
A Soft-Structured Agile Framework for Larger Scale Systems Development

Shvetha Soundararajan and James D. Arthur
Department of Computer Science

Virginia Polytechnic Institute and State University
Blacksburg, Virginia, USA
{shvetha, arthur}@vt.edu

Abstract—One of the more important issues in the
development of larger scale complex systems (product
development period of two or more years) is accommodating
changes to requirements. Requirements gathered for larger
scale systems evolve during lengthy development periods due
to changes in software and business environments, new user
needs and technological advancements. Agile methods, which
focus on accommodating change even late in the development
lifecycle, can be adopted for the development of larger scale
systems. However, as currently applied, these practices are not
always suitable for the development of such systems. We
propose a soft-structured framework combining the principles
of agile and conventional software development that addresses
the issue of rapidly changing requirements for larger scale
systems. The framework consists of two parts: (1) a soft-
structured requirements gathering approach that reflects the
agile philosophy i.e., the Agile Requirements Generation
Model and (2) a tailored development process that can be
applied to either small or larger scale systems.

 Keywords- Managing Change; Small to Medium Scale
Systems; Agile Software Development; Mitigating Development
Complexities; Soft-Structured Processes

I. INTRODUCTION

Currently, the number of organizations adopting agile
practices is increasing - some of the reasons being (1) the
ability to accommodate changes to requirements, (2)
enhanced customer relationships, (3) greater return on
investment and (4) shorter development periods. In spite of
these advantages, adoption of agile methods for the
development of larger scale systems is minimal. Moreover,
if such systems are ill equipped to accommodate change,
additional complexity can be introduced during the
maintenance activities. Hence, larger scale systems require
a more structured development process that can
accommodate that change.

Agile practices such as code refactoring, minimal
documentation, etc., are not always suitable for the
development of larger scale systems. For example, the agile
philosophy insists on minimal documentation when
building a software system. The focus is on producing

working software rather than comprehensive
documentation. However, comprehensive documentation is
often necessary when a larger scale system is under
consideration in order to provide third party maintenance
organizations with documented information. Also, larger
scale systems usually have lengthy development cycles.
Subsequently, personnel turnover also demands some form
of software documentation. Hence, comprehensive
documentation is required for support and training.

On the other hand, agile practices such as evolutionary
requirements, pair-programming and direct stakeholder
involvement have been proven to be successful for larger
scale systems development [1]. Agile methods propose an
iterative and incremental approach to software
development, which helps deliver working software at
regular intervals. The rationale behind these agile methods
and practices is to accommodate change. Also, agile
methods are lightweight and the focus is on the people
rather than the process. However, in opposition to this
philosophy, the development of larger scale systems
requires a structured approach. Thus, a hybrid approach
combining the advantages of agile practices and structured
methods can be an effective solution to accommodating
change in larger scale systems. The challenge in developing
such a hybrid approach is that the impact on agility should
be minimal.

In this paper, we propose a soft-structured approach for
the development of larger scale systems. This approach
accommodates change because it reflects the agile
philosophy. By soft-structured, we mean structuring the
software development process somewhat, but at the same
time providing practitioners with the flexibility to employ
many of the existing agile practices. Our hybrid approach
reflects the philosophies of both agile and conventional
approaches to Software Engineering. The framework
consists of two parts:

1. The Agile Requirements Generation Model, which is
a soft-structured approach to gathering requirements,
and

2. A development process that provides alternative
approaches based on the type of system (small or larger
scale) under consideration.

These parts are briefly explained in the next two
paragraphs.

Our objective has been to evolve an approach to
developing larger scale systems that can accommodate
change. The first step in achieving this goal is to ensure that
the requirements gathering process is flexible and can
accommodate change. We have chosen to embrace the
principles of Agile Requirements Engineering (Agile RE)
[2], and apply the embodying philosophy to the
conventional RE process. The objective behind Agile RE is
to accommodate changes to requirements. However, in its
current state, Agile RE is relatively unstructured. That is,
the specification of activities is minimal, and the mapping
between the activities and the techniques that can be used
to carry out these activities is limited. Moreover, our
understanding of Agile RE is, more often than not, tacit.
We contend that these issues can be resolved by structuring
the Agile RE process by identifying a conventional RE
approach and modifying it somewhat to reflect an agile
environment. In this work, we tailor the Requirements
Generation Model (RGM) [3], a conventional requirements
gathering approach to reflect the agile philosophy. The
result is the Agile Requirements Generation Model (Agile
RGM) [4] that (1) is an iterative and incremental approach
to gathering requirements and (2) reflects the values of
agility.

The second part of the framework is the development
process that incorporates the requirements gathered using
the Agile RGM. Depending on the type of system under
consideration (small or larger scale), we can adopt a
development process leaning towards either an agile or a
more conventional approach. We propose two alternative
development approaches because there is no “one size fits
all” solution to software development. That is, conventional
“waterfall like” Software Engineering approaches may be
onerous to teams involved in building small-scale systems.
On the other hand, larger scale systems require a structured
approach. In order to embrace both types of systems, we
present two alternative paths in our development process.

The main objective of our soft-structured approach is to
accommodate change. Hence, both the requirements
gathering approach and the development process reflect the
agile philosophy.

Section 2 of this paper provides some background
information about Agile RE and the RGM. The two parts of
the framework discussed in this paper are presented in
Sections 3 and 4. More specifically, Section 3 discusses the
Agile RGM and Section 4 the development process. We
present the suitability of the soft-structured for larger scale
systems development in Section 5. In Section 6, we
substantiate the effectiveness of the framework. Section 7
summarizes our research.

II. BACKGROUND
The main objective of the research presented in this

paper has been to propose a Software Engineering approach
that preserves agility and can help address the change-
induced complexities associated with larger scale systems
development. In this paper, we describe a soft-structured
framework that spans the Agile RGM and our tailored
alternative approaches to the development process. Because
both build on the Agile RE philosophies and the RGM, we
provide a brief discussion of each in the following two sub-
sections.

A. Agile RE
The agile principles applied to Software Engineering

include iterative and incremental development, frequent
releases of software, direct customer involvement and
minimal documentation. All of the above are designed to
accommodate change. The current agile approach to RE
applies these principles to the RE process.

 Conventional RE processes focus on gathering all the
requirements upfront and preparing the requirements
specification document before proceeding to the
downstream development phases. These upfront
requirements gathering and specification efforts leave little
room to accommodate changes to requirements identified
during the design or coding phases of software
development. On the other hand, Agile RE welcomes
changing requirements. This is achieved by using the agile
practice of Evolutionary Requirements, which suggests that
requirements should evolve over the course of many
iterations rather than being gathered and specified upfront.
More specifically, the high-level features for the system,
which represent expected functionality, are identified first.
The details for each feature are then gathered “just-in-time”
(JIT) from the stakeholders, and right before the
development of that feature. That is, customer and user
needs are elaborated and refined as and when required. This
is the just-in-time philosophy and is one of the focal values
embraced by agilists. Stakeholders are actively involved in
the Agile RE process. Changes to requirements identified
are logged and are implemented in the subsequent
iterations.

Agile RE also focuses on minimal documentation. No
formal requirements specification is produced. The features
and the requirements are recorded on storyboards and index
cards. The artifacts produced depend on the project.
Example Agile RE artifacts include paper prototypes, use
case diagrams and data flow diagrams.

Verification and Validation (V&V) of requirements is
an important activity for any RE approach. However, there
is no explicit specification of V&V activities in Agile RE.
Because the customer is usually available onsite, the
features/requirements can be validated in a just-in-time
fashion. Moreover, if and when verification criteria are
stated, they are usually in the form of user stories. Hence,
verification is more of a validation process.

The current state of Agile RE is that it provides
principles and practices, but no standard process for
applying them. In short, there is only minimal process
specified in the Agile RE approach. In the research
presented in this paper, we have structured the Agile RE
approach by using the Requirements Generation Model
(RGM) described next.

B. RGM
We have adopted the RGM [3] to structure the Agile RE

process because it is flexible and reflects agility. The RGM
is a structured approach to capturing requirements. It covers
all of the activities of the requirements engineering process,
namely requirements elicitation, analysis, specification,
verification and management.

 The RGM is an iterative process as can be inferred
from Figure 1. Each iteration through the RGM produces a
set of requirements. Requirements are produced in
increments. The RGM focuses on Big Requirements Up
Front (BRUF). That is, all of the requirements are identified
upfront before proceeding to the next phase in the Software
Engineering lifecycle. It encourages collaboration among
the stakeholders. These attributes of the RGM are highly
reflective of the agile philosophy. In addition, this model
provides well-defined activities for the different phases of
the RE process. Therefore, we chose this approach to
structure the Agile RE process.

 As shown in Figure 1, the RGM process starts with the
indoctrination phase, which serves as the education
component for both developers and customers. The
preparation phase is a meeting among the project
stakeholders to determine the scope of the following
elicitation phase. The elicited requirements are then
reviewed in the evaluation phase. The need for additional
iterations of the RGM is also determined at this time.

Figure 1. Requirements Generation Model (RGM)

 The Agile RGM is designed by adapting the RGM to
reflect more directly the Agile RE philosophy. Agile RE
focuses on applying agile principles and practices to the RE
process. The RGM is reflective of the agile philosophy and
we modified it to suit an agile software development
environment.

 As previously mentioned, our approach to addressing
change-induced complexities stemming from the

development of larger scale systems involves a synergistic
coupling of two components: the Agile Requirements
Generation Model and an appropriately tailored software
development process. Both of these are discussed more
fully in the following two sections.

III. AGILE REQUIREMENTS GENERATION MODEL (AGILE
RGM)

The main objective of this work has been the
development of a soft-structured approach to facilitate
larger scale systems development that can fit within an
agile framework. The approach embraces agility in order to
accommodate changes to requirements. The Agile RGM [4]
is the initial component of the approach outlined in this
paper. In this section, we present the Agile RGM as a soft-
structured approach to Requirements Engineering that
embraces agility.

The main objective of the Agile RGM is to
accommodate change. It specifies a set of well-defined
activities that provide a more structured approach to
gathering requirements. Its soft-structured characteristic
provides the practitioners with the flexibility to adopt
practices and techniques suitable to their teams and
organizations. The Requirements Generation Model
described in Section 2.2 provides that necessary structure
for the Agile RE process, and thereby helps guide the
practitioners. Within this soft-structured approach to
Requirements Engineering, we have incorporated the Agile
RE principles and practices such as direct stakeholder
involvement, evolutionary requirements, refactoring, no
BRUF, just-in-time gathering of details and minimal
documentation.

Figure 2 shows the Agile RGM. This forms the initial
component of the soft-structured framework for
engineering larger scale systems.

Figure 2. Agile RGM

 As shown in Figure 2, there are three main phases in
the Agile RGM: Education, Feature Development and
Story Development. The process begins with the Education

phase where the development team acquires a better
understanding of the business process of the customers.
Additionally, a high-level mission statement describing the
problem to be addressed and an outline of the solution to be
implemented is created.

 The mission statement helps identify the expected
system functionality during the Feature Development
phase. The customers and the development team determine
the system features that are of value to the customer. These
features are implemented in an incremental fashion through
multiple release cycles. The features to be implemented
during a specific release cycle are then decomposed into
stories in the Story Development phase. The stories
describe the features in greater detail and are created just-
in-time. The output of the Story Development phase is a set
of prioritized stories, which serve as the input to the
Development process described in Section 4. Although not
explicitly illustrated in Figure 2, the decomposition of
features into stories can occur concurrently. The phases of
the Agile RGM are described briefly in the following
paragraphs.

Education phase
 The Education phase is the first step in the process

outlined by the Agile RGM as shown in Figure 2. This
phase is essentially a meeting among the various project
stakeholders (stakeholders include business analysts,
customers, users, developers, project managers and testers).
The main objective is for the development team to gain a
better understanding of the business process of the
customers. This is essential in order to obtain the necessary
domain knowledge. The stakeholders also create a high-
level mission statement, which identifies the problems
faced by the customers, a solution outline, and the users of
the system. The solution outlined in the mission statement
helps determine the expected functionality during the
Feature Development phase described next.

Feature Development phase
 The mission statement created during the Education

phase serves as the input to the Feature Development
phase. The stakeholders iteratively identify the expected
system functionality (features) from the mission statement.
A feature can be defined as the smallest set of functionality
that provides business value to the customer [5]. “Business
value is something that delivers profit to the organization
paying for the software in the form of an Increase in
Revenue, an Avoidance of Costs, or an Improvement in
Service (IRACIS)” [6]. For example, consider the
development of a website for an e-commerce company. A
feature of business value to the company would be “Online
Payment”. This feature implies that users of this website
can complete their financial transactions online. This is of
value to the e-commerce company and the user visiting the
website. The identified features are stated at the highest
level of abstraction.

 As shown in figure 2, the activities of the Feature
Development phase are Preparation, Elicitation, Validation
and Estimation and Prioritization. These well-defined
activities span the phases of a conventional RE process.
These activities and the iterative nature of the Feature
Development phase mirror the RGM described in Section
2.2.

 The process begins with the Preparation activity. The
objective of this activity is to set up or pre-determine a time
for eliciting the features. That is, preparation is a meeting to
plan for gathering features.

 The Preparation activity is followed by Elicitation.
Elicitation of features can take the form of brainstorming
sessions, open-ended interviews, and focus groups, etc.
Features can be recorded on index cards, white boards,
electronic cards, etc.

 The customers then validate each identified feature.
Because the customers and the users are directly involved
throughout the process, just-in-time validation of features is
possible. We have included an explicit Validation activity
in each phase of the Agile RGM (Figure 2) to ensure that
the stakeholder needs and intents are correctly captured.
Elicitation and Validation activities can take place
synchronously as indicated by the horizontal arrow between
these two activities shown in Figure 2. Finally, after each
feature is validated, the developers estimate the time
required for the completion of each feature.

 As also shown in Figure 2, a Prioritization activity
follows the iterative component in the Feature
Development phase. The customer prioritizes the identified
features based on the business value of each feature. These
prioritized features are stored in a stack in the order of their
priorities. This stack is referred to as a prioritized feature
stack.

 Only one feature (or a subset of the prioritized
features) is chosen for implementation during a release
cycle. The details for this feature or subset of features are
gathered just-in-time. The remaining features will be
implemented during future release cycles.

 Features are elicited over multiple iterations. The
stakeholders strive to identify as many features as possible
before proceeding to the Story Development phase.
However, if a feature is identified late during the
development life cycle, the time required for its completion
is estimated, its priority is determined and it is subsequently
added to the prioritized feature stack. On identifying new
features, existing priorities should be reassessed.

Story Development phase
 As mentioned earlier, features are prioritized based on

their business value and are implemented in an incremental
fashion. Features are stated at the highest level of
abstraction, but the developers require additional details
before proceeding to the development process. Hence, each
feature chosen for implementation during a current release
is decomposed into stories. Stories represent refined user-

or customer- expected functionality. Consider the example
discussed previously. We mentioned “Online Payment” as
a feature of business value to an e-commerce company. A
story for the above-mentioned feature can be “As a user, I
can pay by credit card”. It represents a user’s expectation
from a feature supported by the system being developed.

 The stories for each feature are identified over a
number of iterations and are then validated, estimated and
prioritized. As can be inferred from Figure 2, the activities
of this phase mirror the Feature Development phase. The
prioritized stories are stored in a prioritized story stack.
These stories are then implemented during the
Development Process of our soft-structured approach
presented in this paper.

 If multiple teams are involved in the development of
the system, each team can work independently towards
decomposing one or more features into stories.
 The prioritized stories created using the Agile RGM
are implemented during the development process. As
mentioned earlier, the development approach can be chosen
based on the type of system being built. These two
approaches are discussed next.

IV. DEVELOPMENT PROCESS
The Development Process described in this Section

forms the second component of the soft-structured
framework for developing larger scale systems. We provide
two alternative approaches to the development process

depending on the type of the system under consideration.
As shown in Figure 3a, if the system to be built is small-
scale (development period of one year or less), we propose
the decomposition of previously identified stories into tasks
and then the implementation of these the tasks using Test
Driven Development (TDD) [7]. On the other hand, if the
system under development is a larger scale system
(development period of two years or more), then the
prioritized stories created by using the Agile RGM, are
implemented using a more conventional, “waterfall like”
approach (see Figure 3b).

We propose an alternative approach for larger scale
systems because Agile practices such as TDD and
refactoring are not considered suitable for larger scale
systems development. This is due in part to the size and
complexity of such systems. The next two subsections
describe the two approaches that form the Development
component of our soft-structured framework.

A. Development process – Small-scale systems
For small-scale systems, the prioritized stories from the

Story Development phase are implemented using the
approach shown in Figure 3a. Using this approach, we
advocate using a Task Identification phase followed by
TDD to implement the expected functionality. These
activities are discussed in the following paragraphs.

 Figure 3a. Development Process for small-scale systems. Figure 3b. Development Process for larger scale systems

Task Identification phase
Initially, the prioritized stories for each feature are

decomposed into tasks. The stories chosen for development
during the current iteration serve as the input to the Task
Identification Phase. Each story is decomposed into tasks
by the development team. The Task Identification Phase is
an independent process carried out for each story. The task
list for each story is essentially a to-do list created for the
developers.

Though the stories are themselves small, they are
further disaggregated into tasks due to the following
reasons [8]:

 Each story may be developed by more than one
developer due to time constraints or developer
skill sets. Therefore, there is a need to further
decompose stories into tasks.

 Decomposing stories into tasks ensures that the
developers do not overlook necessary details.

The task lists for each story are created during one or
multiple iterations of the Task Identification Phase by the
developers. These lists provide details about the
functionality to be implemented to the developers to guide
them during the development of the tasks. Task lists for
more than one story can be created in parallel by multiple
teams involved in the development process. This enables
faster software development. For the example story “As a
user, I can pay by credit card” discussed in the previous
Section, the task list could be as below:

1. Elicit credit card details
2. Verify order details
3. Authorize credit card information
4. Ensure that only Visa and Master cards are

accepted
5. Display order confirmation

These tasks help ensure that no detail is overlooked.
The activities of the Task Identification Phase are

similar to those described in the Feature and Story
Development phases.

Task Implementation phase
As shown in Figure 3a, the identified tasks are then

passed on to the Task Implementation Phase where the
tasks are implemented using TDD and tested. Using TDD,
developers create tests first before writing code. The
developed code is then refactored to improve its structure.
The rule is to write operational code only if a test fails.
Delivering a product of value to the customer is a
fundamental agile principle and hence, Customer
Acceptance Testing (CAT) is of great importance.
Acceptance tests ensure that the system developed meets
the expectations of the customer. The customers create
acceptance criteria for the stories and test the stories against
the criteria. Developers create additional tests that augment
those written by the customers. The Agile RGM and the

development process outlined in this paper reflect the agile
philosophy. Hence, we suggest using TDD and CAT as
activities for the Task Implementation phase.

Each task created earlier is implemented in this phase.
The developers follow TDD to implement the tasks. The
customers and developers then test the available system
against the acceptance criteria created previously.

Concurrency in the Agile RGM
Concurrency is supported in the soft-structured

framework discussed in this paper. More specifically,
concurrent Story Development, Task Identification and
Task Implementation efforts are feasible. Figure 3(a) shows
concurrency in the Task Identification and Implementation
phases. More than one developer can work on the tasks
created for each story. Each developer chooses a set of
tasks for the story to be implemented based on their
availability and skill set. After completion, each task is
integrated into an existing code base. Each iteration yields
working software.

The advantage of concurrency is that it supports rapid
development of software. The downside to increased
concurrency is that the extent to which the just-in-time
philosophy can be adopted is reduced. Let us assume that
stories 1, 3 and 5 are being refined concurrently. Changes
to story 1 can affect stories 3 and 5. As stories 3 and 5 are
being refined concurrently, it would involve more time and
effort to ensure that the changes made are consistent. This
reduces the degree to which change can be accommodated.
Hence, supporting concurrency limits the advantages of
adopting the just-in-time philosophy.

The Agile RGM described in Section 2, together with
the development process outlined above, provide a soft-
structured approach to Software Engineering for small-
scale systems. This approach helps accommodate changes
to requirements even late in the development lifecycle.

B. Development Process – Larger scale systems
As discussed previously, larger scale systems require a

more structured approach. The Agile RGM described
earlier coupled with the approach shown in Figure 3b,
provide a more conventional approach that can be adopted
after the stories are developed. Due to the size of larger
scale systems, hundreds of stories may be created for the
features and can result in “story card hell” [5]. Hence, the
stories should be converted into requirements to prevent
chaos and to ensure that information is preserved. Subsets
of stories can be transformed into one or more
requirements.

 In our approach to developing larger scale systems,
subsets of prioritized stories are converted into
requirements iteratively and incrementally. Consider, for
example, the story: “As a user, I can pay by credit card.” As
shown in Section 4.1, this story is decomposed into five
tasks. No further decomposition is required. From a
requirements perspective, however, a much more detailed,

definitive, and substantially larger set of specifications is
required. One requirement generated by this story might be
“The system shall use the Advanced Encryption Standard
(AES) to encode all credit card information to be
transmitted over the internet.” Note the level of specificity
and testability embodied in this (and reputedly all)
requirement(s). It is this required level of detail and the
necessarily restricted interpretation latitude that
differentiates story decomposition within a strictly agile
environment from that found in a more conventional
development process. The RGM or any conventional
Requirements Engineering approach can be used to guide
the process of identifying requirements from user stories
and thereby producing a formal specification of
requirements.

The requirements produced during the requirements
phase progress through architecture, design, code, unit
tests, integration tests and finally customer acceptance tests
(Figure 3b). Hence, for implementing each story, a
“waterfall like” process is adopted. Although we adopt
a conventional approach here, it fits within an agile
environment as guided by the features identified early in
the process. Even though we now have requirements, it is
still easier to accommodate change because these
requirements are derived just-in-time from stories.

As a final observation, we would like to note that
refactoring (or code restructuring) is an important practice
within agile development environments. Because the agile
approach promotes change tolerance, enhancing a system’s
design through refactoring, as it is being built, is
encouraged. Within the more conventional development
approaches (like those for larger scale systems), such
change is discouraged. More specifically, the architectural
and detailed designs are determined prior to coding, and
are not intended to change. Clearly, this limits
development flexibility, but also minimizes the potentially
detrimental impact and ripple effect of change in larger
scale systems. Nonetheless, because our soft-structured
agile approach focuses on independent feature
development, that change restriction is primarily limited to
the feature(s) currently under development.

The Agile RGM with the development process
proposed in this subsection provides a complete Software
Engineering lifecycle for larger scale systems. As we have
integrated a conventional approach within an agile
framework, accommodating changes to requirements is
feasible even late in the development process. Hence, we
now have an approach to developing larger scale systems
that can accommodate change.

V. SUITABILITY OF THE SOFT-STRUCTURED
FRAMEWORK FOR LARGER SCALE SYSTEMS DEVELOPMENT

Figure 4 shows the spectrum of Software Engineering
approaches and their suitability for larger scale systems
development. Our framework defines a middle ground
between agile methods like eXtreme Programming (XP)

[10] and conventional Software Engineering approaches
like the waterfall model. Our framework provides structure
to the agile approach to Software Engineering and at the
same time avoids constraining the practitioners like in the
conventional methods.

The main objective of the framework presented in this
research is to provide an approach for both small and larger
scale systems development and to accommodate change in
both. Hence, the framework outlined in this paper is a
hybrid approach combining the advantages of both Agile
and structured methods for Software Engineering.

Figure 4. Spectrum of Software Engineering approaches for larger scale
systems development

We also understand that not all teams and organizations
have the need for a highly structured approach to software
development. Conventional approaches may be onerous for
small-scale systems. Therefore, we provide two alternative
approaches (see Figures 3a and 3b) that can be adopted for
implementing the “requirements” for the system under
consideration. The initial feature/ story identification
component using the Agile RGM is common to both the
development approaches presented here. This phase
introduces aspects of agility independent of project size.
Then, depending on the size of the system to be built, we
adopt a more Agile or conventional approach to
implementing the desired functionality.

Our approach is suitable for larger scale systems as we
provide a semi-structured approach that can accommodate
change. On a scale of one to ten, with one being the most
agile process and ten being the conventional waterfall-like
approach to software development, we estimate that our
approach for small-scale systems merits a three and larger
scale systems a six (Figure 4).

VI. SUBSTANTIATION OF THE “GOODNESS” OF THE SOFT-
STRUCTURED FRAMEWORK

We substantiate the “goodness” of our approach by
showing that it reflects (1) the values of the agile
community and (2) the values of the industry. We first
establish that our approach fits within an agile environment
by showing that it reflects the principles stated in the Agile
Manifesto and those of Agile RE. We also show that it can
be integrated with the existing agile methods. Secondly, we
briefly state our perception of feedback obtained when we

presented our soft-structured approach to a development
organization.

A. Agile Community
The agile community values the principles stated in the

Agile Manifesto. It also endorses agile methods such as XP
[10], Scrum [10], Feature-Driven Development [11], etc. In
this Section, we discuss how our approach reflects the
principles and practices embraced by the agile community.

Agile Manifesto
The framework described in this paper can be used with

the existing agile methods. This is feasible as it reflects the
values and principles stated in the Agile Manifesto. The
Agile Manifesto states that the customers and the
development team should be prepared to accommodate
change even late in the development lifecycle. This is
conveyed by the fourth focal value “Responding to change
over following a plan” [9]. Our framework adopts the just-
in-time philosophy that helps accommodate change, to
gather and implement customer and user needs. There are
no upfront planning activities specified.

Each feature identified using the Agile RGM is refined
and decomposed into stories right before its
implementation. Subsequently, each story is decomposed
into tasks in a JIT fashion. Hence, changes to features and
stories can be more easily accommodated. Additionally,
developers estimate the time required for implementing
features, stories and tasks just-in-time. Since no plans are
created upfront, it is easier to adjust the amount of work to
be completed in a given time frame. Hence, our approach
focuses on responding to change rather than following a
plan. Similarly, it also reflects the other focal values stated
in the manifesto.

Agile RE
Agile RE is adopted in order to accommodate changes

identified during the later phases of software development.
Our approaches to both small and larger scale systems
development reflects the principles and practices of Agile
RE and, in turn, can accommodate change.

Evolutionary Requirements is an agile practice that
states that requirements should evolve over time. In our
approach, the stakeholders identify features initially to
determine the scope of the system. Only a subset of the
identified features is decomposed into stories, which in turn
are decomposed into tasks. Hence, the requirements are not
identified upfront. They evolve over time. The framework
also adopts practices such as just-in-time gathering of
details, direct customer involvement and minimal
documentation, which are also reflective of Agile RE. We
have also introduced explicit V&V efforts throughout the
process to ensure that the requirements are correctly
captured.

Agile Methods
Scrum [10] is an agile approach to managing the

software development process. It employs an iterative and
incremental process skeleton that includes a set of pre-
determined practices and roles. However, it does not
provide implementation techniques. It is used with other
widely adopted agile methods such as XP [10], Feature-
Driven Development [11], Crystal [12], etc., in order to
provide a complete software development process. All of
these agile methods suggest an iterative and incremental
approach to Software Engineering. More specifically, these
methods outline a “scrum-like” process. Therefore, they fit
right within the Scrum skeleton. Our approach described in
this paper advocates a similar “scrum-like” process. In the
following paragraphs, we show that our approach can be
integrated with Scrum. This in turn shows that our
approach reflects the principles of the existing agile
methods.

The Education and Feature Development Phases can be
made a part of an initial Scrum meeting often called Scrum
0 because both of these phases can be considered as upfront
activities. At the end of Scrum 0, a subset of features to be
developed during the next scrum cycle is identified. This
subset of features is extracted from the prioritized feature
stack. The next scrum cycle can be treated as a release
cycle and consists of a number of sprints or iterations. For
small-scale systems, during a sprint, activities described in
the Story Development, Task Identification and
Implementation phases of our approach for small-scale
systems can be carried out. At the end of each sprint, a
potentially shippable product increment is produced.

Similarly, if the system under consideration is a larger
scale system, each sprint cycle can be considered as a “mini
waterfall like” process. Each sprint cycle would involve
creating stories and mapping subsets of stories into
requirements. Each requirement would then proceed
through formal design, code, test and customer acceptance
phases as outlined by our approach for developing larger
scale systems.

Using our approach within a Scrum process can serve as
a guide to the complete development lifecycle. The
practitioners will be made aware of the activities to be
carried out during each scrum cycle and the practices that
can be used. The artifacts suggested by the Scrum process
are comparable to those of our approach. Hence, no
additional effort is required to create them.

B. Industry
This work was also presented at Capital One,

Richmond, Virginia and was well received. We found that
our approach reflects many of the principles/ values
embraced by that organization. We have mentioned the idea
of using them as a beta-site for testing our approach on
some of their projects. This would serve as a formal
validation approach for our work.

VII. CONCLUSION
Our work has been motivated by the need to address the

issue of accommodating change when developing larger
scale systems. To achieve this objective, we propose a soft-
structured approach to engineering larger scale systems
while still preserving the desirable benefits of agility. Our
approach accommodates changes to requirements even late
in the development lifecycle. We also recognize the need
for adopting different implementation approaches. Hence,
we provide two alternative paths for implementing the
expected system functionality. Our approach is
purposefully designed to provide practitioners with the
freedom to choose Software Engineering practices based on
their needs. Our next step is to validate the applicability of
the Agile RGM through an empirical study using a real life
project. More specifically, we plan to incorporate our
process in an organization and study its effectiveness.

REFERENCES
[1] A. Sidky and J. Arthur, "Determining the applicability of

Agile Practices to Mission and Life-Critical Systems",
Proceedings of the 31st IEEE Software Engineering
Workshop (SEW 2007), IEEE Computer Society, 2007, pp.
3-12, doi: 10.1109/SEW.2007.61.

[2] S. Ambler, Agile Modeling: Effective Practices for eXtreme
Programming and the Unified Process, John Wiley & Sons,
New York, 2002.

[3] J. D. Arthur and M. K. Groener, "An operational model for
structuring the requirements generation process",
Requirements Engineering, vol. 10, no. 1, Jan. 2005, pp. 45-
62, doi: 10.1007/s00766-004-0196-2.

 [4] S. Soundararajan, "Agile requirements generation model: A
soft-structured approach to agile requirements engineering",
master's thesis, Dept. of Computer Science, Virginia Tech,
2008; http://scholar.lib.vt.edu/theses/available/etd-
08132008-193105/.

 [5] J. Shore, "Beyond story cards: Agile requirements
collaboration", 21 Mar.
2005; http://jamesshore.com/Multimedia/Beyond-Story-
Cards.html

 [6] J. Patton, "Ambiguous business value harms software
products", IEEE Softw., vol. 25, no. 1, Jan. 2008, pp. 50-51,
doi: 10.1109/MS.2008.2.

.

 [7] K. Beck, Test-Driven Development: By Example, Addison-
Wesley, 2003.

 [8] M. Cohn, User Stories Applied: For Agile Software
Development, Addison-Wesley, 2004.

 [9] "Manifesto for Agile Software Development",
2001; www.agilemanifesto.org.

[10] P. Abrahamsson, O. Salo, J. Ronkainen and J. Warsta, Agile
Software Development Methods: Review and Analysis, VTT
Publications, Finland, 2002.

[11] S. R. Palmer and J. M. Felsing, A Practical Guide to Feature
Driven Development, Prentice Hall PTR, Upper Saddle
River, New Jersey, 2002.

[12] A. Cockburn, Agile Software Development, Addison-
Wesley, 2002.

