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A dlst_ance measure used in several machine E));ar;:]to gltg;ggngsﬁgrr]:impracticauy slow Most prior work uses the Sinkhorn projection PéO\Igdes_ _? new 9 8| gmtetekr)is_ensmve an atl_yS|s ?f Oa 3(%—2‘/e§r_-l_old(%lg§)n2thm implementation of our algorithm written in Java without any input specific
learning applications technigue [Gabow-Tarjan ‘89] to obtain a running time of: O0(n“C/ n(C/8)*) optimizations

Instead focus has shifted towards _ : T '
Given: approximation algorithms. Methods are algebraic Methods are graph-theoretic. Compare running times with optimized MATLAB Sinkhorn code written
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A : Set of n vertices with ‘demands’ d,,a € A Sinkhorn algorithm: 0 (n*(C/5)*) Best theoretical bounds have log terms. Matches best previous bounds, but with no log terms. c using worst case scaling parameters for both algorithms.
A Accounting for numerical precision requires . . . . . . ] o . 5 O(Tl). ]
B: Set of n vertices with ‘supplies’ s,, b € B %}:;gf additional C/& factor increase. Eﬁﬂgge”“m matrix scaling, causes numerical precision Does not suffer from numerical precision failures. Input: MNIST Image data.\
éf"’f«-’?’?:? Multiple variants with empirical ' : - -
Costs c(a, b) for every (a,b) € A X B. ‘f%fé’io’x’ég imprcl)ovements P Man highl ical Allv Sinkhorn based Scales well to very small values of §. Note, Optlmal~can be Squared-Euclidean distance for costs
ey y are highly practica .(espeC|a y Sinkhorn base | _ N computed in O(nZ.S) _
C= max c(a,b) TSN Some results have strong 0(n2C/6) methods), but do not achieve best theoretic bounds. Practical performance is competitive. Lee. Sidford Normalizedso C =1
(a.b)eAxB theoretical bound, but are viable in _ _ _ _ _ _ [Lee, Sidford].
practice. Easily parallelizable (matrix operations). Not obvious how to parallelize.

Assume that Y, c4dy = Ypepsp = 1
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A maximum transport plan o : B X A —» R has: g " 1 0.14
Algorithm Workflow =0 =0l
Ygea0(a,b) = s, forevery b € B e 2 o v 54
Ypego(a,b) = d, forevery a € A W '_:;) 04 = 0.08
C(O-) - Z(a,b)eAxBC(a' b)a(a, b) A I I Reduce FIOW to § > E? 882
Let 0* be a minimum-cost maximum transport Scale Up & Round PRl One Sca = Arbitrar”y ASSign 2 ’ © S PO g" 0.02 et ==—0-=0=—0
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: - VAR T NI N IR CIIFN
Goal: Compute a maximum transport plan with: Algorithm Feasible ° SENECERE
C(O') < C(O'*) + 65 e=@==Qur Algorithm e=@==Sinkhorn 5
a ~ 2nC/8 Computes transport plan Some demands are T T
‘gb ~ [a . SbJ g W.r.t scaled instance O'(Cl, b) — 5((1, b)/a exceeded due to Allocate remaining ~ 5/C Sinkhorn receives: § Sinkhorn .receives:.56
dq = |a - dg] with additive error rounding. An easy fix is supplies each at cost C g_urk ﬁlgorithn:jrecei\lles § giﬂﬁfrfﬁ?&&ig“ﬁ;ﬁ gr
- _ _ ' inkhorn produces lower error
‘Forward’ edges allow flow to be increased C(Cl, b) - [c(a, b)/6J ~ 0 ZSb to reduce flow S“ghtly' than our aﬁgorithm_ error than our algorithm

‘Backward’ edges allow flow to be decreased
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A Scale of the Gabow-Tarjan Algorithm
Alternates between forward and backward edges Whlle o iS not maXimum: Diikstra!s AIQIO”thm Partial DFS :Z ﬁggg oo

Free vertices have supply or demand remaining.

An augmenting path P is any path that:

Starts and ends at a free vertex, and,

Wall Clock Time (s)
N

Augmenting paths can be used to increase the flow by: 0 0 0
Increasing (a, b) for forward edges Execute Dijkstra’'s Algorithmtofindan | ., ., 4 e e e
Decreasing o(a, b) for backward edges ad m |SS| ble AP
D U al Fe as| b| I It Find multiple admissible augmenting Our algorithm does iterations are Work associated with
: not suffer from somewhat less than augmenting path
pathS using DFS numerical precision that suggested by lengths is negligible in
To ensure c(o) remains small, use dual weights y(+) _ issues for small 6. worst case analysis. practice.
Dual weights are feasible If: AnaIySIS'
y) +y(v) < c(u,v) + 1 for any forward edge (u, v) ~ 2C/§ iterations (often less in practice) References
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