
Sieve: A Java-Based Collaborative Visualization Environment

Philip L. Isenhour James “Bo” Begole Winfield S. Heagy Clifford A. Shaffer�

Virginia Tech

Abstract

We describeSieve, a prototype Java-based collaborative environ-
ment for constructing visualizations interactively.Sieveallows col-
laborative construction of data-flow networks from an extensible set
of modules. Modules may read data from a variety of sources, filter
and transform the data in various ways, and generate visualizations.
Annotation tools are also provided for mark-up and documentation
of the environment’s shared workspace.

Sieve supports collaboration through a replicated architecture
and provides real-time information about participants’ actions and
locations in the workspace.Sieveexploits JavaBeans functionality
both to provide dynamic, interactive modules and also to support
module state consistency among distributed replicas.
CR Categories and Subject Descriptors:H.5.3 [Information In-
terfaces and Presentation]: Group and Organization Interfaces –
Synchronous interaction; I.3.6 [Computer Graphics]: Methodology
and Techniques – Interaction Techniques
Additional Keywords: Collaborative Modular Visualization
Environment, Computer-Supported Cooperative Work, Java, Jav-
aBeans

1 Introduction

We describeSieve, a prototype Java-based collaborative environ-
ment for constructing visualizations interactively.Sieve allows
multiple users to simultaneously construct and manipulate a data-
flow network in real-time. The users can then collaboratively an-
alyze the resulting visualizations. Visualization state can also be
stored, to be regenerated later.

Construction of visualizations by building data-flow networks
is common to modular visualization environments (MVEs) such
as AVS [6] and Data Explorer [1], which provide powerful tools
for performing sophisticated analyses.Sieveprovides many of the
benefits of analysis through data-flow network creation.Sieve’s
primary innovation is its combination of features: It supports data
analysis over the Web by multiple users collaborating in real-time.
Furthermore,Sievedemonstrates several experimental techniques
for using the JavaBeans [5] component architecture to build collab-
orative interactive systems. One possible characterization ofSieve
is that it is a collaborative BeanBox.

2 The Sieve Environment

Sieve presents the user with a large, scrollable workspace onto
which data sources, processing modules, and visualization compo-
nents may be dropped, linked, and edited. Figure 1 shows aSieve
workspace containing a simple data-flow network.

Modules representing data sources may be written for a wide
range of raw data formats and sources. These may include objects

�fisenhour, begolej, heagy, shafferg@cs.vt.edu
Department of Computer Science
660 McBryde Hall
Virginia Tech
Blacksburg, VA 24061

which parse files retrieved over the Web, objects which access SQL
or other databases, and objects which retrieve data from remote
servers using CORBA, Java’s Remote Method Invocation library,
or proprietary protocols.

Our design allows processing and visualization modules to be
generic, with all data-source specific details hidden by the source
modules. All data-flow modules implement an API which allows
data to be viewed by adjacent modules in the network as a two-
dimensional table containing objects of any type supported by the
Java language. Source modules simply convert raw data into out
table representation. Processing modules can manipulate this data
and present an altered or extended table. Visualization modules can
then produce visual representations of the data in a table. Visualiza-
tion modules can serve as an interface for data selection, in which
case they may also present an altered or extended table to adjacent
modules.

The resulting data-flow network is fully interactive, using an
event mechanism to notify interested modules of changes to the
data or to the configuration of the network. These modules can
then retrieve new or modified data from their source. Users mod-
ify the network directly on the workspace, with changes to both the
structure of the network and the modules themselves reflected to
all collaborators as quickly as processing power and network speed
permit.

2.1 Collaboration Support

Sievesupports flexible collaborations and provides real-time infor-
mation about participants’ actions and locations in the workspace.

A range of collaboration styles are supported by providing
location-relaxed WYSIWIS (What You See Is What I See) [4],
where collaborators may view and manipulate the same or different
parts of the shared data simultaneously. Hence while changes
made to the workspace are propagated to all remote collaborators,
all collaborators need not be working in the same part of the
workspace simultaneously.

Sieveprovides workspace awareness (continuous knowledge of
remote participants’ interactions and locations [3]) through two in-
terface elements: telepointers and a multi-user overview of the
workspace. A telepointer represents a remote user’s mouse pointer
position and thus provides location awareness. Collaborators can
also use telepointers to gesture at items on the workspace to aug-
ment communication. To provide additional workspace awareness
information,Sieveuses a multi-user overview, orradar view [3],
of the workspace. The radar view displays a rectangle for each user
representing that user’s viewport into the workspace, providing ad-
ditional location information. Remote users’ mouse positions are
also indicated on the radar view. Figure 2 showsSieve’s telepointer
and radar view mechanisms from one collaborator’s point of view.

The state of eachSievesession is stored on the server, allowing
“late-joiners” to be brought up to date. This persistence mechanism
also allowsSieveto be used forasynchronouscollaboration. Col-
laborators may work at different times, leaving their modifications
for coworkers to manipulate later.

Sieveadditionally supports asynchronous collaboration by pro-
viding a set of whiteboard-style tools for annotating the workspace.
Lines, arrows, text, images, and even arbitrary Java objects can



Figure 1: A view of theSieveworkspace in single-user mode. Here the user is exploring a subset of the 1993 General Social Survey (GSS)
data by selecting only those responses from people who worked 40 or more hours per week, counting the occurrences of values for the
“Number of Children” and “Highest Year of School Completed” variables, and then generating bar charts. The steps have been labeled on
the workspace usingSieve’s annotation tools.

share the workspace with data-flow networks. As with data-flow
components, whiteboard components are shared across all collab-
orating sessions. These tools enhanceSieve’s support for asyn-
chronous collaboration, since one collaborator can leave notes on
the workspace for later review by other collaborators.

2.2 Use of Java and JavaBeans

Because it is implemented in Java, theSieveworkspace and com-
ponents can be delivered over the Web and can run on a range of
hardware platforms and operating systems. These advantages of
the Java language make it a natural choice for implementing many
kinds of visualization tools. Applets for generating and deliver-
ing visualizations over the Web were among the first tools written
in Java, and numerous packages are available that allow software
developers to generate charts and graphs within Java applets and
applications.Sieve, however, does not simply provide a set of visu-
alization tools for use by developers, but also supports open-ended
collaborative creation of visualizations by multiple end-users.

Beyond simply using Java to create visualization modules, we
are exploring new ways to leverage the functionality of the Jav-
aBeans component framework in constructing collaborative and in-
teractive environments. TheSieveworkspace implementation bor-
rows a number of concepts from Sun’s BeanBox builder tool and
uses JavaBeans functionality in the following ways:

� Interaction. The JavaBeans event model provides a natural
communication mechanism among interactive components.

This is particularly useful for data-flow visualization systems,
as it provides a means for handling both dynamic data sources
and interactive filter modules.

� Module Configuration. JavaBeans contains mechanisms for
generating property editors and customizers for use at design-
time by application-builder tools.Sieve uses these mech-
anisms to construct lightweight user interfaces for run-time
configuration of modules.

� Collaboration. The JavaBeans concept of “bound properties”
(binding attributes of one object to compatible attributes of
another object) is extended bySieveto support collaboration.
JavaBeans provides mechanisms for detecting and propagat-
ing changes to bound properties of local objects. InSieve, we
extend this to support propagation of these changes to each
replica of an object in the collaborating sessions. This allows
many kinds of components to be written without knowledge
that they are being used collaboratively.

� Persistence and Publication.By preserving the JavaBeans
features intended for use by application builder tools, we can
turn all or part of the contents of aSieveworkspace into an
applet (or other appropriate Java object) for publication in a
Web page.



Figure 2: Two users (Jeff and Laura) collaborating in aSievevirtual physics laboratory. The users have constructed a simple network that
allows them to run a simulation of a block and plane experiment. Variables from different simulation executions can then be graphed. Laura’s
view is shown. Jeff’s viewport is shown in the radar view window (lower right corner), and his present mouse pointer position is shown by a
telepointer. A note left by a third collaborator (who is not currently present in the workspace) is shown at the bottom left of the screen.

3 Applications

Although its capabilities extend beyond education,Sieve is par-
ticularly targeted at real-time collaboration support of education.
Teachers often demonstrate previous findings to students. Extend-
ing presentations to remote students gives teachers and students
more flexibility, because they do not have to be physically co-
located. A more exciting aspect to real-time collaborative visual-
ization is the potential for groups of students to work through an
analysis together.

Sievewas originally developed primarily as a platform for two
educational software systems: a tool for interactively exploring so-
cial science data (Figure 1) and a virtual physics laboratory (Fig-
ure 2). For exploring social science data,Sieveincludes modules
for reading databases such as the U.S. Census and General Social
Survey, modules for querying and filtering these data, modules for
performing statistical analysis, and basic charting tools. In the vir-
tual physics laboratory, students produce visualizations of data col-
lected from sensors or generated by simulation components. To
demonstrate the range of applications in whichSievecan be used,
we have also written source modules for reading access logs gen-
erated by Web servers and financial data such as Consumer Price
Index statistics.

4 Future Work

By basing much ofSieve’s functionality on standard JavaBeans
mechanisms, it is possible to use a wide variety of arbitrary Java
objects withinSieve. This flexibility makes the system useful not
only for collaborative analysis tasks, but also for a range of collab-
orative design tasks.

We are currently extending the set of modules to include more
types of interactive components. In particular, we are interested
in providing components which support design and construction of
simulations, especially of systems for which the concept of linked
components is natural. One such simulation currently being devel-
oped usesSievefor collaborative design, construction, and analysis
of simple electrical circuits.

Other extensions include improved support for aggregate com-
ponents. This functionality will allow pieces of a component to be
individually edited and linked to other components.

BecauseSieve uses the JavaBeans’ property change listener
mechanism to update each collaborator’s copy of the workspace,
developers ofSievecomponents are not concerned with whether
the component is used by a single person or collaboratively. In
this way,Sievecomponents arecollaboration unaware. However,
developers do need to conform to the JavaBeans specification.
JAMM [2] is a system we are developing that allows legacy single-
user applications, which are inherently collaboration unaware,
to be used collaboratively. We plan to include sharing of legacy
applications via JAMM as part ofSieve.



5 Conclusions

We have presentedSieve, a prototype collaborative interactive vi-
sualization environment. The environment allows multiple users to
analyze and visualize data through the creation of data-flow net-
works. These networks are created from an extensible set of mod-
ules that represent sources of data, data manipulation processes,
and visualizations. The modules can be linked by users to perform
a variety of analysis and visualization tasks. In addition to support
for data-flow modules, simple modules are provided for workspace
annotation.

Sievesupports flexible collaborations through location-relaxed
WYSIWIS. Real-time information about participants’ actions and
locations in the workspace is provided through the use of telepoint-
ers and a multi-user radar view of the workspace. A persistence
mechanism supports late-joiners toSievesessions, and also allows
Sieveto be used for asynchronous collaboration.

Sievemakes use of the JavaBeans component architecture in sev-
eral ways. In particular, the JavaBeans concept of a bound property
is extended to support module state replication across collaborating
sessions.

More information aboutSieveis available at the following URL:
http://simon.cs.vt.edu/Sieve.

6 ACKNOWLEDGMENTS

We gratefully acknowledge the support of the National Science
Foundation under grant REC-9554206, and the Department of Ed-
ucation’s FIPSE program under grant P116B60201.

References

[1] G. Abram and L. A. Treinish. An Extended Data-Flow Archi-
tecture for Data Analysis and Visualization. InIEEE Visualiza-
tion ’95, pages 263–270. IEEE, October 1995.

[2] James ’Bo’ Begole, Craig A. Struble, Clifford A. Shaffer, and
Randall B. Smith. Transparent Sharing of Java Applets: A
Replicated Approach. In1997 Conference on User Interface
Software and Technology (UIST’97), October 1997.

[3] C. Gutwin, S. Greenberg, and M. Roseman. A Usability Study
of Awareness Widgets in a Shared Workspace Groupware Sys-
tem. InComputer-Supported Cooperative Work, pages 258–67.
ACM Press, 1996.

[4] M. Stefik, D. G. Bobrow, G. Foster, S. Lanning, and D. Tatar.
WYSIWIS Revised: Early Experiences with Multiuser Inter-
faces. InACM Transactions on Office Information Systems,
pages 147–167. ACM Press, April 1987.

[5] JavaBeans (tm). URL: http://splash.javasoft.com/ beans/-
beans.100A.pdf, December 1996.

[6] Craig Upson, Thomas A. Faulhaber, Jr., David Kamins, David
Laidlaw, David Schlegel, Jeffrey Vroom, Robert Gurwitz, and
Andries van Dam. The Application Visualization System: a
Computational Environment for Scientific Visualization.IEEE
Computer Graphics and Applications, 9(4):30–42, July 1989.


