
A Graph Theoretic Additive Approximation of Optimal Transport
Nathaniel Lahn*, Deepika Mulchandani*†, Sharath Raghvendra* *Virginia Tech; †Now at Walmart Labs

• Implementation of our algorithm written in Java without any input specific

optimizations.

• Compare running times with optimized MATLAB Sinkhorn code written

using worst case scaling parameters for both algorithms.

• Input: MNIST Image data.

• Squared-Euclidean distance for costs

• Normalized so C = 1

Experimental Results
• A distance measure used in several machine

learning applications

• Given:

• 𝐴 : Set of 𝑛 vertices with ‘demands’ 𝑑𝑎 , 𝑎 ∈ 𝐴

• 𝐵: Set of 𝑛 vertices with ‘supplies’ 𝑠𝑏, 𝑏 ∈ 𝐵

• Costs 𝑐(𝑎, 𝑏) for every 𝑎, 𝑏 ∈ 𝐴 × 𝐵.

• 𝐶 = max
𝑎,𝑏 ∈𝐴×𝐵

𝑐(𝑎, 𝑏)

• Assume that ∑𝑎∈𝐴𝑑𝑎 = ∑𝑏∈𝐵𝑠𝑏 = 1

• A maximum transport plan 𝜎 ∶ 𝐵 × 𝐴 → ℝ has:

• ∑𝑎∈𝐴𝜎 𝑎, 𝑏 = 𝑠𝑏 for every 𝑏 ∈ 𝐵

• ∑𝑏∈𝐵 𝜎 𝑎, 𝑏 = 𝑑𝑎 for every 𝑎 ∈ 𝐴

• 𝑐 𝜎 = ∑ 𝑎,𝑏 ∈𝐴×𝐵 𝑐 𝑎, 𝑏 𝜎(𝑎, 𝑏)

• Let 𝜎∗ be a minimum-cost maximum transport

plan (optimal).

• Goal: Compute a maximum transport plan with:

c 𝜎 ≤ 𝑐 𝜎∗ + 𝛿

Optimal Transport

• ‘Forward’ edges allow flow to be increased

• `Backward’ edges allow flow to be decreased

• Free vertices have supply or demand remaining.

• An augmenting path 𝑃 is any path that:

• Starts and ends at a free vertex, and,

• Alternates between forward and backward edges

• Augmenting paths can be used to increase the flow by:

• Increasing 𝜎 𝑎, 𝑏 for forward edges

• Decreasing 𝜎 𝑎, 𝑏 for backward edges

Residual Graph

• Most prior work uses the Sinkhorn projection

technique

• Methods are algebraic

• Best theoretical bounds have log terms.

• Exponential matrix scaling, causes numerical precision

issues.

• Many are highly practical (especially Sinkhorn based

methods), but do not achieve best theoretic bounds.

• Easily parallelizable (matrix operations).

Previous Results

Algorithm Workflow

• Provides a new diameter-sensitive analysis of a 30-year-old algorithm
[Gabow-Tarjan ‘89] to obtain a running time of: 𝑶(𝒏𝟐𝑪/𝜹 + 𝒏 𝑪/𝜹 𝟐)

Our Result

A Scale of the Gabow-Tarjan Algorithm

• To ensure 𝑐(𝜎) remains small, use dual weights 𝑦(⋅)

• Dual weights are feasible if:

• 𝑦 𝑢 + 𝑦 𝑣 ≤ 𝑐 𝑢, 𝑣 + 1 for any forward edge (𝑢, 𝑣)

• 𝑦 𝑢 + 𝑦 𝑣 ≥ 𝑐 𝑢, 𝑣 for any backward edge (𝑢, 𝑣)

• The slacks 𝑠 𝑢, 𝑣 are:

• 𝑐 𝑢, 𝑣 + 1 − 𝑦 𝑢 − 𝑦(𝑣) for any forward edge (𝑢, 𝑣)

• 𝑦 𝑢 + 𝑦 𝑣 − 𝑐(𝑢, 𝑣) for any backward edge (𝑢, 𝑣)

• An augmenting path 𝑃 is admissible if 𝑠 𝑃 = 0.

Dual Feasibility

• While 𝜎 is not maximum:

• Execute Dijkstra’s Algorithm to find an

admissible AP

• Find multiple admissible augmenting

paths using DFS

• Analysis:

• ≈ 2𝐶/𝛿 iterations (often less in practice)

• Each iteration takes roughly 𝑛2 time

• Total augmenting path lengths: ~𝑛
𝐶

𝛿

2

(often much less in practice)

Lower order term for
𝐶

𝛿
= 𝑜(𝑛). 

Note, optimal can be 

computed in ෨𝑂 𝑛2.5

[Lee, Sidford].

• Methods are graph-theoretic.

• Matches best previous bounds, but with no 𝐥𝐨𝐠 terms.

• Does not suffer from numerical precision failures.

• Scales well to very small values of 𝛿.

• Practical performance is competitive.

• Not obvious how to parallelize.

Scale Up & Round 

Input

Apply One Scale 

of Gabow-Tarjan

Algorithm

Scale Down Flow

Reduce Flow to 

Make Demands 

Feasible

Arbitrarily Assign 

Remaining Flow

𝛼 ≈ 2𝑛𝐶/𝛿
ҧ𝑠𝑏 ≈ ⌊𝛼 ⋅ 𝑠𝑏⌋
ҧ𝑑𝑎 ≈ ⌈𝛼 ⋅ 𝑑𝑎⌉

ҧ𝑐 𝑎, 𝑏 = ⌊𝑐 𝑎, 𝑏 /𝛿⌋

Computes transport plan 

ത𝜎 w.r.t scaled instance 

with additive error

≈ 𝛿 ⋅ ∑ ҧ𝑠𝑏

𝜎 𝑎, 𝑏 = ത𝜎 𝑎, 𝑏 /𝛼

Some demands are 

exceeded due to 

rounding. An easy fix is 

to reduce flow slightly.

Allocate remaining ≈ 𝛿/𝐶
supplies each at cost 𝐶

Dijkstra’s Algorithm

• Executing Dijkstra’s algorithm takes roughly

𝑛2 time

• Computes subgraph of admissible edges

• Admissible augmenting paths have small cost

Partial DFS

• Takes roughly 𝑛2 time + total path length

• Each path has length at most ~ 𝐶/𝛿

• Total supply ~ 𝑛𝐶/𝛿

• Total path length: ~𝑛
𝐶

𝛿

2

• Exact algorithms are impractically slow
for most applications.

• Instead focus has shifted towards
approximation algorithms.

• Sinkhorn algorithm: ෨𝑂(𝑛2 𝐶/𝛿 2)

• Accounting for numerical precision requires
additional 𝐶/𝛿 factor increase.

• Multiple variants with empirical
improvements

• Some results have strong ෨𝑂(𝑛2𝐶/𝛿)
theoretical bound, but are viable in
practice.

Sinkhorn receives: 5𝛿
Our algorithm receives: 𝛿
Sinkhorn produces higher 

error than our algorithm

Our algorithm does 

not suffer from 

numerical precision 

issues for small 𝛿.

References
Cuturi, Marco. "Sinkhorn distances: Lightspeed computation of optimal transport." In 
Advances in Neural Information Processing Systems. 2013.

Gabow, H. N., & Tarjan, R. E. “Faster scaling algorithms for network problems.” SIAM 
Journal on Computing, 1989.

Lahn, Nathaniel, Deepika Mulchandani, and Sharath Raghvendra. “A graph theoretic 
additive approximation of optimal transport.” In Advances in Neural Information Processing 
Systems. 2019.

Lee, Y. T., & Sidford, A. “Path finding methods for linear programming: Solving linear 
programs in O (vrank) iterations and faster algorithms for maximum flow.” In Symposium on 
Foundations of Computer Science. 2014.

Sinkhorn receives: 𝛿
Our algorithm receives: 𝛿
Sinkhorn produces lower error 

than our algorithm.

Work associated with 

augmenting path 

lengths is negligible in 

practice.

Iterations are 

somewhat less than 

that suggested by 

worst case analysis.




