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• Implementation of our algorithm written in Java without any input specific

optimizations.

• Compare running times with optimized MATLAB Sinkhorn code written

using worst case scaling parameters for both algorithms.

• Input: MNIST Image data.

• Squared-Euclidean distance for costs

• Normalized so C = 1

Experimental Results
• A distance measure used in several machine

learning applications

• Given:

• 𝐴 : Set of 𝑛 vertices with ‘demands’ 𝑑𝑎 , 𝑎 ∈ 𝐴

• 𝐵: Set of 𝑛 vertices with ‘supplies’ 𝑠𝑏, 𝑏 ∈ 𝐵

• Costs 𝑐(𝑎, 𝑏) for every 𝑎, 𝑏 ∈ 𝐴 × 𝐵.

• 𝐶 = max
𝑎,𝑏 ∈𝐴×𝐵

𝑐(𝑎, 𝑏)

• Assume that ∑𝑎∈𝐴𝑑𝑎 = ∑𝑏∈𝐵𝑠𝑏 = 1

• A maximum transport plan 𝜎 ∶ 𝐵 × 𝐴 → ℝ has:

• ∑𝑎∈𝐴𝜎 𝑎, 𝑏 = 𝑠𝑏 for every 𝑏 ∈ 𝐵

• ∑𝑏∈𝐵 𝜎 𝑎, 𝑏 = 𝑑𝑎 for every 𝑎 ∈ 𝐴

• 𝑐 𝜎 = ∑ 𝑎,𝑏 ∈𝐴×𝐵 𝑐 𝑎, 𝑏 𝜎(𝑎, 𝑏)

• Let 𝜎∗ be a minimum-cost maximum transport

plan (optimal).

• Goal: Compute a maximum transport plan with:

c 𝜎 ≤ 𝑐 𝜎∗ + 𝛿

Optimal Transport

• ‘Forward’ edges allow flow to be increased

• `Backward’ edges allow flow to be decreased

• Free vertices have supply or demand remaining.

• An augmenting path 𝑃 is any path that:

• Starts and ends at a free vertex, and,

• Alternates between forward and backward edges

• Augmenting paths can be used to increase the flow by:

• Increasing 𝜎 𝑎, 𝑏 for forward edges

• Decreasing 𝜎 𝑎, 𝑏 for backward edges

Residual Graph

• Most prior work uses the Sinkhorn projection

technique

• Methods are algebraic

• Best theoretical bounds have log terms.

• Exponential matrix scaling, causes numerical precision

issues.

• Many are highly practical (especially Sinkhorn based

methods), but do not achieve best theoretic bounds.

• Easily parallelizable (matrix operations).

Previous Results

Algorithm Workflow

• Provides a new diameter-sensitive analysis of a 30-year-old algorithm
[Gabow-Tarjan ‘89] to obtain a running time of: 𝑶(𝒏𝟐𝑪/𝜹 + 𝒏 𝑪/𝜹 𝟐)

Our Result

A Scale of the Gabow-Tarjan Algorithm

• To ensure 𝑐(𝜎) remains small, use dual weights 𝑦(⋅)

• Dual weights are feasible if:

• 𝑦 𝑢 + 𝑦 𝑣 ≤ 𝑐 𝑢, 𝑣 + 1 for any forward edge (𝑢, 𝑣)

• 𝑦 𝑢 + 𝑦 𝑣 ≥ 𝑐 𝑢, 𝑣 for any backward edge (𝑢, 𝑣)

• The slacks 𝑠 𝑢, 𝑣 are:

• 𝑐 𝑢, 𝑣 + 1 − 𝑦 𝑢 − 𝑦(𝑣) for any forward edge (𝑢, 𝑣)

• 𝑦 𝑢 + 𝑦 𝑣 − 𝑐(𝑢, 𝑣) for any backward edge (𝑢, 𝑣)

• An augmenting path 𝑃 is admissible if 𝑠 𝑃 = 0.

Dual Feasibility

• While 𝜎 is not maximum:

• Execute Dijkstra’s Algorithm to find an

admissible AP

• Find multiple admissible augmenting

paths using DFS

• Analysis:

• ≈ 2𝐶/𝛿 iterations (often less in practice)

• Each iteration takes roughly 𝑛2 time

• Total augmenting path lengths: ~𝑛
𝐶

𝛿
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(often much less in practice)

Lower order term for
𝐶

𝛿
= 𝑜(𝑛). 

Note, optimal can be 

computed in ෨𝑂 𝑛2.5

[Lee, Sidford].

• Methods are graph-theoretic.

• Matches best previous bounds, but with no 𝐥𝐨𝐠 terms.

• Does not suffer from numerical precision failures.

• Scales well to very small values of 𝛿.

• Practical performance is competitive.

• Not obvious how to parallelize.

Scale Up & Round 

Input

Apply One Scale 

of Gabow-Tarjan

Algorithm

Scale Down Flow

Reduce Flow to 

Make Demands 

Feasible

Arbitrarily Assign 

Remaining Flow

𝛼 ≈ 2𝑛𝐶/𝛿
ҧ𝑠𝑏 ≈ ⌊𝛼 ⋅ 𝑠𝑏⌋
ҧ𝑑𝑎 ≈ ⌈𝛼 ⋅ 𝑑𝑎⌉

ҧ𝑐 𝑎, 𝑏 = ⌊𝑐 𝑎, 𝑏 /𝛿⌋

Computes transport plan 

ത𝜎 w.r.t scaled instance 

with additive error

≈ 𝛿 ⋅ ∑ ҧ𝑠𝑏

𝜎 𝑎, 𝑏 = ത𝜎 𝑎, 𝑏 /𝛼

Some demands are 

exceeded due to 

rounding. An easy fix is 

to reduce flow slightly.

Allocate remaining ≈ 𝛿/𝐶
supplies each at cost 𝐶

Dijkstra’s Algorithm

• Executing Dijkstra’s algorithm takes roughly

𝑛2 time

• Computes subgraph of admissible edges

• Admissible augmenting paths have small cost

Partial DFS

• Takes roughly 𝑛2 time + total path length

• Each path has length at most ~ 𝐶/𝛿

• Total supply ~ 𝑛𝐶/𝛿

• Total path length: ~𝑛
𝐶

𝛿
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• Exact algorithms are impractically slow
for most applications.

• Instead focus has shifted towards
approximation algorithms.

• Sinkhorn algorithm: ෨𝑂(𝑛2 𝐶/𝛿 2)

• Accounting for numerical precision requires
additional 𝐶/𝛿 factor increase.

• Multiple variants with empirical
improvements

• Some results have strong ෨𝑂(𝑛2𝐶/𝛿)
theoretical bound, but are viable in
practice.

Sinkhorn receives: 5𝛿
Our algorithm receives: 𝛿
Sinkhorn produces higher 

error than our algorithm

Our algorithm does 

not suffer from 

numerical precision 

issues for small 𝛿.
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Sinkhorn receives: 𝛿
Our algorithm receives: 𝛿
Sinkhorn produces lower error 

than our algorithm.

Work associated with 

augmenting path 

lengths is negligible in 

practice.

Iterations are 

somewhat less than 

that suggested by 

worst case analysis.




