A Graph Theoretic Additive Approximation of Optimal Transport

Optimal Transport
A distance measure used in several machine
learning applications
learning applications
Given:
A : Set of n verices with 'demands' ' $d_{a}, a \in A$ $B:$ Set of n verices with 'supplies' $s, b \in B$,
Costs $c(a, b)$ fo every $(a, b) \in A \times B$. Costs $c(a, b)$ for every $(a, b) \in A \times B$. $c=\underset{(a, b) \in \in x \times B}{\max } c(a, b)$
Assume that $\sum_{a \in A} d_{a}=\sum_{b \in S_{b}}=1$
A maximum transport plan $\sigma: B \times A \rightarrow \mathbb{R}$ has. $\Sigma_{a \in A} \sigma(a, b)=s_{b}$ for every $b \in B$
$\Sigma_{b \in B} \sigma(a, b)=d_{a}$ for every $a \in A$
$\sum_{(\sigma)}=\sum_{(a, b) \in A \times B} c(a, b) \sigma(a, b)$
Let σ^{*} be a minimum-cost maximum transport
plan (optimal
Goal: Compute a maximum transport plan with:
Residual Graph

Dual Feasibility

To ensure $c(\sigma)$ remains small, use dual weights $y(\cdot)$
Dual weights are feasible if:
$y(u)+y(v) \leq c(u, v)+1$
$y(u)+y(v) \geq c(u, v)$
e slacks $s(u, v)$ are:
$c(u, v)+1-y(u)-y(v) \quad$ or any backward edge (u, v)

An augmenting path P is admissible if $s(P)=0$.

Previous Results

 Instead foulus has shited towardsapporximation algoritms.

 Mutiple evaiants with empirical
imporemennts

Most prior work uses the Sinkhorn projection
technique technique
Methods are algebraic Mest theoretical bounds have log terms Best theoretical bounds have log terms.
Exponentia matrix scaling, causes numerical precision
issues.
 Eathods), but do not achieve best heorelelizable (matrix operations.

Our Result
Provides a new diameter-sensitive analysis of a 30 -year-old algorithm Cabow-Tarjan 89] to obtain a running time of: $\boldsymbol{O}\left(\boldsymbol{n}^{2} \boldsymbol{C} / \boldsymbol{\delta}+\boldsymbol{n}(\boldsymbol{C} / \boldsymbol{\delta})^{2}\right)$ Methods are graph-theoretic.
Matches best previous bounds, but with no log terms.
Does not suffer from numerical precision failures.
Practical performance is comestive of
Not obvious how to paralleize
Algorithm Workflow

While σ is not maximum
Execute Dijkstra's Algorithm to find an admissible AP
Find multiple admissible augmenting paths using DFS

Analysis:

$\approx 2 C / \delta$ iterations (often less in practice) Each iteration takes roughly n^{2} time
Total augmenting path lengths: $\sim n\left(\frac{C}{\delta}\right)$ (often much less in practice)

Dijkstra's Algorithm

Executing Dijkstra's algorithm takes roughly n^{2} time
Computes subgraph of admissible edges Admissible augmenting paths have small co

Partial DFS

Takes roughly n^{2} time + total path length Each path has length at most $\sim C / \delta$ Total supply $\sim n C / \delta$
Total path length: $\sim n\left(\frac{c}{\delta}\right)^{2}$

Experimental Results
Implementation of our algorithm written in Java without any input specific Implementation
optimizations.
Compare running times with optitimized MATLAB Sinkhorn code written
using worst case scaling parameters tor both algorithms. using worst case scaing p
Squared-Euclidean distance for costs
Squared-Euclidean distance for coss
Normalized so $\mathrm{C}=1$

 Sinkhorn produces higher
error than our algorithm Sinkhorn receives: δ
Our algorithm receives: δ
Sinkhorn produes limern than our algorithm.
 numerical precision
issues tor small δ.

References
Cuturi, Marco. "Sinkhorrn distances: Lightspeed computation of optimal transport:" "In

