
Requirements and Design Strategies for Open Source
Interactive Computer Science eBooks

Ari Korhonen, co-chair
Aalto University

ari.korhonen@aalto.fi

Thomas Naps, co-chair
U. of Wisconsin Oshkosh

naps@uwosh.edu

Charles Boisvert
Sheffield Hallam University
C.Boisvert@shu.ac.uk

Pilu Crescenzi
University of Florence

pierluigi.crescenzi@unifi.it

Ville Karavirta
Aalto University

ville@villekaravirta.com

Linda Mannila
Åbo Akademi University
linda.mannila@abo.fi

Bradley Miller
Luther College

bmiller@luther.edu

Briana Morrison
Georgia Inst. of Tech.

bmorrison@gatech.edu

Susan H. Rodger
Duke University

rodger@cs.duke.edu

Rocky Ross
Montana State University

ross@cs.montana.edu

Clifford A. Shaffer
Virginia Tech

shaffer@cs.vt.edu

ABSTRACT
Online education supported by digital courseware will rad-
ically alter higher education in ways that we cannot pre-
dict. New technologies such as MOOCs and Khan Academy
have generated interest in new models for knowledge deliv-
ery. The nature of Computer Science content provides spe-
cial opportunities for computer-supported delivery in both
traditional and online classes. Traditional CS textbooks are
likely to be replaced by online materials that tightly inte-
grate content with visualizations and automatically assessed
exercises. We refer to these new textbook-like artifacts as ic-
seBooks (pronounced “ice books”), for interactive computer
science electronic books. IcseBook technology will in turn
impact the pedagogy used in CS courses. This report sur-
veys the state of the field, addresses new use cases for CS
pedagogy with icseBooks, and lays out a series of research
questions for future study.

Categories and Subject Descriptors
[K.3.1 Computer Uses in Education] Computer-managed in-
struction, Computer-assisted instruction

General Terms
Design, Human Factors

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ITICSE’13 Working Group Reports, June 29–July 3, 2013, Canterbury, UK.
Copyright 2013 ACM 978-1-4503-2078-8/13/07 ...$15.00.

Keywords
Algorithm Visualization, Interactive eBook, Hypertext, Au-
tomated Assessment, Digital Education

1. INTRODUCTION
There is a widespread sense that fundamental change is

coming to education, even if there is not much consensus
yet as to how that change will play out. New internet-based
technologies are one driver for this change. Massively Open
Online Courses (MOOCs) are this year’s most visible face of
technology-driven disruption, with new forms of interactive
content delivery such as Khan Academy and Code Academy
also playing an important role. In this report, we focus
on a particular combination of internet technologies that
have the potential to especially impact Computer Science
education. This is a fusion of visualization, multimedia, and
automated assessment that should greatly change the notion
of“textbook”and“course materials” in the future, and which
has the potential to fundamentally change our approach to
CS pedagogy.

The title for this report reflects this emerging fusion. It
comprises five notions familiar to all computer scientists —
user requirements, design strategies, open source, interac-
tivity, and eBooks. But not all computer scientists have the
same perspective on what these terms mean. We clarify be-
low what we mean by the convergence of these five terms.
Previous efforts in similar areas have focused on the inte-
gration of interactive content with a learning management
system [36, 37]. The focus of this research is different, as it
targets eBooks, requiring different approaches – and answers
– even to similar challenges. To give a shorthand way to re-
fer to the artifacts emerging from this fusion, we coin the
phrase interactive computer science eBook, hereafter short-
ened to icseBook and pronounced as “ice book”. We feel
that there is value to coining a unique name to reinforce in

1

53

the reader’s mind that we emphatically mean artifacts that
go far beyond the text and figures that one typically gets
when today’s eBook is downloaded from a service like Ama-
zon or Safari. ePub or PDF content is static in the sense
that, once received, it offers the reader little chance to cus-
tomize or interact with it in significant ways. Our concept of
an icseBook requires that the content be highly interactive.
The icseBook must include, in addition to textbook-quality
presentation of content, some or all of the following:

• Interactive visualizations (i.e., the user drives the pac-
ing, and perhaps some aspects of the content)

• Automatically assessed self-quiz exercises, interspers-
ing frequent practice with meaningful feedback so that
learners can gauge their own knowledge

• Interactive learning activities appropriate for CS-spec-
ific concepts, such as Algorithm Visualizations (AVs),
models of computation such as finite state automata,
and editing and execution of code segments within the
icseBook itself

• Instructor customization that allows selection and or-
dering of learning modules

While all of the components listed above already exist,
they usually exist in isolation. Consequently a learner is
required to move between applications to use them. Addi-
tionally, developers of the individual components (e.g., tra-
ditional textbook authors and algorithm visualization devel-
opers) mostly work without coordinating their efforts. Most
importantly, there is a synthesis to be gained from tightly
integrating content, visualization, and practice exercises. In
the icseBook, we no longer think of the interactive compo-
nents as something that externally supplements the content,
and we no longer think of assessment in terms of “homework
exercises” that give summative evaluation of the learners’
state of knowledge. Instead all of these components collec-
tively comprise the “textbook”.

Prototypes for the icseBook are beginning to emerge. Two
important examples are referred to frequently within this re-
port: the OpenDSA project1 [15, 23, 41] and the Runestone
Interactive Python project2 [27]. We encourage you to ex-
plore these prototypes before reading the entire report be-
cause they illustrate what we describe here much better than
any static textual description could. We provide an online
version of this report for easy access to such materials3.

In this report we raise issues that relate to building and
deploying the infrastructure (both software and social infras-
tructure) needed to develop and sustain icseBooks. While
tentative solutions to some of the issues are offered by on-
going projects, most of these remain open problems. Thus,
Section 5.3 contains a research agenda for the future.

Creating a good icseBook will require far more effort than
production of the equivalent content in a traditional text-
book. We recognize five stakeholder groups in successful ic-
seBook development — learners, instructors, icseBook con-
tent developers, educational researchers, and icseBook in-
frastructure software developers. Although we hope learners
will ultimately be the primary beneficiaries from icseBooks,
they are not the audience for this report. We address the
issue of requirements in Section 2 by reporting on feedback
gathered from a survey of instructors who might potentially

1http://algoviz.org/OpenDSA
2http://interactivepython.org
3http://icsebooks.appspot.com

use an icseBook. In Section 3 we focus on the instructor as
stakeholder by addressing how icseBooks can be used effec-
tively in teaching. Section 4 attends to content developers
by describing the types of content required, and how the
tools offered by an icseBook development platform should
facilitate content creation. Section 5 presents issues related
to evaluating an icseBook and its supporting software. We
hope that this report can contribute to establishing a broad
research agenda that will spur a variety of collaborations
between instructors and educational researchers.

Sections 2 through 5 describe what an icseBook platform
must do to serve the needs of its stakeholder groups. As
such, they provide a set of user requirements for the last
stakeholder group — infrastructure software developers. In
Section 6, we switch our perspective from what to how by
discussing high-level design patterns to guide the develop-
ment of the software underlying icseBook platforms. Our
goal is to facilitate reliable and interoperable software infras-
tructures for icseBooks, since no single development effort is
likely to solve all of the problems involved.

The final term to parse out of our report’s title is “open
source”. We believe that both the instructional content and
the infrastructure software for developing icseBooks can ben-
efit from open source distribution strategies. Particularly
in Section 4.4, we offer insight into how open sourcing the
instructional content of an icseBook might attract a large
group of dedicated content developers to an open source ic-
seBook project.

2. SURVEY RESULTS
During May 2013, we developed a survey to elicit opinions

and ideas concerning icseBooks from the CS teaching com-
munity. An invitation to participate in the online survey
was sent to the SIGCSE listserv. We received 75 responses
of which 65 participants completed a majority of the ques-
tions. The survey consisted of 21 questions broken into four
sections: general questions, teaching issues related to an ic-
seBook, instructor customization, and feature requirements.
Here we give results for general questions. Results for other
questions are discussed in more detail in other sections of
the report. The questions consisted of both open-ended (Q4,
Q11, Q14, and Q21) and closed-ended questions (the rest).
It must be stressed that the respondents to this survey were
a self-selecting (and thus an unrepresentative) subset of the
SIGCSE listserv, which is in turn a self-selecting subset of
the CS education community.

Q1. What is your discipline? (Check all that ap-
ply.) Of 75 responses, 93% checked themselves in Computer
Science, but also in Software Engineering (18%), Informa-
tion Science (9%), Information Technology (7%), Mathe-
matics (12%), and/or Computer Game Design and Devel-
opment (8%). The survey used the term “e-textbook” and
defined it to mean the same as an icseBook.

Q2. If you have used an e-textbook for a course,
which course(s)? (check all that apply) Of 46 re-
sponses, 61% indicated that they have used an e-textbook
in a basic course such as CS0, CS1, and Data Structures.
65% had used an e-textbook in some other course, with 17
distinct courses listed. These cover most of the standard
computing courses along with various special topics such as
Ethics and the Philosophy of Technology.

Q7. Do you plan to teach with an e-textbook in
the next two years? Of 72 responses, 36% strongly agree,

2

54

39% agree, 21% are neutral, 4% disagree, and no respondent
strongly disagreed.

Q8. For what course would you most like to see
interactive e-textbook resources developed? Of 69
responses, 17% indicated breadth-first intro to computing
(CS0 in the ACM Curriculum), 33% said intro programming
(CS1 in ACM Curriculum, a first programming course), 19%
said data structures, and 30% said “Other”. Among the 21
respondents who indicated “Other” there were 13 distinct
courses listed, spanning the breadth of the CS curriculum.

Q9. For the class you would most like to use an
interactive e-textbook, how do you use the current
textbook? Of 71 responses, 7% indicated they do not use a
textbook, 16% used the textbook for reference only (no as-
signed readings or problems), 32% assigned readings, 4% as-
signed problems, 39% assigned readings and problems, while
one respondent said that the book was used for reference,
readings, and problems.

Q10. In what way(s) do you see yourself using
an interactive e-textbook within a class? (Check
all that apply.) Of 73 responses, 1% indicated that they
did not see themselves using an interactive e-textbook, 29%
would use the interactive e-textbook in the same way they
use a regular textbook, 73% would assign readings, 73%
would assign problems, 59% would use examples during class
or lab, 53% would have students use the interactive exercises
during class or lab, and 66% would use the data on student
use of the e-textbook (problems attempted, solved, etc.).

Q11. What are the main factors that would af-
fect your decision to adopt or not adopt an inter-
active e-textbook? There were 62 free-response answers.
The most common responses concerned the content (17 re-
sponses), quality (15), and cost (25) of the icseBook. Usabil-
ity of the icseBook (7) and hardware requirements (platform
availability) (6) were also mentioned. How difficult the icse-
Book is to customize would also play a role for six respon-
dents. Six responses indicated that how well the automated
assessments are done, including the quality and amount of
feedback to students (2), and whether the assessments im-
proved learning (3) would be a factor.

Q12. Would class size influence your decision to
use an interactive e-textbook? 89 % of 74 responses
indicated that class size would not matter.

3. TEACHING WITH AN icseBook
Class contexts and content for even a “traditional” CS

course vary a great deal between institutions and between
instructors. The teaching strategies that could be applied
when using icseBooks might vary even more. In this sec-
tion we discuss how icseBooks can be used in various educa-
tional contexts. An icseBook integrates a range of materials
for a course into one product, which can be customized and
adapted by instructors according to their specific preferences
and needs. The icseBook provides an all-in-one solution for
both learners and instructors that is different from the cur-
rent state-of-the-art in which many separate learning objects
(e.g., algorithm visualizations, exercises, multimedia mate-
rials, text) are provided.

Q3 asked If you have used an e-textbook for a course,
which type of e-textbook was it? For CS0, CS1, and
data structures courses, 15 of 26 responses (58%) indicate
that some level of interactivity is involved, while for “other
CS courses” only 3 of 29 responses (10%) indicated that the

e-textbook was something more than a static ePub-style ar-
tifact. While it is natural that basic programming courses
adopt new ways of teaching first (if only because they are
abundant) this indicates that our discipline is only beginning
to taking full advantage of digital learning materials.

3.1 IcseBook: Evolution or Revolution?
Q5 asked If you have used an e-textbook for a course,

how much of the course (relative to the whole course)
was covered by the e-textbook? Of 47 respondents, 21%
indicated that the e-textbook covered 100% of the course,
32% that ≥ 80% was covered, 17% that ≥ 50% was cov-
ered, 13% that ≥ 33% was covered, and 17% indicated that
< 33% was covered. IcseBooks need be not thought of as
incompatible with traditional textbooks. The responses in-
dicate that most instructors use icseBooks along with other
materials such as textbooks, handouts, etc.

Q6. If you have used an e-textbook for a course,
did it replace an existing resource? Of 47 responses,
30% indicated that it replaced all other materials on one
or more topics, 51% that it was a supplemental along with
other resources, and 19% that it was the only resource used
for the course. Q6 along with Q3 shows that many pa-
per textbooks have also been replaced with electronic but
non-interactive equivalents, either by instructors or at the
initiative of learners who find them convenient.

The prevalence of blended learning suggests the following
progressive route to adopting icseBooks through an evolu-
tion of instructor practice that makes increasing use of an
icseBook without requiring a complete, big-bang redesign of
the course.

1. Substitute some traditional materials with icseBook
content

2. Supplement lecture notes with animated visualizations
and materials

3. Substitute content completely for the paper textbook

4. Substitute exercises for the old paper exercises

5. Some student activities use learner tracking and grad-
ing features

6. Grading and learner monitoring become an essential
part of the learner’s grade for the course

An evolutionary route is valuable because the big-bang
would be too big an investment for many instructors —
far more than adopting a new textbook. Big-bang requires
a change of assessment strategy, a reflection on the use of
the wider material, and a comprehensive change of teaching
style. Should it go wrong, there is a lot at stake. Evolution
allows the instructor to introduce icseBook material where
it suits the course and gradually adopt more interaction.

IcseBooks can change how learners are assessed, as the
final grade can be based on results from different activities
ranging from automatically assessed self-quizzes to open as-
signments, projects, and exams. Recent research addresses
improving the quality of feedback given in automatically
assessed exercises [19] and developing new types of exer-
cises [24]. Automated data collection can relieve the in-
structor of some grading work (when exercises can be auto-
matically assessed), as well as support the collection, track-
ing, and human grading of questions that cannot be auto-
matically marked. In large classes, however, assessment of
assignments and projects that cannot be automatically cor-
rected becomes challenging, as no individual instructor has

3

55

the time needed to grade and give feedback on hundreds of
assignments. Some MOOCs address this challenge by incor-
porating crowdsourcing techniques, such as peer feedback
and collaborative work. In addition, MOOCs commonly
have many teaching assistants helping with assessment. Au-
tomatically collected data aids in monitoring learner activ-
ity and progress (see Section 5.2). The icseBook makes it
easy for the instructor to follow what learners are doing
through automatic logging. For example, instructors can
verify whether students have worked assigned sections. Us-
ing formative assessment through regular review exercises,
icseBooks allow both instructors and learners to follow up
on learner progress.

The use of icseBooks in the classroom may lead to new re-
quirements for the online material, resulting in an iterative
process where both the teaching strategy and the material
gradually evolve. New teaching tools give rise to new peda-
gogical models and vice versa. IcseBooks provide opportuni-
ties to transform instructor practice. Focusing teaching and
learning on the student, rather than on the workflow of the
teacher, is not new. But it is difficult to implement prop-
erly and requires continual attention. Papert, writing on
Logo [30], points out the involuntary reversal of the teach-
ing relationship brought about by poorly designed resources
in which we see “the computer programming the student.”
The student should program the computer.

Technologies such as those found in icseBooks, like the
Computer-Assisted Instruction described by Papert, do not,
of themselves, ensure student-centeredness. But icseBooks
are a disruptive technology, in the sense of [11]: they provide
access to the integration of instruction and practice mate-
rials, to learner usage and achievement data, and to tools
for the integration and the management of these resources,
at a higher scale and lower cost than has been available un-
til now. This makes it easy to adopt icseBooks in full, and
use them to renew our teaching practice, centering more on
learner needs.

3.2 Factors Affecting IcseBook Use
Many factors affect how an icseBook might be used in the

classroom, lab sessions, or in any other activity appearing
in a course.

Number of learners: Class size can vary widely, ranging
from small tutorial groups with fewer than ten learners, to
large lecture theatres gathering hundreds of learners and the
Open Universities teaching thousands at a time. MOOCs
have become popular and can, as their name says, gather
very large numbers of students.

On-site vs. online: Teaching strategy is affected by
where the learning takes place: face-to-face or online. Most
university courses require learners to be present for some
of the work, but distance learning plays an increasing role,
with MOOCs and the Open University models as examples
of off-campus learning.

Content vs. skill: A course is commonly positioned
along a continuum from being mainly content and knowl-
edge based (introducing new concepts) to being focused on
developing skills. In the case of CS, many courses focus
on learning skills related to programming as opposed to a
knowledge base.

These three factors can be considered fundamental in the
sense that they define the practical course situation and
more or less prescribe what kind of icseBook can be used. A

large online course focusing on teaching a specific program-
ming skill forces the instructor to choose from a smaller set
of materials than are available to an instructor working with
a small group face-to-face focusing on knowledge.

In addition to these two factors, we can identify three
dimensions that are not directly inherent in a given course,
but dependent on choices made by the instructor:

Level of use of the icseBook: Just as instructors can
choose to what extent they use a regular textbook, the ways
they employ icseBooks can vary. An icseBook is more mul-
tifaceted and interactive than a traditional textbook. As
described in Section 3.1, there is a wide range of use adop-
tion within the course.

Level of learner engagement: Traditional lectures are
commonly considered to be teacher-centered, featuring the
instructor as the“sage on the stage”and learners in the audi-
ence listening while (hopefully) taking notes. The icseBook
can support a more learner-centered approach, putting them
in increased control of their learning (making the instruc-
tor more of a “guide on the side”). As with any teaching
resource, the goal is to maximize learner participation in
the learning process. This can be done by increasing the
learner’s level of engagement with, for example, algorithm
visualization (see [29]), or increasing content ownership as
suggested by Sorva et al. [42].

The dimensions identified above seem to be applicable for
categorizing teaching scenarios in any discipline. However,
the nature of CS both invites and calls for a large set of dif-
ferent types of interactive exercises (writing or re-arranging
code, simulating algorithms, working out solutions to anal-
ysis problems). Such CS-specific activities are covered in
detail in Section 4.1.1.

3.3 Use Cases
The graph in Figure 1 maps two of the factors discussed

above to illustrate some typical teaching practices. The hor-
izontal axis shows the face-to-face vs. online dimension and
the vertical axis represents the number of learners. Teaching
practices have been roughly divided into three main cate-
gories depending upon where on the axes the activities in a
class are positioned: face-to-face learning, blended learning
or online learning.

Figure 1: Two dimensions of icseBook use cases

This section describes the use cases found in the figure and
discuss the use and benefits of an icseBook in each context.
The use cases are not intended to comprise a complete list

4

56

of possible teaching approaches, but rather to give ideas for
how the icseBook can be used depending on where a given
CS class is positioned on the axes.

3.3.1 Face-to-face teaching
IcseBooks can naturally be used for the same purposes

as a normal textbook in campus-based teaching scenarios,
such as lectures or project-based courses. When it comes to
covering content, an icseBook clearly provides learners with
a larger selection of instructional resources and activities as
compared to a regular textbook. In an icseBook on pro-
gramming, data structures, or algorithms, material such as
algorithm visualizations, programming exercises, and inter-
active examples of stepping through code offer the learner a
larger toolbox both for studying new concepts and reinforc-
ing content already covered.

Another benefit of icseBooks is that they are customiz-
able. For example, the instructor could modify the contents
by changing the order of topics, adding specific examples, or
controlling the amount of credit given for various exercises.
As a lecture aid, the icseBook can be used as the primary
lecture material or mainly for showing examples, visualiza-
tions, and videos.

With small groups of learners it is possible to integrate
lab work into class meetings — for instance by the instruc-
tor spending part of the time going through new material
while the remaining time is used for hands-on activities in
a computer lab. In this lab/lecture blend, the icseBook can
be used both by the teacher (showing examples and other
material during the lecture) and the learners (working on
visualizations and review questions during the lab).

Peer instruction (PI) [34] is a popular interactive teach-
ing strategy focusing on activating students during lectures
and creating situations where they can learn from each other.
A common way of implementing this scenario is by pre-
senting students with simple multiple-choice questions which
they answer using clickers or polling software.4 The idea is
for individual learners to first answer the question on their
own, then discuss the question in pairs or small groups, and
finally answer the same question again. When everybody
has answered the question twice, the instructor shows the
results from the two rounds, inviting a class-wide discussion.
In PI the learning results become visible, as the results from
the two rounds of answering the same question may illus-
trate a dramatic change in opinion. With an icseBook there
is no need for clickers or third party software, and PI can
easily be implemented using self-quiz exercises. To accom-
plish this the same question appears twice and the instructor
uses data tracking so that both answer rounds can be stored
and displayed to the learners.

3.3.2 Blended learning
Many teaching scenarios involve some kind of blended (or

hybrid) model of learning with a combination of face-to-face
teaching methods along with computer-mediated or online
activities. The aim is to extend the learning opportunities by
using online materials such as icseBooks. Here we describe
teaching strategies using online material and activities that
are suitable even for small class sizes.

Just-in-time-teaching5 (JITT) refers to a teaching stra-

4For examples of Peer Instruction in CS, see http://www.
peerinstruction4cs.org
5http://www.jitt.org

tegy based on student activity outside of lecture hours, help-
ing the instructor prepare the following lecture to suit the
needs of the learners. It has been used in Computer Sci-
ence, as described in [3]. The self-quiz exercises included in
icseBooks are automatically corrected, making it easier and
faster for the instructor to go through the results. Based
on the findings, material is adapted for the upcoming class
meeting“just-in-time”. This is an advantage over the normal
teaching situation, where the instructor must intuit which
topics are difficult for the learners. One respondent in our
survey described this kind of scenario where interactive ex-
ercises in an icseBook were used. At the beginning of each
lecture learners were called on (randomly) to present their
solutions to the rest of the class. Depending on the types
of exercises used, the amount of time needed for an instruc-
tor to get an overall picture of the results will vary. Class
size might be a restricting factor in determining when this
approach can be used. Making automatically corrected ex-
ercises part of the grade can also motivate learners to take
the pre-class activities seriously.

Similar to the JITT model is the flipped (or inverted)
classroom, which is rapidly gaining in popularity. In a flipped
classroom, content delivery is moved outside the classroom,
and contact hours are used for working on what has tradi-
tionally been considered homework (e.g. problem solving,
labs, discussions, and other types of creative work). The
model is not new as it has been used substantially in the
humanities, where students have been assigned readings as
homework while class time has mainly been used for discus-
sions and debates. Compared to having students read plain
text material, an icseBook makes the self-study material in-
teractive and multimodal by integrating text, visualizations,
videos, and automatically corrected review exercises. Learn-
ers are expected to view the material and take the quizzes
before class, and technology makes it easier to hold them
accountable for actually doing so. The flipped classroom
can be used for classes of various sizes, but the number of
students might restrict what can be done during in-class ses-
sions. If the instructor wants to include hands-on activities
that require personal assistance, the group size naturally
becomes more restricted. With small classes, the pre-class
exercises (such as provided by OpenDSA) make it easier for
the instructor to prepare for in-class discussions.

In blended learning, interactive icseBooks give new ways
of aligning classroom sessions with online learning in large
courses. Some lectures, for example, can be replaced by
short videos appearing in online material. The face-to-face
classroom session can then be used to discuss the questions
emerging from the online material just as in JITT, or the stu-
dents can work in small groups as in PI. The richer the con-
tent available in the icseBook, the more numerous the ways
that the blended learning model can be applied. Digital ma-
terial is no longer a supplementary resource, but becomes the
main mediator for the content. In this way blended learning
approaches MOOCs, which lack instructors in face-to-face
sessions (or even lack instructors entirely).

Typically large courses are supported by a learning man-
agement system (LMS) such as Moodle6 or a dedicated learn-
ing environment such as TRAKLA2 [24]7. In addition to
learning materials, an LMS can provide features such as on-

6https://moodle.org/
7http://www.cse.hut.fi/en/research/SVG/TRAKLA2/

5

57

line discussion forums and extended collaboration possibil-
ities among learners. There are many overlapping features
in an LMS and an icseBook. TRAKLA2 is an example of
a web-based learning environment that is a subset of an ic-
seBook. TRAKLA2 gives learners the opportunity to work
online 24/7 and get automatic summative feedback for their
solutions to algorithm simulation exercises. An instructor
has the opportunity to monitor students’ performance. In
addition, the learner benefits from mistakes due to the au-
tomatically assessed exercises and instant feedback. The
exercise can be tried as many times as required.

3.3.3 Online learning
Online courses are at the other end of the spectrum from

face-to-face on-campus teaching. Early versions of online
courses were basically digital versions of traditional distance
(correspondence) learning courses. But as technology has
progressed the content, methods, and activities have evolved.
Especially in CS, the feedback provided to the learner can
be automated in many ways (multiple choice questions, al-
gorithm and program simulation exercises, programming ex-
ercises, etc.), which makes it an attractive approach.

Lately MOOCs have received much attention, with the
New York Times dubbing 2012 as the year of the MOOC.
Compared to earlier online courses, MOOCs aim at large-
scale enrollment and are open to everyone, resulting in pop-
ular courses offered by Coursera8, edX9 and Udacity10 hav-
ing tens and even hundreds of thousands of enrolled learners.
This naturally creates new challenges with regard to grad-
ing, monitoring, and interaction. Most MOOCs are built
around video lectures with integrated (multiple choice) re-
view questions, quizzes, peer-reviewed assignments, and dis-
cussion forums. The main criteria is that everything must
be scalable. An icseBook extended with communications
possibilities and supported by a sufficiently large number of
instructors or teaching assistants could someday form the
basis of a MOOC.

While MOOCs are geared toward large numbers of stu-
dents, collaborative teaching and connected courses are a
way of providing high-quality learning material for small
groups of students by combining the efforts of faculty in
different institutions. This type of teaching might be ap-
plicable in situations where instructors must teach a topic
that is compulsory only to a small number of learners. By
creating a joint course with other institutions teaching the
same topic, we can benefit from economies of scale that make
small local versions of a course more feasible. By bringing
together learners from several institutions, the course may
become large enough for it to be worthy of continuous devel-
opment. For example, CISCO Systems distributes its pro-
fessional materials, which include illustrated text, multiple-
choice self-quizzes, and simulation software, to many local
training centers that teach small numbers11. A fuller ic-
seBook lends itself as a platform for mediating material,
allowing for learner-learner collaboration and many more
functions.

8https://www.coursera.org/
9https://www.edx.org/

10https://www.udacity.com/
11http://www.cisco.com/web/learning/training-index.
html

3.4 Summary
While many of the components that form an icseBook

are well known, their association into an integrated whole
enables a transformation of instructor practice. The blend
of factors in an icseBook will lead to instructional strategies
that differ greatly from a traditional lecture-based course.

This brings many additional questions to be addressed.
How should the artifacts in an icseBook be developed and
deployed in a class? They will help enable instructors to
channel learner behaviors in ways that facilitate learning
outcomes; but what behaviors and outcomes are we trying
to support? How are exposition, visualization, activity, test,
and data collection best assembled? How are they evalu-
ated? The next sections discuss how the tools of a teaching
revolution can be created and honed.

4. CONTENT CREATION
IcseBook content developers might create content in a va-

riety of supported mediums: text, pictures, video, audio, al-
gorithm visualizations, self-quiz questions with automated
feedback, in-book editing/execution of code segments, algo-
rithm performance studies, algorithm simulation exercises,
and other forms of automatically assessed exercises. Con-
tributions might come in the form of brand new content or
content that is modified (perhaps slightly, perhaps greatly)
from that of another contributor.

Another perspective on contributors is their motivation
for contributing. Their willingness to contribute to an icse-
Book project will be influenced by many factors, including
the difficulty encountered in making the contribution, the
credit they will receive, and size of the audience they are
likely to reach.

4.1 Content Contributors

4.1.1 Types of content contributions
We describe the particular relevance for different types of

content within the icseBook context.
Text will appear in an icseBook for the same reasons as it

appears in a traditional textbook: to present the topic, the
examples, the exercises, and their solutions. However, an ic-
seBook provides more opportunities to enhance the text by
integration with other media. For example, the OpenDSA
project attempts to integrate text with graphics at a fine-
grained level through the frequent use of “slideshows” to
present topics. Whereas a typical textbook might use a para-
graph of text to describe the data members in a list class im-
plementation, OpenDSA modules might replace such text-
only descriptions with slideshows that show code along with
the text such that each sentence might trigger a particular
line of the code to be highlighted. Good algorithm visual-
izations routinely juxtapose small amounts of text with each
visual step of the algorithm and a highlighted line of the as-
sociated code. An alternative to such text snippets is audio
narration in synch with the visualization.

Traditional textbooks also contain pictures. While these
could appear in an icseBook as a simple picture, they could
also be integrated with the text as just explained, or be
made interactive. An example of an interactive picture is
an HTML image map in which various areas define click-
able “hot spots” within the image. Different hyperlinks are
associated with each such hot spot.

6

58

A video might be included as an aid for explanations
and examples. Videos might show an instructor explain-
ing a topic or an example, or contain an algorithm ani-
mation/visualization. For example, the video could show
an instructor’s regular lecture with visuals of the instruc-
tor and his/her slides. The video could also be a screen
capture of the instructor using algorithm or program visu-
alization software to explain an algorithm, and possibly at
the same time demonstrating how to use the software to
create or explore a concept [4]. Videos might include em-
bedded questions that automatically pause the video with a
question that the learner must answer before the video will
proceed. Alternatively, videos might be short, and inter-
active questions might be embedded in the icseBook after
each video. Work presented by Mayer [25] suggests that
individual videos should be kept short (less than a minute
or perhaps only a few seconds). A longer presentation can
satisfy this goal by breaking the video into pieces. An im-
portant key is to maximize user interaction, which is why
projects such as OpenDSA stress slideshows (perhaps with
narration) over videos. Audio in such cases can also increase
accessibility of the icseBook for visually impaired students.

Algorithm and Program visualizations (AV and PV)
provide visual explanations for dynamic processes. An AV
might just explain the algorithm, but it might also involve
the learner in stepping through an algorithm or constructing
a structure. Similar to this, a PV might provide a visual
debugger to step through code. Another approach is to use
visualization to focus on an algorithm’s development from a
partial to a more complete solution [6]. Pacing for the steps
of AV and PV should be controlled by the user [39] rather
than be an uncontrolled animation.

To make this more engaging, the learner should not only
follow the animation, but become an active party in cre-
ating the steps. For example, a learner might indicate an
understanding of depth-first binary tree traversal by click-
ing on the nodes in the order that they should appear in a
preorder traversal. Such an activity is referred to as either
an algorithm simulation or an algorithm proficiency
exercise [23, 24]. In a program simulation exercise [43],
students simulate the execution of a program. Moreover,
as an aid to understanding the proof that any nondeter-
ministic finite automaton (NFA) can be converted into an
equivalent deterministic finite automaton (DFA), the learner
might specify an NFA and then follow the steps of the proof
to construct the equivalent DFA.

Program exercises involve code editing and execution
within the icseBook. They allow learners to experiment and
get immediate feedback on the code’s syntax and output cor-
rectness. The learner should be able to try different inputs.
For example, the learner might want to learn how selection
sort works. The icseBook can explain the concept with text
and/or visualization and then have the learner enter some
implementation for all or part of the sort. The icseBook
would first let the learner know if there was a syntax error
in their code and provide feedback for correcting such er-
rors. When there are no syntax errors, the icseBook would
then generate appropriate feedback. The feedback could be
textual, or it might be graphical in the form of a program
visualization for the student’s code.

When questions and exercises are integrated through-
out the icseBook they provide the learner with feedback that
can indicate whether the learner is prepared to move on

to the next module. If not, well-designed exercises provide
more practice with the current concept by generating new
problem instances. While the icseBook authoring framework
might provide direct support for certain question types (such
as multiple choice questions), it is probably best if questions
and exercises are created as first-class independent compo-
nents and then assembled along with the rest of the mod-
ule content as appropriate. The Khan Academy Exercise
Framework12 is an example of such a sub-system that can
create questions as separate HTML pages that can then be
integrated within an icseBook. An alternative is to include
questions within some other component such as an algo-
rithm visualization or Parsons’ puzzles. In Parsons’ pro-
gramming puzzles [31], students interactively piece to-
gether small programs or subroutines from code fragments.
A single draggable fragment may contain one or more code
lines. Some subset of the given fragments comprise the en-
tire problem solution.

4.1.2 Originality of contributions
We distinguish three types of contributions to an icse-

Book: creations, modifications, and customizations. Cus-
tomizations involve the least amount of effort. These are
defined to be changes for which the icseBook platform pro-
vides explicit support. For example, a GUI could be pro-
vided that allows an instructor to select the modules that
will make up an icseBook instance to be used as the course
textbook. This GUI might also allow the instructor to se-
lect which particular assessment exercises will appear in
a given module, and how much credit it is worth in the
semester grade. Customizations can be considered a contri-
bution when a recognizable artifact results. For example, the
OpenDSA project controls the definition for an instance of
an icseBook through use of a configuration. A configuration
controls the contents (i.e., the modules), which exercises are
included in the various modules, and the point values for the
various exercises. In other words, a configuration provides
a specification for creating a specific “textbook” instance. A
given configuration can be stored, reused, or modified, and
as such might prove valuable to other instructors.

Creations are at the opposite end of the contribution
spectrum. Here a content developer will create a completely
new icseBook content artifact. Depending on what specific
artifact types are supported, this might be an entire mod-
ule, an algorithm visualization, an interactive exercise, or a
multiple choice question.

Modification involves taking an existing artifact and
changing it to produce a new artifact. For example, a de-
veloper might start with the code for a depth-first search
AV and modify it to produce a breadth-first search AV. Or
he/she might make a small change such as taking the code
for a depth-first search AV and changing which colors are
used, or the wording of messages displayed during process-
ing.

Contributions might require more or less technical skill,
and therefore might be more or less practical for various
community members to make. Generally speaking, things
like modifying the text or making any configuration changes
should be easy to accomplish. Certain changes to other arti-
facts like changing colors in a visualization or writing a mul-
tiple choice question might be easy or hard, depending on
the support provided by the icseBook platform. Program-

12https://github.com/Khan/khan-exercises

7

59

ming a significant change in an AV or algorithm simulation
exercise might be technically demanding.

Rich customization of existing material requires that the
icseBook software platform provide a set of customization
tools. In contrast, modification of existing resources and
creation of new resources places the focus more on provid-
ing clear documentation about how to achieve the modi-
fication/creation. When programming is required, a well-
designed API must be provided. In Section 4.4 we discuss
in more detail the requirements for an icseBook software
platform to facilitate a variety of contributions.

4.1.3 Stakeholders
The stakeholders in creating the content of icseBooks are

mainly the content developers. A content developer is likely
to also be a stakeholder in another way, most typically an
instructor whose initial motivation is to create content for
the learners in his/her course. Another example of a content
developer might be a learner who wants to generate content
for a limited group of fellow learners.

4.2 Survey Results on Content Creation
Our survey included questions related to content creation

and contribution. Respondents were positive about tailoring
an icseBook to their own needs and expectations through
creation of their own content and exercises (Q15). 35%
said they would definitely do this, 46% would likely do it,
13% might depending on the complexity of the changes, only
6% said they would probably not do it, and none said defi-
nitely not. Respondents were also positive when asked about
whether they would share contributions they had made (Q16).
41% would definitely share their contributions and 47% were
somewhat likely to share their contributions. 4% said they
would probably not share, and 7% said they might but it
depended on the nature of the contribution. None said they
definitely would not share.

Respondents were given possible content choices for an ic-
seBook and asked to rank the items they would most likely
want to tailor to their needs (Q13). Three of them ap-
peared to be particularly popular: “selecting the desired
subset”, “examples”, and “programming exercises”. Three
more choices generally appeared in the middle range of in-
terest: “add quizzes and/or assessments”, “add content to
existing chapters”, and “provide new data sets”. Finally,
three generated less interest by respondents: “adding chap-
ters”, “re-ordering chapters”, and “adding videos”.

Respondents were mostly positive regarding the possibil-
ity of student contributions to an icseBook they were using
in a course (Q17). Students might contribute examples or
test data and then other students could view those examples
or data. 35% of respondents said that they would definitely
use student contributions, 41% were somewhat likely to use
student contributions, 24% would probably not use student
contributions, and none said definitely not.

4.3 Facilitating Contributions

4.3.1 Underlying dependencies in modules
The icseBook platform does not simply manage a huge

“bag” of unrelated instructional resources. Module topics
naturally have other modules as prerequisites, and so the
collection of modules can be thought of as forming a dynamic
network of learning modules (NLM). Dynamicity comes from

the new contributions. Both modification of existing con-
tent and creation of new content can potentially modify the
topology of the network. This is obvious when creating a
new module since the author creates both a new node of the
network and new edges specifying which learning modules
present in the NLM are prerequisites of the new module.
Modification of existing content can also change the struc-
ture of the NLM. For example, adding content about the de-
tails of analyzing Quicksort to an existing Quicksort module
might require that recurrence relations become a prerequi-
site of the revised module. After performing all desired cre-
ations and modifications within the NLM, the authors can
finally “instantiate” the sequence of learning modules that
define an instance of an icseBook.

The dynamic NLM described above defines the conceptual
prerequisite dependencies among learning modules. This ex-
ists in parallel with another dynamic NLM defining a de-
pendency related to the code snippets, AVs, and exercises
shared among the modules. For example, some implemen-
tations for Prim’s Minimal Cost Spanning Tree algorithm
make use of heaps, while others do not. Such re-use of a
segment of code or of a visualization creates a procedural de-
pendency between the learning modules, thus giving rise to
another NLM, different from the conceptual one. Note that
the two networks are incomparable. The existence of this
procedural NLM means that the icseBook platform must
demand content developers be explicit in defining the API
of the code they use in developing artifacts such as visual-
izations, thereby allowing that code to be re-used in future
contributions.

4.3.2 Look-and-feel
An icseBook platform should take into account how much

the authors are required to respect the “standard” look-and-
feel of the learning modules. This is not an easy question.
On the one hand, consistency among the look-and-feel of
the modules helps learners become familiar with placements
and representation of the instructional resources. An in-
consistent look-and-feel among instructional resources can
lead learners to think that they have left the icseBook they
were using. On the other hand, forcing authors to respect
a specific look-and-feel can inhibit their willingness to con-
tribute to the icseBook platform if it does not fit well with
their preferences. An existing look-and-feel might even cause
undesired weaknesses in the usability of a particular type
of material. In order to deal with this conflict, the icse-
Book platform might follow an approach inspired by the
model/view/controller design pattern [10], which separates
the model (instructional resources) from the view (look-and-
feel) and thereby allows the authors to develop and integrate
new views within the platform itself. Some presentation sys-
tems (including Sphinx, which is used by both OpenDSA
and Runestone Interactive icseBooks) use the term theme
to refer to the look-and-feel. It requires significant effort to
develop a new theme, but once developed, it can be used by
anyone for their modules. It is better if some module can be
displayed using different themes with little effort. Even the
same icseBook (that is, the same instance of the dynamic
network) might be generated easily with a different theme.

• Learners might change the look-and-feel of the module
they are working on by choosing one specific look-and-
feel among available ones. This feature might help

8

60

with accessibility problems, such as in the case of vi-
sually or aurally impaired learners.

• Instructors might define the look-and-feel for an icse-
Book that they instantiate. They might forbid learn-
ers to change the look-and-feel of the modules in order
to guarantee consistency in the appearance of all the
chapters of the icseBook.

• Content creators might set up the look-and-feel of a
module they are creating or customizing, and create
a new look-and-feel, that is, new views. They might
also forbid instructors and learners to change the look-
and-feel of the module when the instructional resources
included in the module require one specific look-and-
feel. For example, theming might be used to ease the
conversion of icseBook materials designed for online
use into another version designed to be used as course
notes (projection slides) during lecture presentation.

4.4 Benefits to Content Contributors
Developing an icseBook is a huge task, far more complex

than creating an equivalent paper textbook. Consequently,
attracting contributors dedicated to such a project is an im-
portant consideration. The likelihood that an instructor (or
even a learner) will become a content developer is directly
related to the benefit that they see accruing to their efforts
in making a contribution. Most contributors are likely to
evolve in terms of the contributions they make — starting
small and hopefully migrating to more substantive contri-
butions.

How can the icseBook platform encourage such an evolu-
tion? In situations where the contributor is an instructor, we
envision a two-stage process. Initially, their content will be
limited to a group of viewers that the contributor has some
control over, most likely students in their class. This will al-
low them to field test the material being contributed. From
a requirements perspective, it means that the software in-
frastructure must allow contributors to control access to the
content. Then, when the contributor feels that the contri-
bution is “publishable” they might wish to make it available
to a wider audience.

Dealing with the transition from limited access to “public”
dissemination is a fundamental issue that must be dealt with
by an icseBook development system. Many models are pos-
sible. For example, the Connexions project13 allows this to
happen at the discretion of the author. However, their model
is most appropriate to creating complete textbook-level arti-
facts. For the icseBook, we envision a more granular model
of contributions involving alteration to sub-components be-
low the book level. This begs the question of how to treat
variations in, for example, single modules, visualizations, or
exercises. Some platforms might institute control policies to
ensure that their icseBooks, as an entire dynamic network of
learning modules, retains a high level of quality. Retaining
a high level of quality might naturally go with recognizing
contributors for their contributions in a fashion modeled on
the traditional academic publication peer review process.

When the contribution is a complete learning module (that
has been created new or customized from existing content),
the contributor must specify the place that module occupies
in the underlying conceptual knowledge map of prerequisites
that exist among modules. This is not necessary when the

13http://cnx.org

contribution is an artifact that merely plugs into an existing
module.

When a particular icseBook is to be created from a large
collection of artifacts that are contributed by multiple con-
tributors, there must be a review process to ensure that
individual contributions meet the standards that have been
established for the icseBook. The managers of a given ic-
seBook development effort might use a formal review pro-
cess or take advantage of some crowdsourcing methodology.
Whatever reviewing methodology is employed, supporting
it becomes a user requirement of the software infrastructure
underlying the icseBook platform.

Recognition associated with publishing content contribu-
tions within an icseBook will likely be directly proportional
to the recognition achieved by the entire icseBook. Effective
strategies for dissemination and marketing icseBooks will
be valuable in attracting a core of dedicated contributors to
an icseBook project. Whether the icseBook effort is open
source or commercial will affect dissemination and market-
ing efforts. We focus here on techniques relevant to open
source efforts.

Section 5 discusses research questions that will emerge
as icseBooks and the platforms that support them evolve.
The connection between icseBook development and research
is an important consideration because it means that, for
those academic contributors and developers who are evalu-
ated based on their research, the standard avenues for dis-
seminating research results will naturally attract them to
involvement in icseBooks. If that connection between ic-
seBook development and research is not leveraged, it will
be much more difficult to motivitate instructors to become
content developers.

Managers of an open source icseBook effort must consider
the choice of a copyright under which their content can be
cloned and used by others. One nuance in this regard is
the blurred line between instructional content and software.
Since the instructional content of an icseBook will almost
inevitably include Javascript for its interactive components
(for example, interactive algorithm visualizations), should
stakeholders be thinking in terms of one copyright license
that could be used to cover everything — software infras-
tructure and instructional content — or using separate li-
censes for the two components? For example, a Creative
Commons license would only allow the instructional content
of the icseBook to be copyrighted because Creative Com-
mons licenses are not applicable for software source code.
On the other hand, licenses such as MIT and GPL would al-
low everything to be protected under one umbrella license.
We also note the curious fact that Creative Commons li-
censes are not recognized as open source for the purposes
of licensing source code, and therefore a project using Cre-
ative Commons for its textual component is technically not
eligible to use Sourceforge or GitHub as a repository site. If
a single umbrella license is chosen, then consideration must
be given whether to use a copy-left license such as GPL or
a license such as MIT that commercial interests would no
doubt find more attractive if they want to leverage the work
of the icseBook project. For example, a well-designed plat-
form for the development and the delivery of an icseBook
might be of interest to a publisher who would build upon
that platform in a fashion analogous to the way that IBM
has leveraged the Apache web server or RedHat’s leveraging
of Linux.

9

61

5. EVALUATION AND CSE RESEARCH
The first question that might come to mind related to

assessing icseBooks is: Does more learning occur in classes
that use them than in classes that use traditional textbooks?
There are a number of difficulties in addressing this question,
and perhaps the most important consideration is whether
learning gains is the only way to define success for an icse-
Book. Other concerns that should be factored into a defi-
nition of success include retention rates, learning efficiency
(time to learn), and resources expended by the instructor
or institution [44]. For example, an automated online class
without an instructor might be considered a success if it just
maintained the learning gains of a traditional class while re-
ducing the per-student resources expended. We might also
wish to consider what would be considered a successful learn-
ing opportunity for informal learners who would like to study
a body of material but are not enrolled in a class.

Perhaps the greatest significance in the long run for edu-
cation is that using an icseBook might prompt an instructor
to radically redesign the learning experience of the class for
the better. That is, affordances provided by the icseBook
might convince the instructor to change his/her pedagogical
approach. This makes evaluation by comparison with the
original version of the course difficult. Even now, there is a
great range of ways that traditional classes are conducted,
both in terms of course content and structure, and in terms
of course pedagogy. IcseBooks support potentially greater
differences in course pedagogy.

5.1 Evaluation Fundamentals
For now, consider the direct question of how much learn-

ing gain comes from a given instructional approach, such
as to compare a class that uses an icseBook with one that
uses a traditional textbook. Unfortunately, while standard
textbook and lecture classes have been in place for many
decades, there is little empirical data available to define the
learning gains attributed to use of the textbook. Part of the
problem is that it is hard to collect data on learning gains as-
sociated with traditional textbooks in a natural way. There
is no efficient way to accurately measure or evaluate how
intensely learners read a traditional textbook, or to capture
their fine-grained patterns of behavior (distribution of read-
ing time, etc.) It is not typical practice for instructors to
take a pre-test of their students, although one might con-
sider the final exam from the prerequisite course to fulfill
this role. So in general we have no formal baseline data for
current practice, except when a special educational study
has been performed. Fortunately, icseBooks, by their digi-
tal nature, provide some advantages to assessment that will
be addressed below.

How should we measure learning gain in the first place?
Bloom [5] defines the Effect Size of an intervention as

EffectSize =
AverageStudy − AverageConventional

σConventional

where we compare the measured outcomes (such as the score
on a test) for the study group versus the conventional or
control group, as scaled by the standard deviation of the
measure on the control group. Typically an effect size over
.5 is considered moderate, and effect sizes approaching 1 or
more are considered large. Independent of this, we also have
to be concerned if the differences are significant (which oc-

curs when there is a large enough absolute size of the effect
compared to the standard deviation, where “large enough”
depends on the number of subjects involved in the study).
For example, a recent study using OpenDSA [15] had a
moderate-to-large effect size (.5 standard deviation), but did
not have enough subjects (roughly 50 in each section) com-
pared to the standard deviation to reach significance.

One concern is to identify where measured learning gains
come from. Do they come from an inherently “better” in-
structional intervention? Do they come from changing time-
on-task (e.g., minor learning gains that come at the cost of
compelling students to spend considerably more time)? By
investing considerably more resources (e.g., add one-on-one
tutoring)? Or are improvements coming simply due to the
fact that the new instructional materials are revised to bet-
ter match learning objectives, something that could have
been accomplished in the original control method?

Another issue is the type of knowledge being measured.
This might involve improvements in a skill (such as pro-
gramming), or improvements in knowledge. Within knowl-
edge, we typically recognize a difference between procedural
knowledge such as the mechanics for how an algorithm works
versus conceptual knowledge such as understanding why the
lower bound for sorting algorithms is Ω(n logn). Achieving
gains for these different types of content might require dif-
ferent types of intervention.

Ideally, we would like our evaluation practices to be ef-
ficient, effective, and ethical. All of these dimensions have
difficulties. The gold standard is an experimental study,
which in education is defined as randomly assigning sub-
jects to control or treatment groups. The next best thing
is to take separate, existing sections of a course, or other
natural groupings, and use one course section as a control
group and another as a treatment group. This is referred to
as a quasi-experimental design. It is inferior both because
we become less sure that the control and treatment groups
are effectively identical, and because the number of differ-
ences in the experience of the groups nearly always goes
beyond the intervention under study. For example, the sec-
tions might have different instructors, the students might
be self-selecting based on time of day for the section, or the
students might be falling into different groupings because of
scheduling constraints from other courses.

Given two interventions, or a control versus an interven-
tion, we have to be concerned that any differences really
come from the effect under study, and not from one of a host
of other possibilities. Such problems are so prevalent that
there are even terms in place for some of the common pit-
falls (such as the “Hawthorne effect” [12], which refers to dif-
ferences that come from novelty or instructor/experimenter
enthusiasm for an intervention).

Finally, a number of studies [2, 26, 38] indicate that high
quality online education provides the same learning gains as
traditional courses. This would seem to bode well for the fu-
ture of MOOCS. That said, a major problem with MOOCs
is that most have limited support for automated assessment.
This situation appears to be ideal for the deployment of icse-
Books that contain a rich collection of integrated automated
assessment materials.

5.2 Data Collection for Assessment
There are a number of ways that data can be collected. In

this section we attempt to enumerate sources of evaluation

10

62

data, and to indicate the roles that the various sources can
take in a comprehensive evaluation process. We are mindful
of the fact that there are multiple stakeholders (system de-
velopers, researchers, content developers, instructors, learn-
ers) and there are multiple levels of artifacts to be evaluated
(individual visualizations or exercises, modules, icseBooks,
icseBook development systems).

Learner performance data The first-order indicator is
data on learner performance gathered through assessment
instruments. These instruments might be used as either for-
mative or summative assessments for the learner. These in-
struments might be test questions or various exercises within
the icseBook (completed under test conditions, as home-
work, or voluntarily completed by the learner) — in other
words, the score that a learner receives on each exercise. In
principle this is no different from similar information gath-
ered in traditional course settings, though the automated
assessment capabilities of icseBooks can make this far more
convenient for instructors as well as researchers.

Pre-test/Post-test data The gold standard for mea-
suring learning gains is generally considered to be the pre-
test/post-test pair. The differences in the observed deltas
between control and treatment groups can then be corre-
lated with the differences in the treatment (if we can accept
the large assumption that the control and treatment groups
are otherwise identical).

Automated log data One of the most important capa-
bilities that icseBooks bring to the table for use in assess-
ment is their natural potential to support automated logging
of primitive user interactions with the system. These prim-
itive, timestamped interactions (button clicks, page loads,
page focus events) can then be used to build up seman-
tic units of evaluation, such as “watched a slideshow”’ or
“completed an exercise.” With sufficiently complete logging,
higher-level action can also be inferred, such as “did this
student skip reading the content and go directly to the ex-
ercises?”. To answer such questions, it is necessary to make
good choices regarding what data to log. A typical soft-
ware developer reaction is to log everything. This can affect
storage requirements, time required to conduct analysis, and
privacy concerns.

Log data are only as useful as the analysis tools that the
evaluator can bring to bear. At some level, custom tools
are typically required in order to interpret the logs, though
after an initial round of processing it might be possible to
transform raw log data into something that conventional
data analysis tools can then work with.

Any data collected from individuals raises privacy con-
cerns. So long as icseBook projects are conducted under the
auspices of academic research, they are typically covered
by the institutions Internal Review Board (IRB) protocols.
This might give icseBook users some reassurance that their
privacy is protected, but probably not. When icseBooks are
implemented and published by commercial publishers, then
all bets will be off regarding privacy, as commercial publish-
ers do not undergo the same scrutiny as academics through
IRB review. On the other hand, typical users of the internet
routinely expect that their actions at commercial websites
are being logged. In any case, learners do understand that if
they wish to have their performance interpreted (even if just
for themselves), their collected actions must be identified to
the extent that they can be linked for assessment (e.g., when
they return to the site, they need to know what was previ-

ously completed). Learners working with the icseBook for
credit must have their progress reported to their instructor.

Survey Data Developers of educational systems often
rely on survey data for formative evaluation, and in gen-
eral to get feedback on user satisfaction and preferences.
Surveys can be applied by either the system developers or
independent evaluators to any of the relevant stakeholder
groups (learners, instructors, and content developers). Un-
fortunately, it is often the case that user opinions do not
correlate well with user performance. This might refer to
the usability of the system (just because a user claims to
prefer some feature does not mean that he or she will actu-
ally use it or be more productive because of it). Of greater
concern is the fact that learners are often not good judges
regarding how great their learning gains are, or of how to
maximize their learning gains [28, 33].

Observational Data Finally, evaluators might wish to
conduct observations of stakeholder groups (and in this cat-
egory we include data collected by conducting interviews).
The most likely groups to be observed/interviewed are learn-
ers (such as observing behavior of students in classes), or in-
structors (more likely through interviews than through ob-
servation). However, if we do not have a good baseline for
what was happening in the classroom prior to an interven-
tion, then we will not have any basis to recognize the effects
of the intervention. So ideally, advocates of icseBooks will
begin studying the existing behavior in courses even before
they begin deployment of their materials in order to build
such a baseline.

5.3 An Educational Research Agenda
IcseBooks have the potential for huge impact on CS edu-

cation. With these new capabilities come a host of potential
research questions. This section presents several that we be-
lieve are worth investigating. We broadly structure them in
the context of the stakeholder groups most likely to benefit
from the research (Table 1).

Increasing visual presentation In many cases, mate-
rial can be presented using a more or less visual approach.
For example, variables in a code segment could be explained
with a text paragraph, or a visual presentation that gives a
sentence of text next to a highlighted line for that variable
in the code. This fine-grained integration of visuals with
short amounts of text is not generally practical in paper
textbooks, but is viable in the icseBook (though it requires
more effort to create than simple text). How much (if any)
benefit is there from the more visual presentation, and how
far can we go with minimizing stand-alone text? For exam-
ple, OpenDSA attempts to use a “slideshow” approach to
increase visual presentation as much as possible.

Visual vs. audio presentation Work surveyed by Ma-
yer [25] suggests that the visual presentation of information
is better annotated or explained using audio rather than
text. (Note that the literature clearly shows that it is not
beneficial to augment visuals with the equivalent audio and
text at the same time, as any native speaker forced to watch
a movie in their language containing subtitles in that same
language can attest.) Mayer’s findings would argue for the
use of audio to narrate “slideshows” or screen capture pre-
sentations. On the other hand, in surveys of students using
OpenDSA [15], the students have shown relatively little in-
terest in adding audio. Another aspect to this question is to
determine what mode is the most appropriate for different

11

63

types of material. It is possible that code segments should
be presented differently from algorithm explanations to have
maximum effect on the learner. Finally, the most effective
length for audio presentation in this context should be stud-
ied. It is likely to be far less than the length of a discussion
topic such as a sorting algorithm, as prior work [25] has in-
dicated that a series of short segments are better than one
long segment.

Presentation modes Given the many different possibili-
ties of how the material might be presented (visual diagrams,
slide decks, textual prose, video animations, etc.), we need
a better understanding of what constitutes the most appro-
priate presentation mode for different types of information.
The presentation mode may differ for content topics as well
as the previous knowledge and experience of the learner.
That is, the presentation mode for learners in advanced com-
piler design might not need the same presentation scaffolding
as a beginning programming student.

Length of modules, subcomponents What is the most
appropriate length for one learning module? Can the prose
span more than one screen length? How much time should
it take for a learner to complete one module? Within a
module, how long should a single visualization last? For
example, OpenDSA has experimented with using a single
long“slideshow” for a given algorithm versus a series of short
slideshows to present the same algorithm.

Automated assessment We envision exercises built into
the icseBook providing immediate feedback to learners as
they progress through the text. How will this affect learn-
ing? How many of the exercises will the learner elect to
complete on their own? Will the learner complete the exer-
cises during the reading/exploration of the icseBook or only
while studying for an exam? Do students who complete
more exercises perform better on exams? Does student per-
formance on the exercises predict exam performance? We
see the ability to collect data on learner performance from
the automated assessments as a rich area for exploration,
and one that was unavailable using traditional textbooks.
In addition, when the instructor has immediate access to
learner performance data it might change their behavior.
Instructors would have the ability to modify lecture con-
tent based on student performance on the exercises, without
the additional effort of manually grading student submis-
sions. Instructors might also be able to design assessments
which specifically concentrate on content topics which stu-
dents have not shown mastery of in the automated exercises.

Controlling frequency of use As instructors, we of-
ten accuse our students of procrastination and “cramming”
for exams. Yet we rarely have data to support our implied
contention that such procrastination has a negative impact
on learning. Data collected within an icseBook gives us the
ability to know the exact distribution of time spent. We can
determine if learners have completed certain learning mod-
ules before class. If we were able to enforce controlling the
distribution of time spent using the icseBook, how would
this affect learning?

Effect on instructor We anticipate that using an icse-
Book for a class might affect how the instructor’s use of ped-
agogy evolves over time. We can hypothesize that instruc-
tors will start by using the icseBook as a direct replacement
for text and paper homeworks, and gradually evolve into
larger changes in how they conduct their class. Does the
use of an icseBook lead to improvements in teaching prac-

tice? Do they encourage better teaching practices? Do they
lead to more interactive classes?

Question/exercise type We have identified many differ-
ent types of exercises and/or question types possible within
an icseBook (see Section 4). Are specific question types
more effective for certain content topics? Do certain exer-
cise types lead to deeper learning or more near transfer?
Perhaps a variety of question types is more efficient than a
block of identical type questions. Are certain types of ques-
tions ineffective for certain topics?

Question/exercise feedback With the ability to have
interactive questions and exercises within the icseBook, it is
possible to vary the amount, type, and timing of feedback
provided to the learner. Empirical evidence can be used to
determine the most effective feedback mechanisms for spe-
cific question types. If the question requires multiple steps
(as in describing the output of a tree traversal), should the
learner be notified at their first incorrect response, so as to
get back on track for solving the remaining steps? Should
hints be provided for multiple choice questions if the learner
selects an incorrect answer? Being able to easily change
how a question type delivers feedback to the learner allows
researchers the opportunity to study how the changes affect
learner performance.

Interaction vs. prediction Research has shown that
interactive algorithm visualizations are more effective for
learning than passive viewing of animations [17, 29]. One
type of interaction involves the learner’s prediction of “what
happens next.” Is this type of interaction effective for learn-
ing?

Test bank creation An icseBook allows for the creation
of a large number (and type) of questions related to specific
content topics. Having a centralized location (within the
icseBook content files) and identical format allows for eas-
ier sharing and distribution of the questions. It also allows
for collection of student performance across institutions and
nationalities. Unfortunately, current support for question
banks is limited to a small number of question types (mul-
tiple choice, T/F and static questions with fixed wording).
This is in contrast to dynamic problems where, for exam-
ple, numbers in the question can be random variables. New
question banking facilities would be helpful [32].

Identifying Misconceptions Under the constructivist
view of learning, learners do not arrive as blank slates, but
rather with ideas of how things work. Some of these ideas are
incorrect and are termed misconceptions. If multiple choice
questions are designed with distractors that represent pos-
sible student misconceptions, then analyzing student per-
formance can determine the most common misconceptions
from within a group. In addition, learner responses to fill-in-
the-blank questions and predictive animations can produce
other misconception data. Moreover, simulation exercises
can reveal misconceptions that can be automatically identi-
fied [22].

Correcting Misconceptions If an instructor can view
the most common misconceptions within a class, he/she can
address those misconceptions directly. In automatic assess-
ment, however, we can ensure that the learner’s submission
is checked also against misconceived solutions, allowing ac-
curate and detailed feedback to be provided [40]. Potentially
such feedback could even take advantage of adaptive learn-
ing techniques [9, 8].

Cheating and Credit Cheating is certainly not new or

12

64

L I C S
Increasing visual presentation X X
Visual vs. audio presentation X X
Presentation modes X X X
Length of modules, subcomponents X X
Automated assessment X X X X
Controlling frequency of use X X
Effect on instructor X
Question/exercise type X X
Question/exercise feedback X X
Interaction vs. prediction X X
Test bank creation X X
Identifying misconceptions X X
Correcting misconceptions X X X
Cheating X X X
Managing undesirable behavior X X X X
Student attitudes/motivation X X X
Exploration vs. linear traversal X X X X

Table 1: Potential Participant Input per Research
Question. Key: L: Learners, I: Instructors, C: Con-
tent Developers, S: Software Developers.

unique to icseBooks. However with new technology comes
new ways to cheat and new ways to prevent or deter cheat-
ing. How to assign course credit is perhaps the most pressing
issue today related to MOOCs, and how to control cheating
is a major concern for assigning course credit.

Managing undesirable behavior Some students will
look for ways to bypass the standard learning methods and
invent shortcuts to obtain their desired outcome. These
shortcuts might include viewing only the first (or last) slide
from a specific slide deck or guessing at multiple choice ques-
tions until a correct answer is obtained, skipping assessments
completely. Poorly designed assessment exercises can en-
courage guessing behavior [21]. An icseBook environment
provides new ways to“game the system.” But icseBook tech-
nology also provides opportunities: first to capture informa-
tion that allows us to conclusively identify which student
behaviors lead to good outcomes and which lead to bad out-
comes, and then to design the system to deter or eliminate
undesirable student behavior.

Student attitudes/motivation One important aspect
of any learning environment is the learner engagement. Re-
search concerning student attitudes toward icseBooks and
their specific features should be undertaken. In addition,
ways to motivate students toward completion of the mate-
rial should be considered, including investigation of using
gamification aspects such as badging and ranking.

Exploration vs. linear traversal With many courses,
it is possible to learn the material in many different orders,
as long as prerequisite information is identified and enforced.
Rather than presenting the typical“table of contents”(which
represents a single linear traversal of the material), learners
might be presented with a concept map of all the topics to
be learned within the course. The learner might explore the
topics in any desired order, as long as prerequisite knowledge
is enforced, and one could research whether this exploratory
version of learning is more effective than a traditional linear
approach.

6. IcseBook SOFTWARE DESIGN
The previous sections have identified requirements for ic-

seBook design and functionality. This section discusses ic-
seBook platforms—software systems that meet the require-
ments of icseBooks and their stakeholders: learners, content
developers, instructors, and education researchers, as well
as icseBook platform designers themselves. Ideally an icse-
Book platform would be an environment that allows content
developers to create content (an entire icseBook, individual
modules for an existing icseBook, visualizations, exercises)
without concern about the underlying software required to
deploy the icseBook. This section provides direction to those
who would design and implement such icseBook platforms.
Our chief goal is that developers of icseBook platforms (or
of individual components that might be used as part of an
icseBook platform) will work to support a good degree of in-
teroperability. No one group of developers is likely to solve
all of the problems involved, and creating interoperable sys-
tems will allow the community to achieve faster progress
than a plethora of platforms with similar functionality but
little interoperability.

Any icseBook authoring platform (as well as any icseBook
itself) will be an incremental work in progress as modifica-
tions and new features are implemented based on desirability
and feedback from stakeholders. Thus, we focus only on the
primary features necessary for an icseBook platform.

6.1 The icseBook Platform Architecture
We assume that an icseBook will be an HTML5-based web

application. While Java applets and Adobe Flash have been
popular in the past for producing interactive web content,
the rise of HTML5 combined with the rapid deprecation of
both Java applets and Flash due to a host of security and
compatibility concerns makes HTML5 the only plausible al-
ternative from among these three. It may be desirable at
some point to deliver content in a format other than HTML,
such as ePub, which now supports interactivity. But as of
this writing, web technologies are the best option because
of their ubiquity, standards, and capacity for interactive en-
gagement with users.

A proposed architecture of an icseBook platform is shown
in Figure 2. The icseBook platform is divided into two main
components—a renderer and a web application server.

The renderer is the component that is intended to make
the task of content developers as extensive, powerful, fluid,
transparent, and painless as possible. It should be designed
in a way that allows for all the various content artifacts—
text, externally referenced content (e.g., Khan Academy ex-
ercises), images, slideshows, movies, interactive quizzes, pro-
gramming examples, algorithm visualizations, models (e.g.,
of computation)—to be included (and/or adapted for inclu-
sion) by an icseBook content developer while demanding the
least amount of underlying knowledge of icseBook platform
components. The output of the renderer is an HTML, CSS,
and JavaScript icseBook that can be deployed to a web ap-
plication server.

The Customization Interface allows an icseBook creator to
rearrange or remove pages, sections, chapters, modules, and
so forth to customize an icseBook as desired, while leaving
the calculation of the internal hyperlinking (i.e., for naviga-
tion menus) up to the renderer.

The web application server provides services for serving
the content to learners, as well as managing icseBook infor-
mation gathering, including

• data collection and storage for the icseBook,

13

65

Figure 2: The architecture of the icseBook soft-
ware platform. The authoring platform is above the
dashed line, the deployed book application below.

• logging of learner activities,

• permanent storage for student assignments and grades,

• an interface for the instructor to grade assignments
and view grades, and

• a customization interface (for the instructor).

Figure 2 is not meant to imply a “from-scratch” or mono-
lithic implementation of all functionality. We see it as de-
sirable to use existing software and third-party services for
some of the platform features (e.g., using a learner’s social
media login credentials for authentication). Throughout this
section, we give examples of such services and software.

6.2 Support for Content Creation/Inclusion

6.2.1 Support for authoring
An icseBook platform should support various levels of con-

tent creation, matching the contributions described in Sec-
tion 4.1.2. Example use cases include:

1. Authoring content with artifacts (e.g., media, quizzes,
visualizations, etc.). The platform would ideally al-
low authoring without requiring detailed knowledge of
HTML, CSS, or JavaScript.

2. Extending content artifacts, which may require pro-
gramming expertise to write such things as “macros”
or simple commands that expand to complex combina-
tions of HTML, JavaScript, and CSS, thereby allowing
a content developer to avoid this complexity.

3. Customization, which allows, for example, instructors
to create an icseBook by customizing the work of oth-
ers, or adding additional exercises to a part of an ex-
isting icseBook.

Support for embedding content occurs widely in web de-
sign systems. For example, when a video is to be inserted, a
dialog might ask what the width of the video should be and
allows the content developer to browse to the location of the
video on the local disk. A program behind the scenes can
then generate the proper HTML link to the video, directly
inserting the result into the web page. Similar interfaces
can be implemented by an icseBook platform for inclusion of
other, more complex artifacts as well. These might include
automatic transcoding of media to web-ready formats.

Examples of authoring languages that can be used to
create web-accessible textual content include reStructured-
Text14, Markdown15, and comprehensive WYSIWYG edit-
ing systems for HTML (e.g., Adobe Dreamweaver). While
tools like Dreamweaver or iBooks Author16 provide “macro”
support, we know of no WYSIWYG-only editors that pro-
vide this functionality. Runestone Interactive and OpenDSA
have both adopted reStructuredText due to its “lightweight
markup” syntax, support for embedding media, and its flex-
ible customization of the authoring language through macro
definition. Sphinx17 provides extensions to reStructured-
Text and can produce HTML (among other formats) as out-
put. Such features ensure that content developers will not
get mired in the details of custom JavaScript coding of each
interactive element of an icseBook.

An Example. To get a better idea of how reStructured-
Text macros (called “directives”) can work, we give an ex-
ample that provides for interactive code execution and edit-
ing [27]. The directive is called activecode. To a content
developer, the activecode directive in the content source
would look as follows:

.. activecode:: divid

print "hello world, I’m a Python example"

The activecode directive causes two things to happen. To
start, several JavaScript files are added to the list of Java-
Script libraries referenced on the web page under construc-
tion. Then a block of HTML is created that has the struc-
ture shown in Figure 3.

The output includes an HTML div element that contains
a unique identifier (needed to ensure that multiple instances
of an activecode directive can be contained on the same
page). Inside the div is a textarea element which gets em-
bedded in a JavaScript editor when the page is loaded. In
addition some HTML buttons, a canvas, and an HTML pre
tag are generated. The canvas is needed for graphical out-
put by the program, and the pre tag is there for any textual
output from the program. One of the buttons generated by
the directive is a run button that allows execution of code
in the editor inside the div. Figure 4 illustrates what an
activecode directive looks like when rendered to HTML.

Most of the functionality described above is also possi-
ble in Dreamweaver, although the only known Dreamweaver
platform specific for icseBook creation has been designed for
supporting interactive models of computation rather than
interactivity that requires model extension or interactive
program source code editing and compiling [35].

14http://docutils.sourceforge.net/rst.html
15http://daringfireball.net/projects/markdown
16http://www.apple.com/ibooks-author/
17http://sphinx.pocoo.org

14

66

Figure 3: Example of the HTML structure gener-
ated by the activecode directive.

Figure 4: The activecode directive fully rendered to
HTML.

6.2.2 Support for interactive content creation
Any authoring system should support creation of the fol-

lowing elements of interactive content (introduced in Sec-
tion 4.1.1).

Self check questions The platform should support gen-
erating self-check questions. Question types should include
fill-in-the blank, multiple choice, Parsons’ problems [18], and
more advanced interactive questions that ask a user to ma-
nipulate a particular data structure or object. OpenDSA
and Runestone Interactive both provide a variety of these
kinds of questions. Of course, one good way to“support”this
is by relying on a third party. For example, OpenDSA sup-
ports embedding questions created with the Khan Academy

Exercise Framework. This system supports both embedding
individual questions, and embedding collections of questions
from which instances are selected at random.

Visualizations Extensive visualization of data structures
and algorithms can be provided in a variety of ways. For ex-
ample, OpenDSA supports visualizations of sorting, search-
ing, trees, and graph algorithms using the JSAV library [23].
The Runestone Interactive Project uses the Online Python
tutor system [14], allowing learners to step through their
code interactively and view common Python data structures.

Editing and execution of code This was covered ex-
tensively in our preceding example of an activecode direc-
tive. While the activecode directive is tied to the Python
language through a JavaScript implementation of Python
known as Skulpt18, other languages could be supported by
JavaScript implementations including Scheme19, Process-
ing20, and JavaScript itself. The Emscripten project [45]
might allow many interpreted languages implemented in C
to be compiled to JavaScript.

Programming assignments Programs can be assigned
to students either in an open ended form or having a de-
fined set of inputs and outputs. For example the Runestone
Interactive project has a unit-test framework that the con-
tent developer can use to provide an invisible set of test
cases, giving the learner feedback on their programming as-
signment. JhavePOP21 supports small-scale programming
exercises on pointer operations, and provides visualizations
of the student’s answer. This is being ported to OpenDSA,
where it will also include automated assessment of the an-
swers.

Audio and Video HTML5 includes new elements for
embedding video and audio directly into the page without
plugins. However, the supported audio and video formats
vary among browsers, currently requiring content develop-
ers to transcode original videos into both of the supported
formats (mp4 and webm) using freely available software such
as Handbrake22 and Firefogg23. Ultimately, the authoring
platform should handle resizing and transcoding automati-
cally. Another approach is to host the videos on platforms
such as YouTube and embed them into the icseBook.

Social Aspects There are many possibilities for incorpo-
rating social sharing into an icseBook. Some might simply
serve a marketing purpose, such as “like me”, “follow me”,
and “share me” links. Facebook, Twitter and Google all
have code for incorporating such links. Furthermore, in case
of gamification features, the platform could enable sharing
achievements (such as badges gained) to social media.

Another possibility is to use social media services to en-
courage discussion and sharing among students. For exam-
ple, Runestone Interactive provides a directive that allows
a disqus24 discussion box to be placed at any point on the
page. Similar services include IntenseDebate25 and Live-
Fyre26, both of which provide a discussion forum service for

18http://www.skulpt.org
19http://www.biwascheme.org/
20http://processingjs.org/
21http://jhave.org/jhavepop
22http://handbrake.fr/
23http://firefogg.org/
24http://disqus.com/
25http://www.intensedebate.com/
26http://web.livefyre.com/

15

67

free. We encourage developers to make use of these web
services rather than inventing their own.

Learner Driven Algorithm and Program Simula-
tions In algorithm simulation exercises, learners are the
ones describing the behavior of an algorithm by modify-
ing a data structure visualization. For example, this can
be done by clicking nodes within a binary search tree. Sys-
tems supporting such exercises include TRAKLA2 [24] and
JSAV [23]. Algorithm simulations require rather specialized
support, such as a mechanism for storing the key steps of an
algorithm, generating model answer visualizations, compar-
ing student and model answers, providing feedback in the
event of mistakes, and capturing scoring information. Thus,
it is significant that high-quality open-source libraries ex-
ist as exemplars for algorithm visualization support, rather
than requiring individual development teams to create their
own. Program simulation systems such as UUhistle [43] pro-
vide some similar features, except that the student is sim-
ulating the execution of a program and getting feedback in
the event of mistakes.

External Content A crucial aspect of interoperability
is the ability of the icseBook platform to support embed-
ding interactive content from third party services. At the
simplest, this can be embedding content from a URL into
an iframe on a page27. For more complex cases, the OEm-
bed standard28 used by many online services (e.g. Flickr29)
should be supported by the platform. Another example of
a lightweight service embedding protocol is implemented in
the A+ learning platform [20].

While the actual process for authoring interactive content
depends heavily on the type of content and the software sys-
tem used, we can give some general guidelines for content
developers. In general, all software support for interactive
content should be designed to be extensible, since the origi-
nal content developer is not going to be able to implement
support for all future uses. Also, the style of the content
created with the system should be separated from the con-
tent in order to allow changing the look-and-feel of all learn-
ing artifacts created with the same system (as discussed in
4.3.2). Finally, content developers writing code should con-
sider reusability of their code and expose and document APIs
in order to help both themselves and other content develop-
ers to build on their efforts.

6.2.3 Support for icseBook customization
The survey tells us that some amount of customization

is moderately important to most instructors, as discussed
in 4.2. Listed as important (Q18) were the ability to delete
or reorganize modules, add a new module, modify existing
text, and add exercises. To address the key requirement
of reordering content, the software system should support a
table of contents that can be reordered. For example, an ic-
seBook generated from restructuredText has a single master
file called index.rst. This file defines the table of contents
for the book and controls the order in which the material
is presented. In order to create a customized version of the
book, an instructor can simply create a new index.rst file.
This can be done using a traditional text editor, or through
a more friendly user interface that allows the instructor to

27This is how some JSAV-based AVs and simulation exercises
are actually embedded into an OpenDSA icseBook.

28http://oembed.com/
29http://flickr.com/

drag and drop sections or chapters into an appropriate order,
letting the tool write the new index file. The Dreamweaver
approach uses a similar table of contents file to automati-
cally organize a group of HTML files.

To support instructors who want to customize the order
of the learning modules in their icseBook, there must be
some way of describing the data required to build the dy-
namic network of learning modules (see Section 4.3). This
might be as simple as specifying all of the prerequisites for
a particular module. This means that each module includes
metadata describing both the content, perhaps in the form
of tags, as well as prerequisites. This could be done using
comments at the top of each source file, or a with a restruc-
turedText directive. This information can be conveyed to
other instructors using a standard such as LOM30 or Dublin
Core31. A standard approach using JSON or XML would
make prerequisite structures interoperable.

To support the customization of the look-and-feel, it is
strongly advised that content and presentation be separated
so that the presentation can be changed without affecting
content in a manner similar to the model-view-controller
software design pattern [10]. This applies to the entire
icseBook infrastructure as well as to the design of individual
modules, especially interactive artifacts.

Finally, customization can itself generate a first-class ar-
tifact in the system, perhaps in the form of a “configuration
file”such as OpenDSA uses. This allows instructors to define
the contents for a textbook in a way that other instructors
can reuse, allowing modifications of their own without hav-
ing to build the configuration from scratch.

6.2.4 Support for peer review
Providing for comments and peer review on the contents

of the book is an important feature that has been solved by
several systems. For example djangobook32 and medium.com
allow readers to click on a paragraph and leave a comment.
A small icon appears next to any paragraph that has been
commented on. This feature should be able to be turned off.
Once a book has been reviewed and is available for learners,
peer feedback may not be helpful.

Peer review data should be available in an XML format,
or through a web-based interface. Ideally this availability
would help make the case that contributions to an open
source icseBook should count for tenure and promotion.

6.2.5 Support for versioning
Versioning is a huge topic, but what is important for this

discussion is that there should be some way to make old
versions of a text available. For example, an instructor
might generate a new instance of an OpenDSA textbook
each semester as he/she makes minor changes in the content
to be covered. Without some sort of versioning support, a
great deal of confusion might result. One way to accomplish
this is through a simple URL-based approach as follows:

• ...BookName – lets the user access the most current
revision of the icseBook.

• ...BookName/edition – lets the user access the most
recent revision of an edition of an icseBook

30http://ltsc.ieee.org/wg12/files/LOM_1484_12_1_v1_
Final_Draft.pdf

31http://dublincore.org
32http://djangobook.com

16

68

• ...BookName/edition/revision – lets the user access a
specific edition and revision of an icseBook.

6.2.6 Support for navigation (UI design)
To aid learners with navigating the icseBook, it is de-

sirable for the software system to automatically generate a
navigation bar that is always visible. This navigation bar
should provide links to the table of contents, an index, and
the next or previous module. In addition, the navigation
bar should provide access to a search box for the book.

6.2.7 Internationalization
A complex topic with an icseBook is its internationaliza-

tion, that is, providing the book and the content in multiple
languages. We see different levels of internationalization:
translation of text content, changing the UI language in the
book and interactive modules, and translating the interac-
tive content. The main point we want to make here is that
developers of systems for interactive content should make it
possible to translate the UI and the module content with-
out copying significant parts of the implementation code.
Furthermore, since a lot of the book content deals with pro-
grams, it should be possible to change the programming lan-
guage used in the book (in topics where this makes sense,
such as in a data structures and algorithms books).

6.3 Support for Teaching with an icseBook

6.3.1 Content use scenarios
We described earlier the reasons why HTML5 is currently

the only viable solution in our view for icseBook presenta-
tion. However, other formats with the necessary function-
ality are likely to appear in the future. One such potential
format is ePub. Version 3 of ePub supports interactive con-
tent using JavaScript33. The ePub 3 format is supported
by many reading devices and applications (such as Apple
iBooks). Creating an interactive paper copy of any icse-
Book is not possible, though a static print version could
exist that references online dynamic content. This approach
was taken in the textbook by Crescenzi [13] that includes
notes for readers to use the AlViE visualization system34.
However, while many teachers adopted the book for their
teaching, many of them did not use the accompanying visu-
alization tool. We conclude that integrating visualizations,
exercises, and textbook content is one of the most important
features of an icseBook, providing crucial synergies that can-
not otherwise be achieved.

Another major factor in usage scenarios are the devices
used to access the material. In the survey results (Q19),
“must run on mobile devices” was rated the single most im-
portant requirement by 48% of the respondents. Students
today might be using their laptop at school, a smartphone
on the bus, and a tablet on the couch at home. The as-
sumption of modern web applications is that they work on
all these devices, and that student progress is synced across
devices and browsers. All modern mobile devices include
technically sophisticated web browsers, so the material that
works in a desktop browser should work on smartphones as
well. However, when designing interactive content and the

33http://www.idpf.org/epub/30/spec/epub30-overview.
html

34http://alvie.algoritmica.org/alvie3

layout of the icseBook, the limitations and capabilities of
target devices should be taken into account:

• Content should adapt to different screen sizes. Tech-
nically, this can be achieved with CSS using sizing rel-
ative to the window as well as CSS3 media queries
to style content differently based on the screen size.
Content developers might decide not to support below
a certain resolution (for example, cutting out smart-
phones while still supporting tablets), but they should
be aware of the consequences.

• The correct input method for the interactive content
should be carefully considered. For example, JSAV [23]
does most interaction through clicks instead of the
drag-and-drop approach used in the older TRAKLA2.

• Interaction targets should be large enough to be usable
on touch devices. For a detailed discussion of touch
and touch targets, see [16].

• The content should not depend on functionality that
is not practical on touch screens, such as hover.

6.3.2 Authentication and authorization
For learners in a specific course who aim to complete a

set of modules assigned to them by the instructor, authen-
tication is an important consideration. Learners (as well
as instructors) want to ensure that their achievements are
properly recorded. Thus, the icseBook must support user
registration and login/logout.

To ease the registration process, the icseBook should sup-
port authentication with existing user accounts such as Face-
book, Twitter, or Google as well as single sign-on systems
provided by universities. A useful service for integrating
with multiple identity providers is the Janrain User Man-
agement Platform35, which is used by Runestone Interac-
tive. Another similar platform is the Gigya Social Login36.

For voluntary learners not tied to a course, registering
with the icseBook can simply be an annoying additional step
to accessing the content. Instructors who might consider
adopting an icseBook are also likely to be put off by require-
ments to register just to try out exercises or view content.
So while registration and login must be supported, devel-
opers should carefully consider what limitations are placed
on anonymous users. We consider it to be good practice to
allow anonymous users to access the content and complete
the exercises. This permits interested parties to “try out”
the icseBook before committing to its use. To protect regis-
tered users who forget to log in, the interaction log data and
results can be stored in the browser’s local storage in case
the user decides to register or log in later on. When register-
ing, the results from the local storage can be attached to the
created user profile. This approach is already implemented
in the OpenDSA backend [7].

In addition to attaching grades and log data to the cor-
rect learner, authentication provides at least a rudimentary
support against spamming and attempts to hack the system
to, for example, get credit without solving the exercises.

For authorization, we see at least two levels of users with
access to different data. In general, learners should only be
able to access the material and their own results, whereas
instructors need access to the data of all of their students.
However, as social aspects become more widely used, the

35http://janrain.com/
36http://www.gigya.com/social-login/

17

69

learner might wish to make part of his/her profile public
and thus accessible to other learners.

6.3.3 Instructor’s version
Traditional textbooks typically come with an instructor’s

version which includes ready-made lecture slides and solu-
tions to exercises. According to the survey (Q20), 40% of
the respondents do not require an instructor’s version of
an icseBook whereas only 14% would definitely require it.
When asked which instructor content they must have, the
most common answers were solutions to all exercises, test
banks of questions, and coursenote slides.

Solutions to exercises can be provided on a separate page
that requires instructor authentication. Examples include
multiple choice or fill-in-the-blank questions with automatic
feedback as well as the algorithm simulation exercises. For
icseBooks that are built entirely with automatically assessed
exercises, explicit solutions might not be required. In fact,
dynamic exercises where various parameters of the question
are selected at random cannot have “an answer”, though an
instructor version could provide an answer for specified prob-
lem instances. For many interactive exercise types, feedback
about the correct answer is built into the activity.

For generating lecture slides, the content renderer might
extract specifically marked content to slides. While there
has been research on how to automatically generate lecture
slides from visualizations, we think these slides should also
be in HTML5 in order for the interactive content to work in
them. This functionality is already supported, for example,
by Sphinx (but it does require that the content developer
explicitly redesign the content to achieve an effective pre-
sentation).

In addition to the typical instructor material, an icseBook
can offer supporting functionality right within the content.
For example, in Runestone Interactive, special links next to
each exercise can appear only for instructors. When an in-
structor clicks on an exercise, they might see the aggregate
results for their class. When an instructor clicks on a pro-
gramming assignment, they might have the ability to see
their students’ submissions and provide feedback.

6.3.4 Deployment practicalities
Open Source and Licensing Software projects in aca-

demia often end once a few papers about the software are
published. At this point, many useful systems end up being
“wasted” instead of released for others to benefit and build
on. Luckily, all of the systems mentioned above have been
released as open source. We highly encourage developers
of future systems to publish their code, even if it is not
highly polished. Furthermore, the source code for the system
should have explicit, easy-to-find license information.

Hosting There are two models to consider for hosting.
First, to deploy an icseBook an instructor could download
the source from a public repository such as GitHub37, then
compile, configure, and host the icseBook on a local server.
The advantage is that it is easy for the instructor to cus-
tomize any aspect of the icseBook and to keep any student
data collected within the walls of the university. The disad-
vantage is that building and hosting the platform could be
a lot of work. The second option is to design the icseBook
platform so that hosting courses is a service. This is the ap-
proach taken by the Runestone Interactive project at their

37http://github.com/

interactivepython.org site. In this approach, an instructor
simply goes to the site and creates a course. At the time
of book creation, the instructor might customize the book
using a drag-and-drop interface to select various chapters or
sections, or they might simply adopt an entire book. After
the book is built, any online activities, grades, exercises, etc.
are tied to this newly built book instance.

Online vs. Offline Use In some designs, content in an
icseBook executes on the client side without further inter-
vention from a server once the page is loaded. This allows
the book to be packaged and distributed to be loaded to,
say, a mobile device. While we realize that some content re-
quires communicating with a server, we encourage as much
of the functionality to be implemented so that it works with-
out an internet connection once downloaded. As in the case
of anonymous users, the interaction data and learner results
can be cached locally and synchronized with the server later.

6.4 Support for Evaluation
We have identified six general areas that would benefit

from evaluation: learning, instructing, developing content,
usability, icseBook platform development, and education re-
search. Each of these requires the collection, archiving, re-
trieving, processing, and reporting of data. This, in turn,
implies that an icseBook platform be a Web application that
not only delivers icseBook content but can also be formu-
lated to acquire and process data from icseBook use. In the
interests of interoperability, it is strongly recommended that
all such data be represented in a standard format, such as
XML or JSON. A list of results to be achieved, and the data
to be gathered for computing results would be both too long
and incomplete. We only provide flavors of these below.

6.4.1 Learner interaction data collection
For instructors, content developers, or researchers to find

answers to the learner interaction questions listed in Sec-
tion 5, collecting rich interaction data is essential. Exam-
ples of systems that currently do much of this are OpenDSA
and Runestone Interactive [27]. However, these do not store
data in a standard form.

As an example of learner interaction data collection, an ic-
seBook should be able to record the learner, course, learning
object with which the learner is interacting, and timestamp
of the activity. Furthermore, each logged event should in-
clude the event type and a description of the activity. Differ-
ent content will need to store different kinds of information,
so this payload should allow storing free text. To submit
interaction data to the server, the backend should expose
a URL where a log event can be posted as JSON or XML
using AJAX.

One standard that could be adopted for interaction data
collection is the Tin Can API38. While the specification
looks promising, it is new and its benefits and popularity
remain unknown.

6.4.2 Teaching data collection
There are two distinct goals to data collection related to

teaching: (1) results that can lead to improvements in in-
struction, and (2) results that allow student assessment (e.g.,
grades, progress through assigned icseBook material, and so
forth). Point 1 can be determined through recording and
processing learner interaction (discussed above). It can also

38http://tincanapi.com/

18

70

be done through periodic student surveys that are recorded
for analysis. Point 2 implies that student scores of interac-
tive tests and exercises must also be saved, and analysis and
integrated display software must exist that allows an instruc-
tor to view scores as well as allowing individual students to
view their results.

In the future, it would be advantageous to integrate grade
data information with various learning management sys-
tems such as Moodle. Standard specifications for this are
available—for example, the IMS Learning Tools Interoper-
ability framework39, which has been seen as promising by
eLearning system vendors [1].

6.4.3 Data collection for other stakeholders
The collection of learner interaction and instructor data

will be invaluable for other stakeholders as well. For content
developers, the data can provide insight into the usability of
the content and specific features. For platform developers,
use statistics can provide formative guidance and polishing
of the most-used features, and identification of under-used
features. For educational researchers, data collection works
as a base for analysis. However, the data gathered from
users and instructors might need to be supplemented with
more targeted surveys specific to the questions being ad-
dressed, possibly including mechanisms whereby learners,
instructors, and peer reviewers can provide feedback on the
icseBook content.

7. CONCLUSION
To borrow a term from the world of music, the vision

for an icseBook we have presented here is that of a remix,
blending components from instructional technologies that
already exist in isolation into a whole that exceeds the sum
of its parts. Our hope is that the report will offer inspiration
for content developers to begin actively contributing to such
projects, particularly those that are open source, thereby
leading to their widespread use by Computer Science in-
structors and students. Toward that end, Sections 2, 3, and
4 have presented a set of icseBook user requirements. We
also want to ensure that, from a software engineering per-
spective, such open source icseBook projects themselves are
developed using guidelines that ensure standards for interop-
erability (Section 6). This will afford education researchers
the opportunity to explore more deeply than ever before the
variety of interactions between factors that lead to effective
learning (Section 5).

8. REFERENCES
[1] C. Alario-Hoyos and S. Wilson. Comparison of the

main alternatives to the integration of external tools
in different platforms. In Proceedings of 3rd
International Conference of Education, Research and
Innovation, pages 3466–3476. IATED, 2010.

[2] E. Allen and J. Seaman. Going the distance: Online
education in the united states. Technical report, The
Sloan Consortium, November 2011.

[3] T. Bailey and J. Forbes. Just-in-time teaching for CS0.
ACM SIGCSE Bulletin, 37(1):366–370, Feb. 2005.

[4] J. Bennedsen and M. E. Caspersen. Revealing the
programming process. ACM SIGCSE Bulletin,
37(1):186–190, 2005.

39http://www.imsglobal.org/lti/

[5] B. Bloom. The 2 sigma problem: The search for
methods of group instruction as effective as one-on-one
tutoring. Educational Researcher, 13(6):4–16, 1984.

[6] C. R. Boisvert. A visualisation tool for the
programming process. ACM SIGCSE Bulletin,
41(3):328–332, 2009.

[7] D. A. Breakiron. Evaluating the integration of online,
interactive tutorials into a data structures and
algorithms course. Master’s thesis, Virginia Tech,
2013.

[8] P. Brusilovsky, G. Chavan, and R. Farzan. Social
adaptive navigation support for open corpus electronic
textbooks. In Adaptive Hypermedia and Adaptive
Web-Based Systems, pages 24–33. Springer, 2004.

[9] P. Brusilovsky, J. Eklund, and E. Schwarz. Web-based
education for all: a tool for development adaptive
courseware. Computer Networks and ISDN Systems,
30(1):291–300, 1998.

[10] F. Buschmann, R. Meunier, H. Rohnert,
P. Sommerlad, and M. Stal. Pattern-Oriented Software
Architecture Volume 1: A System of Patterns. Wiley,
1996.

[11] C. M. Christensen, M. B. Horn, and C. W. Johnson.
Disrupting class: How disruptive innovation will
change the way the world learns. McGraw-Hill, 2008.

[12] D. L. Cook. The Hawthorne effect in educational
research. The Phi Delta Kappan, 44(3):116–122, 1962.

[13] P. Crescenzi and C. Nocentini. Fully integrating
algorithm visualization into a CS2 course. a two-year
experience. In ITiCSE ’07: Proceedings of the 12th
annual conference on Innovation and technology in
computer science education, pages 296–300, 2007.

[14] P. J. Guo. Online Python Tutor: Embeddable
Web-Based Program Visualization for CS Education.
In SIGCSE ’13: Proceeding of the 44th ACM technical
symposium on computer science education, pages
579–584, 2013.

[15] S. Hall, E. Fouh, D. Breakiron, M. Elshehaly, and
C. Shaffer. Education innovation for data structures
and algorithms courses. In Proceedings of ASEE
Annual Conference, Atlanta GA, June 2013. Paper
#5951.

[16] N. Henze, E. Rukzio, and S. Boll. 100,000,000 taps:
analysis and improvement of touch performance in the
large. In MobileHCI ’11: Proceedings of the 13th
International Conference on Human Computer
Interaction with Mobile Devices and Services, pages
133–142, 2011.

[17] C. D. Hundhausen, S. A. Douglas, and J. T. Stasko. A
meta-study of algorithm visualization effectiveness.
Journal of Visual Languages & Computing,
13(3):259–290, 2002.

[18] P. Ihantola and V. Karavirta. Two-dimensional
parson’s puzzles: The concept, tools, and first
observations. Journal of Information Technology
Education: Innovations in Practice, 10:1–14, 2011.

[19] P. Ihantola, V. Karavirta, and O. Seppälä. Automated
visual feedback from programming assignments. In
Proceedings of the Sixth Program Visualization
Workshop, pages 87–95, Darmstadt, Germany, 2011.

[20] V. Karavirta, P. Ihantola, and T. Koskinen.
Service-oriented approach to improve interoperability

19

71

of e-learning systems. In 13th IEEE International
Conference on Advanced Learning Technologies,
page 5, 2013.

[21] V. Karavirta, A. Korhonen, and L. Malmi. On the use
of resubmissions in automatic assessment system.
Computer Science Education, 16(3):229–240, Sept.
2006.

[22] V. Karavirta, A. Korhonen, and O. Seppala.
Misconceptions in visual algorithm simulation
revisited: On ui’s effect on student performance,
attitudes and misconceptions. In LaTiCE’13: Learning
and Teaching in Computing and Engineering, pages
62–69, 2013.

[23] V. Karavirta and C. A. Shaffer. JSAV: The JavaScript
Algorithm Visualization library. In ITiCSE’13:
Proceedings of the 18th annual conference on
Innovation and technology in computer science
education, pages 159–164, 2013.

[24] L. Malmi, V. Karavirta, A. Korhonen, J. Nikander,
O. Seppälä, and P. Silvasti. Visual algorithm
simulation exercise system with automatic assessment:
TRAKLA2. Informatics in Education, 3(2):267–288,
2004.

[25] R. Mayer. Applying the science of learning:
Evidence-based principles for the design of multimedia
instruction. American Psychologist, 63(8):760–769,
2008.

[26] B. Means, Y. Toyama, R. Murphy, M. Bakia, and
K. Jones. Evaluation of evidence-based practices in
online learning. a meta-analysis and review of online
learning studies. Technical report, U.S. Department of
Education, September 2010.

[27] B. N. Miller and D. L. Ranum. Beyond PDF and
ePub: toward an interactive textbook. In ITiCSE’12:
Proceedings of the 17th annual conference on
Innovation and technology in computer science
education, pages 150–155, 2012.

[28] T. Naps and G. Grissom. The effective use of
quicksort visualizations in the classroom. Journal of
Computing Sciences in Colleges, 18(1):88–96, 2002.

[29] T. L. Naps, G. Rößling, V. Almstrum, W. Dann,
R. Fleischer, C. Hundhausen, A. Korhonen, L. Malmi,
M. McNally, S. Rodger, and J. A. Velázquez-Iturbide.
Exploring the role of visualization and engagement in
computer science education. In Working group reports
from ITiCSE’02 on Innovation and technology in
computer science education, pages 131–152, 2002.

[30] S. Papert. Mindstorms: Children, computers, and
powerful ideas. Basic Books, Inc., 1980.

[31] D. Parsons and P. Haden. Parson’s programming
puzzles: A fun and effective learning tool for first
programming courses. In D. Tolhurst and S. Mann,
editors, Eighth Australasian Computing Education
Conference (ACE2006), volume 52 of CRPIT, pages
157–163, 2006.

[32] A. Paul. Qbank: A web-based dynamic problem
authoring tool. Master’s thesis, Virginia Tech, June
2013.

[33] G. Pike. Students personality types, intended majors,
and college expectations: Further evidence concerning
psychological and sociological interpretations of

Holland’s theory. Research in Higher Education,
47(7):801– 822, 2006.

[34] L. Porter, C. Bailey Lee, and B. Simon. Halving fail
rates using peer instruction: a study of four computer
science courses. In SIGCSE ’13: Proceeding of the
44th ACM technical symposium on Computer science
education, pages 177–182, 2013.

[35] R. J. Ross. Hypertextbooks and a hypertextbook
authoring environment. In ITiCSE ’08: Proceedings of
the 13th annual joint conference on Innovation and
technology in computer science education, pages
133–137, 2008.

[36] G. Rößling, T. Naps, M. S. Hall, V. Karavirta,
A. Kerren, C. Leska, A. Moreno, R. Oechsle, S. H.
Rodger, J. Urquiza-Fuentes, and J. A.
Velázquez-Iturbide. Merging interactive visualizations
with hypertextbooks and course management.
SIGCSE Bull., 38(4):166–181, June 2006.

[37] G. Rößling and T. Vellaramkalayil. A
visualization-based computer science hypertextbook
prototype. Trans. Comput. Educ., 9(2):11:1–11:13,
June 2009.

[38] T. Russell. The No Significant Difference
Phenomenon: A Comparative Research Annotated
Bibliography on Technology for Distance Education.
IDECC, 5th edition, 2001.

[39] P. Saraiya, C. Shaffer, D. McCrickard, and C. North.
Effective features of algorithm visualizations. In
SIGCSE ’04: Proceedings of the 35th SIGCSE
Technical Symposium on Computer Science Education,
pages 382–386, March 2004.

[40] O. Seppälä, L. Malmi, and A. Korhonen. Observations
on student misconceptions – a case study of the
build-heap algorithm. Computer Science Education,
16(3):241–255, September 2006.

[41] C. Shaffer, V. Karavirta, A. Korhonen, and T. Naps.
OpenDSA: beginning a community active-ebook
project. In Proceedings of the 11th Koli Calling
International Conference on Computing Education
Research, pages 112–117. ACM, 2011.

[42] J. Sorva, V. Karavirta, and L. Malmi. A review of
generic program visualization systems for introductory
programming education. ACM Transactions on
Computing Education (TOCE), To appear.

[43] J. Sorva and T. Sirkiä. UUhistle – A Software Tool for
Visual Program Simulation. In Proceedings of the 10th
Koli Calling International Conference on Computing
Education Research, pages 49–54, 2010.

[44] H. Wasfy, T. Wasfy, J. Peters, and R. Mahfouz. No
skill left behind: Intelligent tutoring systems enable a
new paradigm in learning. Computers in Education
Journal, 4(2):2–10, April 2013.

[45] A. Zakai. Emscripten: an LLVM-to-JavaScript
compiler. In SPLASH ’11: Proceedings of the ACM
international conference companion on Object oriented
programming systems languages and applications
companion, pages 301–312, 2011.

20

72

 HistoryItem_V1
 AddMaskingTape

 Range: current page
 Mask co-ordinates: Horizontal, vertical offset 284.77, -2.36 Width 74.94 Height 62.45 points
 Origin: bottom left

 1
 0
 BL

 31
 CurrentPage
 33

 CurrentAVDoc

 284.769 -2.3555 74.9392 62.4493

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 20
 0
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset 283.10, -3.19 Width 69.94 Height 36.64 points
 Origin: bottom left

 1
 0
 BL

 31
 AllDoc
 33

 CurrentAVDoc

 283.1037 -3.1882 69.9433 36.6369

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 20
 19
 20

 1

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset 291.43, 2.64 Width 51.62 Height 49.96 points
 Origin: bottom left

 1
 0
 BL

 31
 AllDoc
 33

 CurrentAVDoc

 291.4303 2.6404 51.6248 49.9595

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 1
 20
 19
 20

 1

 HistoryList_V1
 qi2base

