
old links were not redirected. Through manual efforts to locate and restore lost
links (including queries to the authors in some cases), we were able to recover
49 of the 60. Thus, of the 382 unique links in the catalog in August, 2009,
11 (2.9%) were lost permanently (so far as we know) and 49 (12.8%) moved
without redirection but were found again through manual intervention. As of
March 2010 we had 455 unique links in the catalog. Of these, 20 (4.4%) were to
AVs that we could no longer locate, representing an additional loss of nine AVs
in six months.

4.8 How Are They Licensed?

All AVs in the catalog are freely available for educators to use. Although this
might be an artifact of the search process, we have yet to find any non-gratis
AV or system. 57% of all AVs provide access to the source code in some way. Of
447 AVs in our collection for which we have identified the status of their source
code availability, 193 (43%) do not make source code available; 68 (15%) make
the source code available with no defined license beyond possibly a copyright
notice in the code itself; 140 (31%) attempt to place some sort of recognizable
license restriction on the code (but only 80 of these do it in any formal way, such
as citing the GNU General Public License (GPL)), 44 (10%) say sourcecode is
available by special request, and one AV explicitly puts its source code in the
public domain.

Many of the source-available AVs seem to lack a license not because the
developers wish to prevent redistribution, but due to a lack of understanding
of the process. It is reasonable to expect that most AV developers who provide
access to their source code would willingly make it officially open source if there
were greater awareness on their part of the process and advantages for doing
so. And it is possible that many who do not make source code available would
be willing to do so if they knew a simple mechanism for putting it under open
source license.

5. CONCLUSIONS

While many good AVs are available, the need for more and higher quality AVs
continues. There are many topics for which no satisfactory AVs are avail-
able. This is especially true for more difficult material such as B-trees or NP-
completeness. As yet there seems to be no organized movement to satisfy this

ACM Transactions on Computing Education, Vol. 10, No. 3, Article 9, Pub. date: August 2010.

9: 18 · C. A. Shaffer et al.

need. On the other hand, the theoretical foundations for creating effective AVs
appear to be steadily improving. More articles are appearing regarding effec-
tive use of AVs in courses, and a body of work has begun to form regarding how
to develop effective AVs in the first place. While more fundamental research
on how to develop and use AVs is necessary, we also simply need more imple-
menters to produce more quality AVs. Once these AVs are created, educators
must be able to find them.

Currently, much AV development seems to occur in a social vacuum. While
the larger developers are aware of each other’s efforts (as evidenced by partic-
ipation in activities such as ITiCSE working groups [Naps et al. 2002, 2003;
Rössling et al. 2006]), most smaller developers of AVs do not seem aware of
lessons learned from effectiveness studies. Instead, they seem to be repeating
the same mistakes as their predecessors. Additionally, it is not easy for users
to find guidance on issues such as how to find the best AVs to use, and what are
pedagogically effective ways to use them. Our proposed remedy for this situ-
ation is to bring various AV stakeholders—developers, educators, researchers,
and end users—together into a community. We believe that enhanced commu-
nication will lead to dissemination of knowledge and good ideas, higher quality
AVs, and better educational outcomes from the use of AVs.

What will it take to create a community of AV stakeholders? We believe that
three things are necessary (or at least desirable): opportunities for interaction,
a good courseware repository, and up-to-date statistics.

While digital communities probably will never replace the traditional birds-
of-a-feather sessions and conference workshops at conferences such as SIGCSE
and ITiCSE, having an online place for informal discussion and knowledge dis-
semination should help improve the field [Harrison and Dourish 1996]. Online
communities typically facilitate asynchronous communication using discussion
forums and/or e-mail listservs.

Educators also need a dependable collection of AVs to draw on, either di-
rectly in service of teaching or as a base for creating new AVs. Small-scale
developers of AVs would benefit from access to existing AV implementations
for ideas and perhaps for code to quickly get their own projects prototyped. The
computer science education community has created some courseware reposito-
ries, such as the collection of materials submitted to JERIC [JERIC 2008] (now
renamed The ACM Transactions on Computing Education) and the CITIDEL
repository [CITIDEL 2007]. In particular, since the advent of the ACM Digi-
tal Library [Association for Computing Machinery 2010], CITIDEL (now being
replaced by the Ensemble project) has repositioned itself from a collection of
mainly publications (i.e., journal articles and conference papers) to a repository
for educational resources. The ACM Transactions on Computing Education and
its contributed courseware are indexed as part of the ACM Digital Library, hy-
pothetically allowing for easy searching. While the ACM Digital Library is a
huge collection, it does not appear to contain significant amounts of course-
ware in general or AVs in particular. Equally important, it does not provide
adequate search tools for courseware or AVs. The bulk of ACM’s materials are
papers, typically organized by publication venue. There is no support for brows-
ing of courseware separate from the (overwhelming) body of noncourseware

ACM Transactions on Computing Education, Vol. 10, No. 3, Article 9, Pub. date: August 2010.

Algorithm Visualization: The State of the Field · 9: 19

content. SIGCSE provides a small but growing collection of links to CS-related
educational software [SIGCSE 2010]. Broader courseware repositories in-
clude SMETE [SMETE 2010], and Connexions [Connexions Scholarly Content
Repository 2010]. While these are promising beginnings, current incarnations
of courseware repositories are small in scope and in visibility. None of these
repositories have large collections of AVs. Further, in all the hours we have
spent conducting Google searches for various AVs, not a single AV within any
of these repositories was discovered. Thus, these repositories appear to provide
no search engine visibility for the few AVs they might contain.

Section 4 gave a detailed overview of the current state of practice within
the field of algorithm visualization. However, much of the information was
(at least partly) manually derived, a labor-intensive process. Worse, much of
that information will soon be out of date. The community needs dynamically
updated statistics similar to those contained in Section 4. We have begun to
develop software for extracting such data in the form of graphing tools for ex-
ploring the our AV catalog, but there continues to be room for more and deeper
automated analysis.

By providing dynamic statistics about the collection in the catalog, we make
it possible for developers to choose topics and features based on evidence in-
stead of speculation. In addition to numbers, developers might find commen-
tary from forums/listservs to be valuable as well. Similarly, educators can get
reports from fellow educators about which AVs work and how to successfully in-
tegrate them into a curriculum. Any opinions, experiences, and lessons learned
from others can save time and allow educators to make better choices when
picking AVs to incorporate. The difficulty comes with establishing a community
resource where users and developers can gather and share their experiences.

A potentially powerful way to provide information to educators and to influ-
ence developers is to provide a ratings system for existing AVs. Ratings can
come from two fundamental sources. The first is from a source of “expertise”
such as catalog editors or curators of a site such as ours. Our catalog provides a
coarse editorial rating structure of “Recommended,” “Has Potential,” and “Not
Recommended.” Over three quarters of the AV entries have been rated as of
this writing. Of these, 18% are ranked as “Recommended,” 42% are ranked
as “Has Potential,” and 30% are ranked as “Not Recommended.” We plan as
future work to do a formal study regarding the sensitivity of our current edi-
torial rating process to subjective bias. That is, we will examine whether most
knowledgeable people would agree with a given set of ratings. This should lead
to improvements in our rating process.

A second source of rating information should be the broad community of
instructors, developers, students, and other users of AVs. By allowing the com-
munity to rate AVs and provide comments and feedback, we would hope that
developers will respond to requests for improvement, or at least observe what
has proved successful in the past before they develop their next AV.

The AlgoViz Wiki was created with the goal of supporting the needs of an
Algorithm Visualization community. The Wiki has been under continuous de-
velopment since 2006. It was advertised at SIGCSE 2009 and to the SIGCSE
Listserv multiple times during 2009. A major change began in Summer 2009

ACM Transactions on Computing Education, Vol. 10, No. 3, Article 9, Pub. date: August 2010.

9: 20 · C. A. Shaffer et al.

when we developed the initial version of the AlgoViz Portal.1 The AlgoViz
Portal is implemented in the Drupal content management system, and is ex-
pected to completely replace the MoinMoin implementation during 2010. While
not technically a wiki, the AlgoViz Portal implementation provides many of
the same features (such as user-editable pages) and more (user forums and a
searchable bibliography). The AlgoViz Portal seeks to provide many opportuni-
ties for community involvement in the site.

ACKNOWLEDGMENT

We thank an anonymous associate editor for suggestions on how to create a
more rigorous framework for evaluating our ratings process.

REFERENCES

ALGOVIZ WIKI. 2010. Data structures and algorithm visualization wiki.
http://web-cat.cs.vt.edu/AlgovizWiki.

ALGOVIZ.ORG. 2010. Annotated bibliography of the AV research literature.
http://algoviz.org/biblio.

ASSOCIATION FOR COMPUTING MACHINERY. 2010. The ACM digital library. http://portal.acm.org.
BAECKER, R. AND SHERMAN, D. 1981. Sorting out sorting. Video.
BRABEC, F. AND SAMET, H. 2003. Maryland spatial index demos.

http://donar.umiacs.umd.edu/quadtree/.
BROWN, M. 1992. An introduction to Zeus. In Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems (CHI’92). 663–664.
BROWN, M., NAJORK, M., AND RAISAMO, R. 1997. A java-based implementation of collaborative

active textbooks. In Proceedings of the IEEE Symposium on Visual Languages (VL’97). 372–379.
BROWN, M. H. AND SEDGEWICK, R. 1984. A system for algorithm animation. In Proceedings of

the 11th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’84).
177–186.

BYRNE, M. D., CATRAMBONE, R., AND STASKO, J. T. 1996. Do algorithm animations aid learning?
Tech. rep. GIT-GVU-96-18, Georgia Institute of Technology.

CITIDEL 2007. Computing and information technology interactive digital educational library.
http://www.citdel.org.

CONNEXIONS SCHOLARLY CONTENT REPOSITORY. 2010. http://cnx.org.
CRESCENZI, P. 2010. Alvie 3.0. http://alvie.algoritmica.org/.
CRESCENZI, P., GAMBOSI, G., AND GROSSI, R. 2006. Strutture di Dati e Algoritmi. Pearson

Education Addison-Wesley.
DIEHL, S. 2007. Software Visualization: Visualizing the Structure, Behavior, and Evolution of

Software. Springer.
DITTRICH, J.-P., VAN DEN BERCKEN, J., SCHÄFER, T., AND KLEIN, M. 2000. Data structure nav-

igator. http://dbs.mathematik.uni-marburg.de/research/projects/dsn/.
GALLES, D. 2006. Data structure visualization. http://www.cs.usfca.edu/galles/visualization/.
GRISSOM, S., MCNALLY, M., AND NAPS, T. 2003. Algorithm visualization in CS education:

Comparing levels of student engagement. In Proceedings of the ACM Symposium on Software
Visualization (SoftVis’03). 87–94.

GURKA, J. AND CITRIN, W. 1996. Testing effectiveness of algorithm animation. In Proceedings of
the IEEE Symposium on Visual Languages (VL’96). 182–189.

HANSEN, S., NARAYANAN, N., AND SCHRIMPSHER, D. 2000. Helping learners visualize and com-
prehend algorithms. Interact. Multimedia Electron. J. Comput.-Enhanc. Learn. 13, 3, 291–317.

1http://algoviz.org

ACM Transactions on Computing Education, Vol. 10, No. 3, Article 9, Pub. date: August 2010.

Algorithm Visualization: The State of the Field · 9: 21

HARRISON, S. AND DOURISH, P. 1996. Replacing space: The roles of place and space in collabora-
tive systems. In Proceedings of the ACM Conference on Computer Supported Cooperative Work
(CSCW’96). 67–76.

HOPE COLLEGE. 2001. Complete collection of algorithm visualizations.
http://www.cs.hope.edu/∼dershem/ccaa/ccaa.

HUNDHAUSEN, C. AND DOUGLAS, S. 2000. Using visualizations to learn algorithms: Should stu-
dents construct their own, or view an expert’s? In Proceedings of the IEEE Symposium on Visual
Languages (VL’00). 21–28.

HUNDHAUSEN, C. D., DOUGLAS, S. A., AND STASKO, J. T. 2002. A meta-study of algorithm visu-
alization effectiveness. J. Vis. Lang. Comput. 13, 3, 259–290.

JARC, D. J., FELDMAN, M. B., AND HELLER, R. S. 2000. Assessing the benefits of interactive
prediction using Web-based algorithm animation courseware. In Proceedings of the 31st SIGCSE
Technical Symposium on Computer Science Education (SIGCSE’00). 377–381.

JERIC 2008. J. Educ. Resour. Comput. http://www.acm.org/pubs/jeric.
KORHONEN, A., MALMI, L., AND SILVASTI, P. 2003. Trakla2: A framework for automatically

assessed visual algorithm simulation exercises. In Proceedings of the Koli Calling 3rd Annual
Baltic Conference on Computer Science Education (KOLI-CALLING’03).

LAWRENCE, A. W., STASKO, J., AND BADRE, A. 1994. Empirically evaluating the use of animations
to teach algorithms. In Proceedings of the IEEE Symposium on Visual Languages (VL’94). 48–54.

NAPS, T., COOPER, S., KOLDEHOFE, B., LESKA, C., RÖSSLING, G., DANN, W., KORHONEN, A.,
MALMI, L., RANTAKOKKO, J., ROSS, R., ANDERSON, J., FLEISCHER, R., KUITTINEN, M., AND

MCNALLY, M. 2003. Evaluating the educational impact of visualization. SIGCSE Bull. 35, 4,
124–136.

NAPS, T., EAGAN, J., AND NORTON, L. 2000. JHAVÉ—an environment to actively engage stu-
dents in Web-based algorithm visualizations. In Proceedings of the 31st Technical Symposium on
Computer Science Education (SIGCSE’00). 109–113.

NAPS, T., RÖSSLING, G., ALMSTRUM, V., DANN, W., FLEISCHER, R., HUNDHAUSEN, C.,
KORHONEN, A., MALMI, L., MCNALLY, M., RODGER, S., AND ÁNGEL VELÁZQUEZ-ITURBIDE, J.
2002. Exploring the role of visualization and engagement in computer science education. In Pro-
ceedings of the Working Group Reports from ITiCSE on Innovation and Technology in Computer
Science Education (ITiCSE-WGR’02). 131–152.

PIERSON, W. AND RODGER, S. 1998. Web-based animation of data structures using jawaa.
In Proceedings of the 29th SIGCSE Technical Symposium on Computer Science Education
(SIGCSE’98). 267–271.

RÖSSLING, G. 2006. Animation repository. http://www.animal.ahrgr.de/animations.php.
RÖSSLING, G., NAPS, T., HALL, M., KARAVIRTA, V., KERREN, A., LESKA, C., MORENO, A.,

OECHSLE, R., RODGER, S., URQUIZA-FUENTES, J., AND ÁNGEL VELÁZQUEZ-ITURBIDE, J.
2006. Merging interactive visualizations with hypertextbooks and course management. SIGCSE
Bull. 38, 4, 166–181.

RÖSSLING, G., SCHÜER, M., AND FREISLEBEN, B. 2000. The animal algorithm animation tool. In
Proceedings of the 5th Annual SIGCSE/SIGCUE ITiCSE Conference on Innovation and Tech-
nology in Computer Science Education (ITiCSE’00). 37–40.

SARAIYA, P. 2002. Effective features of algorithm visualization. M.S. thesis. Virginia Polytechnic
Institute and State University.

SARAIYA, P., SHAFFER, C., MCCRICKARD, D., AND NORTH, C. 2004a. Effective features of al-
gorithm visualizations. In Proceedings of the 35th SIGCSE Technical Symposium on Computer
Science Education (SIGCSE’04). 382–386.

SARAIYA, P., SHAFFER, C., MCCRICKARD, D., AND NORTH, C. 2004b. Effective features of al-
gorithm visualizations. In Proceedings of the 35th SIGCSE Technical Symposium on Computer
Science Education (SIGCSE’04). 382–386.

SHAFFER, C. A., COOPER, M. L., AND EDWARDS, S. H. 2007. Algorithm visualization: A report
on the state of the field. In Proceedings of the 35th SIGCSE Technical Symposium on Computer
Science Education (SIGCSE’07). 150–154.

ACM Transactions on Computing Education, Vol. 10, No. 3, Article 9, Pub. date: August 2010.

9: 22 · C. A. Shaffer et al.

SHAFFER, C. A., HEATH, L., AND YANG, J. 1996. Using the Swan data structure visualization
system for computer science education. In Proceedings of the 35th SIGCSE Technical Symposium
on Computer Science Education (SIGCSE’96). 140–144.

SIGCSE 2010. External links. http://sigcse.org/resources/external-links.
SMETE 2010. Digital library. http://www.smete.org.
STASKO, J. 1992. Animating algorithms with XTANGO. SIGACT News 23, 2, 67–71.
STASKO, J. 2001. POLKA animation system.

http://www.cc.gatech.edu/gvu/softviz/parviz/polka.html.
STASKO, J., DOMINGUE, J., BROWN, M. H., AND PRICE, B. A. 1998. Software Visualization:

Programming as a Multimedia Experience. MIT Press, Cambridge, MA.
STASKO, J., KEHOE, C., AND TAYLOR, A. 2001. Rethinking the evaluation of algorithm animations

as learning aids: An observational study. Int. J. Hum.-Comput. Stud. 54, 2, 265–284.
STASKO, J. AND KRAEMER, E. 1992. A methodology for building application-specific visualization

of parallel programs. Tech. rep. GIT-GVU-92-10. Georgia Institute of Technology.
STERN, L. 2001. Algorithms in action. http://www.cs.mu.oz.au/aia/.
WALDMANN, T. AND HERMANN, J. 2010. MoinMoin Wiki Engine.

http://moinmoin.wikiwikiweb.de/.
WIGGINS, M. 1998. An overview of program visualization tools and systems. In Proceedings of the

36th Annual Southeast Regional Conference (ACM-SE’98). 194–200.

Received June 2009; revised August 2009, March 2010, April 2010; accepted April 2010

ACM Transactions on Computing Education, Vol. 10, No. 3, Article 9, Pub. date: August 2010.

