A Graph Theoretic Additive Approximation of Optimal Transport

Nathaniel Lahn*, Deepika Mulchandani*t, Sharath Raghvendra* *Virginia Tech; tNow at Walmart Labs

Optimal Transport Previous Results Our Result Experimental Results

A dlst_ance measure used in several machine E));ar;:]to gltg;ggngsﬁgrr]:impracticauy slow Most prior work uses the Sinkhorn projection PéO\Igdes_ _? new 9 8| gmtetekr)is_ensmve an atl_yS|s ?f Oa 3(%—2‘/e§r_-l_old(%lg§)n2thm implementation of our algorithm written in Java without any input specific
learning applications technigue [Gabow-Tarjan ‘89] to obtain a running time of: O0(n“C/ n(C/8)*) optimizations

Instead focus has shifted towards _ : T '
Given: approximation algorithms. Methods are algebraic Methods are graph-theoretic. Compare running times with optimized MATLAB Sinkhorn code written

Lower order term for

H H - N 2 2

A : Set of n vertices with ‘demands’ d,,a € A Sinkhorn algorithm: 0 (n*(C/5)*) Best theoretical bounds have log terms. Matches best previous bounds, but with no log terms. c using worst case scaling parameters for both algorithms.
A Accounting for numerical precision requires] o . 5 O(Tl).]
B: Set of n vertices with ‘supplies’ s,, b € B %}:;gf additional C/& factor increase. Eﬁﬂgge”“m matrix scaling, causes numerical precision Does not suffer from numerical precision failures. Input: MNIST Image data.\
éf"’f«-’?’?:? Multiple variants with empirical ' : - -
Costs c(a, b) for every (a,b) € A X B. ‘f%fé’io’x’ég imprcl)ovements P Man highl ical Allv Sinkhorn based Scales well to very small values of §. Note, Optlmal~can be Squared-Euclidean distance for costs
ey y are highly practica .(espeC|a y Sinkhorn base | _ N computed in O(nZ.S) _
C= max c(a,b) TSN Some results have strong 0(n2C/6) methods), but do not achieve best theoretic bounds. Practical performance is competitive. Lee. Sidford Normalizedso C =1
(a.b)eAxB theoretical bound, but are viable in _ _ _ _ _ _ [Lee, Sidford].
practice. Easily parallelizable (matrix operations). Not obvious how to parallelize.

Assume that Y, c4dy = Ypepsp = 1

: B A
A maximum transport plan o : B X A —» R has: g " 1 0.14
Algorithm Workflow =0 =0l
Ygea0(a,b) = s, forevery b € B e 2 o v 54
Ypego(a,b) = d, forevery a € A W '_:;) 04 = 0.08
C(O-) - Z(a,b)eAxBC(a' b)a(a, b) A I I Reduce FIOW to § > E? 882
Let 0* be a minimum-cost maximum transport Scale Up & Round PRl One Sca = Arbitrar”y ASSign 2 ’ © S PO g" 0.02 et ==—0-=0=—0
Slan (optimal). Input mmmg Of Gabow-Tarjan Scale Down Flow Make Demands Remaining Flow oF o7 To¥ o e e e e e e
: - VAR T NI N IR CIIFN
Goal: Compute a maximum transport plan with: Algorithm Feasible ° SENECERE
C(O') < C(O'*) + 65 e=@==Qur Algorithm e=@==Sinkhorn 5
a ~ 2nC/8 Computes transport plan Some demands are T T
‘gb ~ [a . SbJ g W.r.t scaled instance O'(Cl, b) — 5((1, b)/a exceeded due to Allocate remaining ~ 5/C Sinkhorn receives: § Sinkhorn .receives:.56
dq = |a - dg] with additive error rounding. An easy fix is supplies each at cost C g_urk ﬁlgorithn:jrecei\lles § giﬂﬁfrfﬁ?&&ig“ﬁ;ﬁ gr
- _ _ ' inkhorn produces lower error
‘Forward’ edges allow flow to be increased C(Cl, b) - [c(a, b)/6J ~ 0 ZSb to reduce flow S“ghtly' than our aﬁgorithm_ error than our algorithm

‘Backward’ edges allow flow to be decreased
4 900 70000

3.5 800 60000
700

a 600
2 500 — 40000
=

(L]
s 400 < 30000

A Scale of the Gabow-Tarjan Algorithm
Alternates between forward and backward edges Whlle o iS not maXimum: Diikstra!s AIQIO”thm Partial DFS :Z ﬁggg oo

Free vertices have supply or demand remaining.

An augmenting path P is any path that:

Starts and ends at a free vertex, and,

Wall Clock Time (s)
N

Augmenting paths can be used to increase the flow by: 0 0 0
Increasing (a, b) for forward edges Execute Dijkstra’'s Algorithmtofindan | ., ., 4 e e e
Decreasing o(a, b) for backward edges ad m |SS| ble AP
D U al Fe as| b| I It Find multiple admissible augmenting Our algorithm does iterations are Work associated with
: not suffer from somewhat less than augmenting path
pathS using DFS numerical precision that suggested by lengths is negligible in
To ensure c(o) remains small, use dual weights y(+) _ issues for small 6. worst case analysis. practice.
Dual weights are feasible If: AnaIySIS'
y) +y(v) < c(u,v) + 1 for any forward edge (u, v) ~ 2C/§ iterations (often less in practice) References
+ > c(u, for any backward edge (u, _ _ _ _ 3 _ 2 ti + Cuturi, Marco. "Sinkhorn distances: Lightspeed computation of optimal transport.” In
Y +y(w) 2 c(w,v) Y 9e () Each iteration takes roughly n? time Executing Dijkstra’s algorithm takes roughly Takes roughly n* time + total path length Advances in Neural Information Processing Systems. 2013,
The slacks s(u,v) are: 2 n? time Each path has length at most ~ C /46 Gabow, H. N., & Tarjan, R. E. “Faster scaling algorithms for network problems.” SIAM
cw,v) +1 —y@w) —y) for any forward edge (u, v) Total auamentina nath lenaths: ~n (_) o Journal on Computing, 1989.
Y@ +y() — c(w) for any backward edge (u, v) g g p g o ComPUteS SUbgraph of admissible edges Total Supply ~ nC/5 Lahn, Nathaniel, Deepika Mulchandani, and Sharath Raghvendra. “A graph theoretic
B ’ ’ ' ' .. : additive approximation of optimal transport.” In Advances in Neural Information Processing
An augmenting path P is admissible if s(P) = 0 (often much less In practice) Admissible augmenting paths have small cost Total path length: ~n (9)2 Systems. 2019.
0 Lee, Y. T., & Sidford, A. “Path finding methods for linear programming: Solving linear
programs in O (vrank) iterations and faster algorithms for maximum flow.” In Symposium on
Foundations of Computer Science. 2014.

