A Graph Theoretic Additive Approximation of Optimal Transport

Nathaniel Lahe, Deepika Mulchandani†, Sharath Raghvendra*

Optimal Transport

- A distance measure used in several machine learning applications.
- Given:
 - \(A \) : Set of vertices with demands \(d_a = \delta \)
 - \(B \) : Set of vertices with supplies \(c_b = \delta \)
 - Costs \(c(a,b) \) for every \((a,b) \)
- \(C = \max c(a,b) \)
- \(\sum c(a,b) = 1 \)
- Set \(\delta = \min c(a,b) \)
- \(\sum c(\delta) = \delta \)

Residual Graph

- \(G \) is a residual graph.
- \(\delta \) is the minimum flow.
- \(x^* \) is the optimal flow.
- \(G^\delta \) is a residual graph.

Dual Feasibility

- To ensure \((\xi,\eta) \) remains small, use dual weights \(\eta(x) \).

- Dual weights are feasible if:
 - \(\eta(x) \geq 0 \) for any forward edge \(x \)
 - \(\eta(x) \leq 0 \) for any backward edge \(x \)
 - \(\sum \eta(x) = 0 \)

Dijkstra’s Algorithm

- \(\sigma \) is not maximum:
 - Execute Dijkstra’s Algorithm to find an admissible AP.
 - Find multiple admissible augmenting paths using DFS.

Algorithm Workflow

- Scale Up & Round
 - Apply One Scale of Gabow-Tarjan Algorithm
 - Reduce Flow to Make Demands Remaining
 - Arbitrarily Assign Remaining Flow

A Scale of the Gabow-Tarjan Algorithm

- While \(\sigma \) is not maximum:
 - Execute Dijkstra’s Algorithm to find an admissible AP.
 - Find multiple admissible augmenting paths using DFS.

Previous Results

- Exact algorithms are exponentially slow for most applications.
- Instead focus has shifted towards approximative algorithms.

Our Result

- Provides a new diameter-sensitive analysis of a 30-year-old algorithm (Gabow-Tarjan ‘89) to obtain a running time of \(O(n^2\log(1/\epsilon)/\delta + (n^2/\delta)^{3/2}) \).

Exponential matrix scaling, causes numerical precision issues.

References