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Abstract
We outline various design considerations and implementation
options pertaining to lightweight data management in problem
solving environments (PSEs). The emphasis is on composi-
tional modeling, in the context of a PSE for wireless commu-
nications system design (S � W). By focusing on a restrictive
subset of markup languages, we describe how facilities such as
management of the execution environment, experiment man-
agement, and reasoning about model sequences can be pro-
vided.

1. INTRODUCTION
Compositional modeling refers to the ability to ‘combine rep-
resentations for different aspects of a computation to create a
representation of the system as a whole’ [4]. It serves as a pow-
erful programming abstraction for designing complex problem
solving environments (PSEs), such as those envisaged under
the NSF’s Next Generation Software (NGS) program. Exam-
ples of systems that provide compositional modeling include
the Linear System Analyzer (LSA) [6], the Component Archi-
tecture Toolkit (CAT) [1] at Indiana University, the ZOO desk-
top experiment management environment at the University of
Wisconsin [8], Application Visualization System of Advanced
Visual Systems, Inc. [14], Nayak’s theoretical framework [12],
and the SCIRun computational steering system at the Univer-
sity of Utah [9].

Data management for compositional modeling involves:

1. the automatic generation and execution of solution com-
ponents by selecting and composing model fragments
from a library, using general and domain-specific con-
straints on their structure,

2. mechanisms to support declarative modeling and visual-
ization of model sequences as an aid in graphical and col-
laborative composition, and

3. algorithms for reasoning about model sequences, given
constraints on performance and representational goals.

Traditionally, PSEs support one or at most two of the above
three goals. For example, the LSA and CAT systems support
(1) by using mechanisms such as distributed OO and inheri-
tance to achieve composition. SCIRun, ZOO, and LSA sup-
port (2) but do not provide sophisticated capabilities for rea-
soning since interfaces to low level code are hardwired. AVS
uses a data-flow programming model to support both (1) and
(2) but it is more oriented towards generating visualization
applications from well-understood and ready-made network
components. In particular, goal (3) is not one of the motivating
considerations. Nayak’s compositional modeling framework
uses causal approximations to find ‘satisficing’ (sic) model se-
quences (goal (3)), but its considerations are not performance-
driven and are more motivated by the desire to formalize the
modeling process using an underlying domain theory.

The goal of lightweight data management is to resolve these
differing (and often conflicting) PSE design goals, by provid-
ing expressive and high performance access to objects and
streams (for experiment management) with minimal overhead
(in terms of traditional database functionality such as transac-
tion processing and integrity maintenance). Such additional
services, if needed, are typically provided at a higher level of
abstraction [5].

In this paper, we describe our experiences with creating
a lightweight data and experiment management system for a
wireless system design PSE (S � W). S � W is a collaborative
application design and support system that incorporates high-
fidelity site-specific propagation and channel models, parallel
computing, recommender systems, a design optimization loop,
and a composition environment. S � W is designed to provide



superior software performance by (i) developing fundamen-
tally better wireless communication models, (ii) constructing
better simulation systems composed from the component wire-
less models via a recommender system, and (iii) the transpar-
ent use of parallel high-performance computing hardware via
the composition environment’s access to distributed resources.

Our experiences with S � W show that it is possible to achieve
lightweight data management by focusing on a restrictive sub-
set of XML-based markup languages. We outline the design of
our language and describe its implementation for a family of
wireless propagation and channel models. Relevant issues in-
cluding search space representation (for model composition),
the software engineering of conversion utilities (for overcom-
ing impedance mismatch), implications of database design
choices, and algorithms for efficient and effective querying
and mining of model spaces are briefly mentioned.

The rest of the paper is organized as follows: Section 2 in-
troduces and motivates the design of the S � W system. Sections
3, 4, and 5 describe three aspects of S � W and their implications
for data management. Section 6 provides a summary discus-
sion.

2. OVERVIEW OF S
�

W
Broadband wireless systems are essential for the success of
the Next Generation Internet (NGI) and future generations of
portable multimedia communicators, but adequate design and
analysis tools do not presently exist. Remarkable improve-
ments in computing power and new satellite imaging tech-
niques have recently led to fundamentally new approaches to
predicting wireless system performance through the use of ge-
ographical information, specific building placement and ar-
chitectural information, along with numerical electromagnetic
propagation and ray-tracing models. The reader is referred
to [13] for an in-depth treatment.

While primitive software tools exist for cellular and PCS
system design, none of these tools include models adequate to
simulate broadband wireless systems, nor do they model the
multipath effects due to buildings and other man-made objects.
This is a key factor that limits the performance of devices such
as wireless modems. Furthermore, currently available tools
do not adequately allow the inclusion of new models into the
system, visualization of results produced by the models, inte-
gration of optimization loops around the models, validation of
models by comparison with field measurements, and manage-
ment of the results produced by a large series of experiments.
Our collaborative PSE — ‘Site-Specific Systems Simulator for
Wireless Communications’ (S � W) — is motivated by all of
these concerns.

The operational strength of S � W relies on efficient data
modeling that supports the experiment definition, data acqui-
sition, data analysis, and inference processes. In this paper, we
concentrate on managing a high performance execution envi-
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Figure 1: An example model from the S � W project.

ronment, experiment management, and reasoning about model
sequences. In a future paper, we intend to address higher
level problem solving abstractions such as recommendation
and knowledge-based reasoning.

3. MANAGEMENT OF THE
EXECUTION ENVIRONMENT
One of the most basic functionalities expected of a PSE is man-
agement of the execution environment, specifically, mapping
abstract models and specifications onto actual codes that can
be executed on the available hardware. While PSEs almost
universally use the dataflow paradigm to represent composi-
tions of components, a variety of low-level issues have to be
addressed for mapping onto architectures such as grids. Re-
source management, fault tolerance, and distributed schedul-
ing services have to be provided before a graph of abstract
components, which we call a model, can be executed. We do
not discuss these further in this paper but the reader is referred
to [5] for an in-depth treatment.

A simplified example of an S � W model is provided in Fig. 1.
It addresses the wireless design problem of finding the posi-
tions of base stations in a square mile area of a large city such
that the coverage is optimal. In terms of execution, this model
is a graph of computational components enclosed in an opti-
mization loop. The curved rectangles correspond to the com-
ponents that are a mix of C, Matlab, and Fortran programs and
functions. The ray tracer is a parallel MPI program that runs on
a Beowulf cluster of workstations. Features such as aggrega-
tion are used to simplify the interfaces to the optimizer and/or
support creation of new components in a visual programming



style, as opposed to developing them in a language like Matlab.
In Fig. 1, the straight rectangles express aggregation, e.g. the
propagation model is a component that consists of three sub-
components: triangulation, space partitioning, and ray tracing.

Several interesting observations about the data flows in this
example can be made:

1. Data is exchanged between model executions in three dif-
ferent languages. PSEs typically force data conversion to
a language-neutral intermediate form for interoperability.

2. Such a simple solution will not work for realizing the op-
timization loop because data is streaming between the op-
timizer and the simulation. In addition, it will not support
scenarios such as computational steering [9].

3. A variety of intermediate results are produced, not all of
which are direct performance data. Such data can be
cached to improve performance, visualized at different
stages of the execution, or simply saved for later inspec-
tion. PSEs typically provide rudimentary solutions in the
form of database systems.

4. In a multidisciplinary application such as S � W, the com-
ponents are developed at different times by different re-
searchers (in our project, many are are still under ac-
tive development). Their I/O specifications hence cannot
be enumerated in advance to achieve matching of com-
ponents. Further, the possibilities of how components
could be cascaded and combined can itself evolve over
time. For example, the static channel model builder can
be replaced with one for dynamic and mobile environ-
ments thus enabling a fundamentally different simulation
methodology.

This scenario, typical for a PSE, is not well supported by tra-
ditional database designs such as relational schemas and object
oriented (OO) design. Relational data is resistant to changes in
the schema; OO data and various kinds of IDLs are not well-
suited for PSEs either, because of their inability to work with
legacy software in Matlab and/or Fortran. The impedance mis-
match between objects in a OO database system and functions
and routines in scientific codes implies that only components
designed from a pure OO starting point (e.g., CAT [1]) will
work seamlessly.

Our emphasis here is on semi-structured data represen-
tations; a very popular example is XML [15], which is
language-neutral, can be streamed, stored in a database (e.g.,
by Lore [10]), visualized, and converted (e.g., by XSL [17]) in
a generic fashion. XML is not without its disadvantages either.
There exists a plethora of tools that perform various document
processing functions, but simply reading a list of polygons en-
coded in XML into a C ray tracing program can require over a
hundred lines of code. We address binding XML data to PSE

components in the following sections. Fortunately, the XML
mindset makes it possible to design these bindings in a generic
manner.

Binding
Binding refers to the process of converting XML data to an
appropriate representation in a scientific computing language
(the reverse process is fairly straightforward). There are three
basic forms of binding:

1. Binding of values to language variables.

2. Converting an XML format to some native format that
can be read directly by the component.

3. Generating source code for a stub that contains embedded
data and a call to the appropriate language function using
these data as parameters.

The latter two forms of binding can be reduced to associ-
ating values with language variables and then printing/storing
these values in an appropriate format, so these can employ so-
lutions to the first problem.

The first step towards such bindings is a validation lan-
guage, e.g., XML Schema [18] or SOX. However, validation
languages are targeted at small documents with sophisticated
constraints, which makes their use for voluminous scientific
data impractical. Custom solutions for specific languages,
e.g., [11], are too inflexible to work in a multi-lingual PSE
framework. Various IDLs, e.g., SIDL [3], make the assump-
tion that the interfaces are homogeneous, which does not hold
for PSEs. Generic parsers like YACC are too low-level to
be useful because the amount of parsing code can exceed the
amount of code that performs the computation. It appears that
the right language is at the intersection of these ideas. We
call such languages BSMLs (Binding Schema Markup Lan-
guages).

Our BSML associates user-specified blocks of code with
user-specified blocks of an XML file. ‘Blocks’ can be primi-
tive datatypes, sequences, selections, and/or repetitions. Intu-
itively, primitive datatypes denote single values, such as dou-
ble precision numbers; sequences denote structures; selections
denote multiple choices of conveying the same information;
and repetitions denote lists. While not particularly expressive,
this notation is meaningful to PSE component developers, sim-
ple and efficient implementation-wise, and general enough to
allow the building of more complex data representations.

Consider, for example, representing a power delay profile
(PDP) in XML. A PDP is a two-column table that describes
the power received at a particular location during a specified
time interval. Statistical aggregates derived from power delay
profiles are used, for example, to optimize transmitter place-
ment in S � W. A PDP can look like this:



<pdp>
<rmsDelaySpread>49.4872</rmsDelaySpread>
<meanExcessDelay>57.1429</meanExcessDelay>
<peakPower>-34.7712</peakPower>
<time>0</time> <power>-Inf</power>
<time>10</time> <power>-Inf</power>
...
<time>90</time> <power>-34.7712</power>
<time>100</time> <power>-Inf</power>
...
<time>190</time> <power>-36.0206</power>

</pdp>

A BSML description of a class of XML documents that con-
tain PDPs may then be the following:

<element name=’pdp’>
<sequence>
<element name=’rmsDelaySpread’

type=’double’/>
<element name=’meanExcessDelay’

type=’double’/>
<element name=’peakPower’

type=’double’/>
<code component="optimizer">
<bind>print "$peakPower\n"</bind>
</code>

</sequence>
<repetition>
<sequence>
<element name=’time’ type=’double’/>
<element name=’power’ type=’double’/>
<code component="chtts1|chttm">
<bind>print " $time $power\n"</bind>

</code>
</sequence>

</repetition>
<code component="chtts1|chttm">
<begin>print "M = [\n"</begin>
<end>print "];\n"</end>

</code>
</element>

Applying a parser generated from this BSML document to
a PDP will yield the following Matlab source. Adding a call
to the appropriate channel model builder will complete an ex-
ecutable Matlab script that contains embedded data.

M = [
0 -Inf
10 -Inf
...
90 -34.7712
...
190 -36.0206

];

In other words, we can rapidly prototype new simulations
with this technique. Similarly, we can use the same BSML
source to provide bindings for the optimizer. The feedback
will be a sequence of peak powers, one number per line. Some
twenty five lines of BSML source can therefore take care of
data interchange problems for three components. Storing these
PDPs in a database is also facilitated.

To summarize, XML data representations can be used to
advantage in PSEs for managing the execution environment.
Although originally targeted at document processing and busi-
ness data interchange, the few design decisions provided here
support XML as a lightweight format for PSEs.

Format Conversions and
Change Management
One of the benefits of semistructured data is automatic format
conversion. This feature is useful in the following situations:

1. A component is changed over time, but data correspond-
ing to the older versions has already been recorded in the
database system. An example from S � W is the evolution
of the space partitioning parameters in the ray tracer. Af-
ter we have realized that placing polygons at the internal
nodes of the octree can improve space usage by an order
of magnitude, more parameters have been added to space
partitioning.

2. Several components need essentially the same parame-
ters, but are not truly plug-and-play interchangeable. Mi-
nor massaging is necessary in order to make their I/O
specifications match.

We model the following changes: insertions, deletions, re-
placements, and unit conversions. Insertions and deletions cor-
respond to additions and removals of parameters. For example,
a moving channel builder takes the same inputs as a static one,
plus the velocity of the receiver. Thus, any input to a moving
channel builder can be converted to the input to a static one by
projecting out the receiver’s velocity. Replacements represent
changes in parameter representation, for example, a conver-
sion between spherical and rectangular coordinates. Unit con-
versions are a special case of conversions that are quite com-
mon and can be easily automated, for example, conversions
between Watts and decibel milli-Watts. Unit conversion can
be performed by equation and constraint solvers [4].

In our XML representation, insertions can be handled by re-
quiring default values for new parameters. Removals amount
to deleting the old values. Replacements and unit conversions
require user-supplied or automatically generated conversion
filters. The modeling literature abounds in such conversions,
but it is important to realize that conversion facilities are ad-
hoc by nature, and therefore only work for small changes in
the schema. Typically, it is not necessary to find a globally



optimal conversion sequence. A thorough treatment of change
detection can be found in [2].

4. EXPERIMENT MANAGEMENT
We define an experiment as a collection of models instantiated
with input, intermediate, and output data. This captures the no-
tion of applying multiple models to multiple inputs to generate
a database of simulation results and performance data.

In the database paradigm, an experiment can be represented
as a view. Executing the experiment corresponds to materializ-
ing the view. The query behind the view is a join over models
and data. In order to be meaningful, an experiment must fur-
ther satisfy some syntactic and/or semantic constraints. Syn-
tactic constraints ensure that the experiment can indeed be exe-
cuted. Each simulation run must be given enough data and the
data must conform to the appropriate schemas. Semantic con-
straints ensure that the models are meaningful in the specific
problem domain. We will describe semantic constraints in the
next section. In S � W, users can impose custom constraints,
such as ‘use only the datasets from last week.’ Experiment
specification therefore maps naturally into a database query.

Consider the following scenario. A developer of ray tracing
propagation models has added a model that takes diffraction
into account. She now wants to re-calculate the PDPs for the
environments where diffraction is most significant, e.g., for
urban outdoor environments. Experiment specification in an
XML-QL-like notation [16] may look like:

<experiment id=’diff. prop.’>
WHERE <environment id=’$id’>
<meta><type>urban</type></meta>

</environment> CONTENT_AS $env IN "envs"
CONSTRUCT <experiment id=’diff. prop.: $id’>
<model>...</model>
<inputs>
<input>$env</input>
...
</inputs>
<outputs>...</outputs>

</experiment>
</experiment>

The result of this query is an experiment, which in turn is
a sequence of simulation runs. Not only is this form of ex-
periment specification concise, it also enables us to use well-
known query optimization techniques to push costly opera-
tions ‘deeper’ into the computational pipeline [7].

5. REASONING ABOUT MODELS
What constitutes a good model? PSEs should provide the fa-
cility to reason about a model and its constituent parts in terms
of the features of the problem being solved and the desired per-
formance constraints. A lot of domain-specific modeling [12]

is required to arrive at promising model choices, but a few gen-
eral rules can be outlined:

1. A model must not contain any components that make
incompatible assumptions about the phenomena being
modeled. Following Nayak, we call such components
contradictory. An example of contradictory components
in S � W is a class of model builders (static and moving).

2. Some modeling choices may constrain the form of the
rest of the model. For example, the signal filters of the
transmitter and the receiver must match.

3. Components in a given class, say filters, often support
similar forms of reasoning. We use the term classification
to describe this aspect.

An example of these relations in S � W is given in Fig. 2.
The labels represent a small component library and the links
represent the relations. Note that these relations are domain-
specific and cannot be derived from the source in any general-
purpose language. They must be supplied by the user (wireless
system designer) as annotations to components. Such relations
can then be used to prune the search space for recommendation
and problem-solving.

6. CONCLUDING REMARKS
The eventual success of the proposed methodologies relies
on the expressiveness of the representations supplied to the
domain scientist and his ability to reason efficiently with
such representations. By providing a lightweight data model
that manages the execution environment, enables change
management, and casts experiment evaluation as querying, we
have shown how a system like S � W can provide high-level
problem solving capabilities. In future work, we plan to
investigate knowledge-based techniques for reasoning about
model sequences and incorporation of recommender systems
(for selecting among various choices of simulation models)
into our framework.
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