
DR-OSGi : Hardening Distributed Components
with Network Volatility Resiliency

Young-Woo Kwon1, Eli Tilevich1, and Taweesup Apiwattanapong2

1Department of Computer Science,Virginia Tech
{ywkwon,tilevich}@cs.vt.edu

2National Electronics and Computer Technology Center
taweesup.apiwattanapong@nectec.or.th

Abstract. Because middleware abstractions remove the need for low-
level network programming, modern distributed component systems ex-
pose network volatility (i.e., frequent but intermittent outages) as appli-
cation-level exceptions, requiring custom manual handling. Unfortunately,
handling network volatility effectively is nontrivial—the programmer must
consider not only the specifics of the application, but also of its target
deployment environment. As a result, to make a distributed component
application resilient against network volatility, programmers commonly
create custom solutions that are ad-hoc, tedious, and error-prone. In ad-
dition, these solutions are difficult to customize for different networks
and to reuse across different applications.
To address these challenges, this paper presents a systematic approach
to hardening distributed components to become resilient against network
volatility. Specifically, we present an extensible framework for enhancing
a distributed component application with the ability to continue execut-
ing in the presence of network volatility. To accommodate the diverse
hardening needs of various combinations of networks and applications,
our framework not only provides a collection of hardening strategies, but
also simplifies the creation of new strategies. Our reference implemen-
tation, built on top of the R-OSGi infrastructure, is called DR-OSGi1.
DR-OSGi imposes a very low overhead on the hardened applications, re-
quires no changes to their source code, and is plug-in extensible. Applying
DR-OSGi to several realistic distributed applications has hardened them
with resiliency to effectively withstand network volatility.

Key words: Distributed Component Architectures, Network Volatility,
Aspect Oriented Programming, OSGi, R-OSGi

1 Introduction

As the world is becoming more interconnected, our daily existence depends on a
variety of network-enabled gadgets. Smart phones, PDAs, GPSs, netbook com-
puters, all run network applications. Many of these gadgets are connected to
1 Pronounced as “Doctor OSGi” (Disconnected Remote Open Service Gateway

Initiative)

2 Young-Woo Kwon, Eli Tilevich, Taweesup Apiwattanapong

a wireless network such as Wi-Fi. Despite the significant progress made in im-
proving the reliability of wireless networks in recent years, real-world wireless
environments are still subject to network volatility—a condition arising when
a network becomes temporarily unavailable or suffers an outage. Usually the
network becomes operational again within minutes of becoming unavailable.

Volatility is a permanent presence of many network environments for several
reasons. For one, Wi-Fi networks transmit radio signals, which are volatile, of-
ten making it impossible to reach a 100% reliability. Another condition causing
network volatility is congestion, which occurs when radio channels interfere with
each other or multiple data is transmitted concurrently over the same radio link
[8]. Furthermore, wireless networks are rapidly becoming available in emerging
markets (e.g., such as in rural or remote areas), which cannot always rely on the
existence of an advanced networking infrastructure [29].

Despite its temporary nature, network volatility can prove extremely dis-
ruptive for those distributed applications that are built under the assumption
that the underlying network is highly-reliable, and network outages are a rare
exception rather than a permanent presence. This could happen, for example,
when a distributed application, built for a LAN, is later executed in a wireless
environment.

Distribution middleware provides a set of abstractions through a standard-
ized API that hide away various complexities of building distributed systems,
including the need for low-level network programming. Distributed component
systems such as DCOM [14], CORBA CC [18], and R-OSGi [22] expose network
volatility as system-level exceptions that are handled by the programmer in
an application-specific fashion. Thus, the programmer writes custom exception-
handling code that is difficult to keep consistent, maintain, and reuse.

If the underlying network is expected to be volatile during the execution of a
distributed system, a consistent strategy can be beneficial for handling the cases
of network outages. Manually written outage handling code makes it difficult to
ensure that a consistent strategy be applied throughout the application. Since the
outage handling code is also scattered throughout the application, it can create a
serious maintenance burden. Finally, the expertise developed in handling outages
in one distributed application becomes difficult to apply to another application,
with a copy-and-paste approach being the only option.

This paper argues that it is both possible and useful to handle network out-
ages systematically, in a consistent and reusable way. Although software archi-
tecture researchers have outlined approaches to continue distributed application
execution in the presence of network outages, these approaches are difficult to
implement, apply, and reuse.

This work builds upon these approaches to define hardening strategies, which
are exposed as reusable components that can be seamlessly integrated with an
extant distributed component infrastructure. These reusable and customizable
components can be added to an existing distributed component application,
thereby hardening it against network volatility.

DR-OSGi : Hardening Distributed Components 3

As our experimental platform, we use R-OSGi—a state-of-the-art distributed
computing infrastructure that enables service-oriented computing in Java. We
have created an extensible framework—DR-OSGi—which can harden any R-
OSGi application, enabling it to cope with network volatility. DR-OSGi provides
programming abstractions for expressing hardening strategies, which can also be
reused across applications. The programmer selects a hardening strategy that is
most appropriate for a given R-OSGi application and its deployment environ-
ment. DR-OSGi then handles all the underlying machinery required to harden
the R-OSGi application with the selected strategy.

In our experiments, we have executed several realistic R-OSGi applications
in a simulated networking environment to which we injected periodic network
outages. By comparing the execution of the original and hardened versions of
each application, we have assessed their respective ability to complete the execu-
tion, the total time taken to arrive to a result, and the overhead of the hardening
functionality. Our results indicate that it is feasible and useful to systematically
harden existing distributed component applications with the ability to cope with
network volatility. Based on our results, the technical contributions of this paper
are as follows:

– A clear exposition of the challenges of treating the ability to cope with
network volatility as a separate concern that can be expressed modularly.

– An approach for hardening distributed component applications with re-
siliency against network volatility.

– A proof of concept infrastructure implementation—DR-OSGi—which demon-
strates how existing distributed component applications can be hardened
against network volatility.

The rest of this paper is structured as follows. Section 2 introduces the concepts
and technologies used in this work. Section 3 describes our approach and refer-
ence implementation. Section 4 evaluates the utility and efficiency of DR-OSGi
through performance benchmarks and a case study. Section 5 compares our ap-
proach to the existing state of the art. Finally, Section 6 presents future research
directions and concluding remarks.

2 Background

In the following discussion, we first look at network volatility from the networking
perspective. Then we outline the concepts and technologies used in implementing
our framework.

2.1 Network Volatility

Modern computing networks are sophisticated multi-component systems whose
reliability can be affected by hardware and software failure. These failure condi-
tions include random channel errors, node mobility, and congestion. The relia-
bility of a wireless network can be additionally afflicted by the contention from
hidden stations and frequency interference [6, 9].

4 Young-Woo Kwon, Eli Tilevich, Taweesup Apiwattanapong

To improve the performance and reliability of modern networks, researchers
have investigated various solutions, including congestion control, error control,
and mobile IP. Most of these solutions improve various parts of the actual net-
working infrastructure. This work, by contrast, is concerned with solutions that
treat network volatility as an unavoidable presence to be accommodated in soft-
ware at the application level.

2.2 Software Components

A software component is an abstraction that improves encapsulation and reusabil-
ity, thus reducing software construction costs. Typically a component encapsu-
lates some unit of functionality that is accessed by outside clients through the
component’s interface. Component interfaces tend to remain stable, evolving in-
frequently and systematically. This reduced coupling between a component and
its clients makes it possible to change the component’s underlying implemen-
tation without having to change its clients. Examples of software component
architectures include COM [14], CORBA CC [18], CCA [1], and OSGi [19].

OSGi For our reference implementation, we have chosen a mature software
component platform for implementing service oriented applications called OSGi
[19]. Among the reasons for choosing OSGi is its wide adoption by multiple
industry and research stakeholders, organized into the OSGi Alliance [19]. OSGi
is used in large commercial projects such as the Spring framework and Eclipse,
which uses this platform to update and manage plug-ins. The OSGi standard is
currently implemented by several open-source projects, including Apache Felix,
Knopflerfish, Eclipse Equinox, and Concierge[21].

OSGi provides a platform for implementing services. It allows any Java class
to be used as a service by publishing it as a service bundle. OSGi manages
published bundles, allowing them to use each other’s services. OSGi manages
the lifecycle of a bundle (i.e., moving between install, start, stop, update, and
delete stages) and allows it to be added and removed at runtime.

R-OSGi Despite its versatility, OSGi only allows inter-bundle communication
within a single host. To support distributed services via OSGi, the R-OSGi dis-
tributed component infrastructure was introduced [22]. R-OSGi enables proxy-
based distribution for services, providing proxies also as standard OSGi bundles.
An R-OSGi distribution proxy redirects method calls to a remote bundle via a
TCP channel, supporting both synchronous and asynchronous remote invoca-
tions. R-OSGi also provides a distributed service registry, thus enabling the
treatment of remote services uniformly with local services.

Thus, R-OSGi introduces distribution transparently, without modifying the
core OSGi implementation. It can even enable remote access to an existing reg-
ular OSGi bundle, transforming the bundle into a remote service. The transfor-
mation employs the concept of the surrogation bundle, which registers the service
and redirects remote calls to the original bundle.

DR-OSGi : Hardening Distributed Components 5

With respect to network volatility, R-OSGi treats it similarly to other dis-
tributed component infrastructures. Specifically, in response to a network dis-
connection, a client accessing a remote R-OSGi service will receive an exception.
The programmer can then write custom code to handle the exception.

2.3 Hardening Strategies to Cope with Network Volatility

When the underlying network fails, a distributed application will typically signal
an error to the end user, who can then decide on how to proceed. The user, for
example, could choose to check the network connection and restart the applica-
tion. The purpose of hardening strategies is to enable a distributed application
to continue executing when the underlying network becomes unavailable. In a
recent publication, Mikic-Rakic and Medvidovic classify disconnected operation
techniques as well as how they can be applied to improve the overall system
dependability [15]. Next we outline these techniques and discuss how they can
be applied to harden a distributed component application to cope with network
volatility.

Caching—This strategy employs caching techniques to store a subset of
remote data locally, so that it could be retrieved and used by remote service re-
quests when the network becomes unavailable. The effectiveness of this strategy
depends strongly on the hit rate of the caching scheme in place. That is, since
the size of any cache is always limited, the main challenge becomes to cache the
remote data that is most likely to be needed by a service invocation when the
network is unavailable. This strategy can in effect fail completely if there is a
cache miss.

Hoarding—This strategy prefetches all the remote data needed for success-
fully completing any remote service invocation. It assumes, however, that data
alone is sufficient for invoking a remote service. Unfortunately, this assump-
tion fails for any resource-driven distribution—collocating hardware resources
with the code and data they use. For example, a remote sensor has to operate
at a remote location from which it is collecting data; hoarding any amount of
the sensor’s output data will fail to provide up-to-date sensor information upon
disconnection. Thus, a hoarding-based strategy can be effective only when com-
putation is distributed for performance reasons, and computation with a given
data input yields the same results on any network node. These execution prop-
erties are often exhibited by high-performance cluster environments that use
distribution to improve performance.

Queuing—This strategy intercepts and records remote requests made to
an unreachable remote service. The recorded requests are then replayed when
the service becomes available. This technique can only work if the results of a
remote call are not immediately needed by the client code (e.g., to be used in
an if statement). Otherwise, the client code will block, not being able to benefit
from this strategy. Queuing is also poorly applicable for realtime applications.

Replication—This strategy maintains a local copy of a remote component.
When the remote component becomes unreachable, the local copy is used. If
the replicated component is stateful, then the states of the local and remote

6 Young-Woo Kwon, Eli Tilevich, Taweesup Apiwattanapong

copies have to be kept consistent. When the network is available, client requests
can be multiplexed to both local and remote copies. Alternatively, a consistency
protocol can be used. Upon reconnection, the remote copy has to be synchronized
with the local copy. This strategy has the same applicability preconditions as
hoarding.

Multi-modal components—This strategy employs several of the strategies
above and can apply them either individually, based on some runtime condition,
or together, combining some features of individual strategies. For example, both
caching and queuing can be used, depending on which remote service method
is invoked. Similarly, replication can be applied to remote components while
hoarding the data used by the replicated components.

2.4 Aspect-oriented Programming and JBoss AOP

This work aims at treating network volatility resiliency as a distributed cross-
cutting concern. A powerful methodology for modularizing cross-cutting con-
cerns is aspect oriented programming (AOP)[13]. We believe that network volatil-
ity resiliency is similar to other cross-cutting concerns such as logging, persis-
tence, and authentication—essential functionality, but not directly related to the
business logic.

AOP modularizes cross-cutting concerns and weaves them into the applica-
tion at compile-time, load-time, or runtime. Major AOP infrastructures include
AspectJ[12], Spring AOP[25], and JBoss AOP[10]. Some AOP technologies have
even been applied to OSGi, including the Eclipse Foundation’s AspectJ plug-in
and Equinox. For our purposes, we needed to weave in the outage handling func-
tionality at runtime, which typically requires modifying the JVM or rewriting
the bytecode. We also needed the ability to modify the parameters of a remote
service method. Among the major AOP systems, only JBoss AOP provides all
the required capabilities. Another draw of JBoss AOP is that it does not either
introduce a new language, thus flattening the learning curve, or changes the
JVM, thus ensuring portability.

3 DR-OSGi: Treating Symptoms of Network Volatility

Our reasoning behind the name DR-OSGi—our reference implementation of an
infrastructure for systematic handling of network volatility—is our skeptical view
of the power of modern medicine. Despite all its impressive accomplishments,
modern medicine can only treat some of the symptoms of the majority of known
diseases—it cannot eliminate the disease itself. Take common cold as an example.
They say that “If you treat a cold, it takes seven days to recover from it, but if
you do not, it takes a week.” When a cold is concerned, modern medicine can
only help eliminate its symptoms, such as fever, sneezing, and coughing, thereby
improving the patient’s quality of life.

By analogy, we treat network volatility as a disease—an annoying but un-
avoidable condition that cannot be eliminated. All we want to do is to treat the

DR-OSGi : Hardening Distributed Components 7

symptoms of this disease systematically. By helping the patient (a distributed
system) to effectively cope with the symptoms of network volatility (an inability
to make remote service calls), we improve the patient’s quality of life (QoS).

We next demonstrate our approach by showing how our approach can sys-
tematically harden distributed component applications against network volatil-
ity. In the following discussion, we first state our design goals, before presenting
the architecture of our reference implementation and its individual components.

3.1 Design Objectives

Can any distributed component architecture be effectively hardened against net-
work volatility? In other words, are there any special capabilities a distributed
component architecture must provide to make itself amenable to hardening? For
our approach to work, we assume that a distributed component architecture can
detect and convey to the distributed application the following two scenarios:

1. A remote service becomes unavailable—this scenario should be effec-
tively detected by the underlying distributed component architecture, so that
an appropriate exception could be raised.

2. A temporarily unavailable remote service becomes available again—
this scenario assumes that the component architecture does not “give up”
trying to reach a remote service, periodically attempting to access it.

To the best of our knowledge, most distributed component architectures can
effectively handle the first scenario. However, only advanced distributed compo-
nent architectures can handle the second one. As a concrete example, R-OSGi
employs the Service Discovery Protocol, which periodically attempts to recon-
nect to a remote service, if the service were to become unavailable. If, for exam-
ple, a remote service becomes unreachable due to a network outage, the R-OSGi
Service Discovery Protocol will keep trying to reach the service until the net-
work connection is restored. It is these advanced capabilities of R-OSGi that
convinced us to use this distributed component architecture as our experimen-
tation platform.

Our system, called DR-OSGi, can harden existing R-OSGi applications to
become resilient against network volatility. In designing DR-OSGi, we pursued
the following goals:

1. Transparency—any hardening strategy should not affect the core function-
ality of the underlying R-OSGi application.

2. Flexibility—DR-OSGi should be capable of adding or removing the hard-
ening strategies at any time without having to stop the application.

3. Extensibility—DR-OSGi should provide flexible abstractions, enabling ex-
pert programmers to easily implement and apply custom hardening strate-
gies.

8 Young-Woo Kwon, Eli Tilevich, Taweesup Apiwattanapong

3.2 Design Overview

The purpose of DR-OSGi is to harden an R-OSGi application with resiliency to
cope with network volatility. Thus, to explain the general architecture of DR-
OSGi, we start by outlining the fundamental building blocks of R-OSGi. Figure
1 shows that R-OSGi integrates a remoting proxy that redirects service calls to a
remote OSGi bundle and also transfers the results of the calls back to the client.

R-OSGi

Proxy

Remote OSGi

S
e

rv
ic

e

R-OSGi

Remote

OSGiChannelS
e

rv
ic

e

Fig. 1. Initial architecture of R-OSGi.

Since the channels to a remote OSGi bundle use TCP, which provides reliable
data transport, packet loss is handled at the transport layer. TCP, however,
provides no assistance to deal with network volatility conditions arising as a
result of link failure, node mobility, or high congestion. Therefore, to detect
network instability or disconnection, an R-OSGi channel uses a timer to block
the caller until the service has returned or the timeout has been exceeded. In
the case of exceeding the timeout, an exception is thrown. R-OSGi handles such
exceptions by having a remote OSGi bundle dispose of the channel and remove
all proxies, preventing remote service calls while the network in unavailable. R-
OSGi periodically checks whether the network has become available again and,
if so, recreates the remoting proxies and channels.

DR-OSGi intercepts the handling of R-OSGi network-related exceptions and
the successful completions of its reconnection attempts. Specifically, DR-OSGi
handles R-OSGi network-related exceptions by triggering a hardening strategy.
The type of the triggered strategy is determined by a programmer-specified con-
figuration. The hardening strategy stops being applied when DR-OSGi intercepts
a successful R-OSGi reconnection attempt.

Figure 2 shows how DR-OSGi is integrated into a typical R-OSGi appli-
cation. DR-OSGi augments an R-OSGi application with a hardening manager
and a collection of hardening strategies. The manager and each strategy are
encapsulated in separate OSGi bundles.

The hardening manager plugs into an R-OSGi application to intercept the
handling of network exceptions and of the successful completions of reconnection
attempts. In response to these events, the manager starts and stops the hardening
strategies as configured by the programmer.

To integrate the hardening manager with an R-OSGi application without
changing the application’s source code, we employ Dynamic Aspect Oriented
Programming. Because OSGi bundles are deployed at runtime, DR-OSGi has

DR-OSGi : Hardening Distributed Components 9

JBoss AOP

DR-OSGi

Hardening Manager

R-OSGi

Remote OSGi

Proxy

JBoss AOP

DR-OSGi

Hardening Manager

R-OSGi

Remote OSGi
Channel

Hardening Strategy B

Hardening Strategy A

Hardening Strategy B

Hardening Strategy A

Service Service

Fig. 2. Hardened architecture.

to be able to interpose the hardening logic dynamically. The dynamic AOP
technology that fits our design objectives is JBoss AOP.

3.3 Programming Model

Next we detail the DR-OSGi programming model and demonstrate how it sim-
plifies the creation and deployment of custom hardening strategies. To harden
an R-OSGi application, the programmer has to provide a configuration file that
specifies which hardening strategy should be applied to which application bundle.
The following configuration file specifies that the application bundle “MyBun-
dle” is to be hardened by the strategy implemented in the DR-OSGi-conformant
bundle “CachingHardening”:

RemoteServiceName=org.mypackage.MyBundle
HardeningServiceName=org.otherpackage.CachingHardening

The simple syntax of the DR-OSGi configuration files is sufficiently expressive
and supports wildcards which can be used to specify that a hardening strategy
be applied to multiple bundles. Several hardening strategies can be applied to
the same application bundle simultaneously. For example, remote invocations
can be both cached and queued when the network is available. The programmer
can specify in the configuration file which strategy bundle should be primary
(i.e., to be applied first). If, when the network becomes unavailable, the first
strategy succeeds, DR-OSGi does not apply the second one.

To implement a hardening strategy, the programmer needs only to implement
interface DisconnectionListener , which is defined as follows:

public interface DisconnectionListener {
public Object disconnectedInvoke(RemoteCallMessage invokeMessage);
public Object reconnected(String uri);
public void remoteInvoke(RemoteCallMessage invokeMessage, Object result);
public void serviceAdded(String uri);
public void serviceRemoved(String uri);

}

10 Young-Woo Kwon, Eli Tilevich, Taweesup Apiwattanapong

Method disconnectedInvoke is called by DR-OSGi, when R-OSGi detects that
the network connection has been lost. Method reconnected is called by DR-OSGi,
when R-OSGi manages to successfully reestablish a connection to a remote bun-
dle. Finally, remoteInvoke is called when a remote service method has been suc-
cessfully invoked.

The implemented class has to be deployed as a regular OSGi bundle, and an
entry describing the implementation must be added to the configuration file.

3.4 System Architecture

In the following we discuss the system architecture of DR-OSGi. The key objec-
tive of this work is to explore how network volatility hardening strategies can
be implemented modularly and applied to an existing distributed component
application that may have been written without fault-tolerance capabilities in
mind. In other words, we argue that it is possible to treat hardening strate-
gies as reusable software components, which can be developed by third-party
programmers and reused across multiple applications.

Hardening Strategy Bundle A

Hardening Manager Bundle

ServiceTracker

Customizer

addingService

removedService

modifiedService

Connection

Handler

DisconnectionListener

remoteInvoke

disconnectedInvoke

reconnected

OSGi

Service Registry

Hardening

Strategy

Activator

Activator

2. Service Registration

1. Service Registration

3
.
S

e
rv

ic
e

 N
o

ti
fi
c
a

ti
o

n

Remote OSGi

Bundle
Proxy Bundle

DR-OSGi

OSGi

R-OSGi

Service

Location

Protocol Bundle

4. Event Monitoring

Service Tracker

Hardening Strategy Bundle B

DisconnectionListener

remoteInvoke

disconnectedInvoke

reconnected

Hardening

Strategy

Activator

5
.
 S

e
n

d
 E

v
e

n
t

Fig. 3. DR-OSGi Design.

DR-OSGi : Hardening Distributed Components 11

Figure 3 shows how we have designed DR-OSGi, so that it could naturally
integrate with the existing OSGi and R-OSGi infrastructures. DR-OSGi makes
use of existing OSGi services such as Service Registration and Service
Tracker. Every DR-OSGi component, including the hardening manager and
all hardening strategies, register themselves with OSGi, which manages them as
standard registered services. This arrangement makes it possible to locate DR-
OSGi components using the OSGi Service Tracker and load them on demand.

To receive service change events from OSGi, the hardening manager imple-
ments the ServiceTrackerCustomizer interface, which is discussed below. In turn, to
make it possible for the manager to send the relevant events to hardening strat-
egy bundles, each bundle implements the DisconnectionListener interface. All the
lifecycle events in DR-OSGi are triggered by sending and receiving events, with
Service Tracker and Service Registration enabling the hardening manager
and hardening bundles to be loosely coupled.

When a new hardening strategy is deployed, OSGi sends an event—addingService—
to Service Tracker, which then forwards the event to the hardening manager
by calling the corresponding ServiceTrackerCustomizer interface method.
public interface ServiceTrackerCustomizer {

public Object addingService(ServiceReference reference);
public void modifiedService (ServiceReference reference , Object service);
public void removedService(ServiceReference reference , Object service);

}

The hardening manager keeps track of which hardening strategies have been
registered and maintains a searchable repository of all the registered strategy
bundles.

Weaving in Resiliency Strategies with Aspects To intercept the discon-
nection/reconnection procedures of R-OSGi, without changing its source code,
we use dynamic Aspect Oriented Programming technology, JBoss AOP. The
ability to apply aspects dynamically is required due to OSGi loading bundles
dynamically at runtime. JBoss AOP makes use of XML configuration files that
specify at which points aspects should be weaved. Using AOP enables DR-OSGi
to keep its implementation modular and avoid having to modify the source code
of R-OSGi.

3.5 Discussion

The hardening approach of DR-OSGi is quite general and can be applied to a
variety of distributed components. Although our reference implementation is de-
pendent on R-OSGi and JBoss AOP, DR-OSGi relies only on their core features,
which are common in other related technologies. Specifically, we leverage the
ability of R-OSGi to convey network failure as application-level exceptions and
to reestablish connections once the network becomes available. JBoss AOP effec-
tively modularizes hardening strategies. Although our approach delivers tangible
benefits to the distributed component programmers, it also has some inherent
limitations.

12 Young-Woo Kwon, Eli Tilevich, Taweesup Apiwattanapong

Advantages DR-OSGi makes it possible to handle network volatility consis-
tently throughout a distributed component application. This means that the
most appropriate hardening strategy can be applied to any subset of application
components, and the strategies can be switched through a simple change in the
configuration file. Furthermore, each strategy is modularized inside a separate
OSGi bundle, thus streamlining maintenance and evolution. Finally, modularized
strategies can be easily reused across different distributed component applica-
tions.

Limitations Creating a pragmatic solution that can be implemented straight-
forwardly required constraining our design in several respects. For example, we
chose to maintain a one-to-one correspondence between application bundles and
their hardening strategy bundles. That is, a hardening strategy for all the services
in a bundle must be implemented in a single DR-OSGi strategy bundle. Strat-
egy bundle implementations, of course, can combine any hardening strategies.
We have made this design choice to simplify the deployment and configuration
of strategy bundles. Another limitation is inherited from JBoss AOP, which is
loaded by the infrastructure irrespective of whether a hardening strategy will be
applied, thus possibly consuming system resources needlessly. This may present
an issue in a resource-scarce environment such as an embedded system. A pos-
sible solution to this inefficiency would be to extend OSGi with a meta-model
that would allow the programmer to systematically extend services.

4 Evaluation

To evaluate the effectiveness and performance properties of DR-OSGi, we have
conducted three benchmark experiments and a larger case study.

4.1 Benchmarks

Since R-OSGi can easily distribute any existing OSGi application, our bench-
marks use third-party OSGi components accessed remotely across the network.

As our benchmark applications, we have used a remote log service, a remote
user administration service, and a distributed search engine.

To create a controlled networking environment with predictable network out-
age rates, we have used a network emulator—netem [2]—to introduce network
volatility conditions, including transmission delay, packet loss, packet duplica-
tion, and packet re-ordering.

In our experimental setup, we have emulated a network with the round trip
time (RTT) metrics equal to 14ms, which is typical for a modern wireless net-
work. To emulate network outages, we used netem to generate packets losses
at the server. Lossy network conditions were emulated by losing a high num-
ber of random packets (i.e., over 30% loss); totally disconnected networks were
emulated by losing all the transmitted packets.

DR-OSGi : Hardening Distributed Components 13

The experimental environment has comprised a Fujitsu S7111 laptop (1.8
GHz Intel Dual-Core CPU, 2.5 GB RAM) communicating with a Dell XPS
M1330 laptop (2.0 GHz Intel Dual-Core CPU,3 GB RAM) via a IEEE 802.11g
wireless LAN, with both laptops running the Sun’s client JVM, JDK J2SE
1.6.0 13.

Log Service For this experiment, we used a log service defined by the OSGi
specification [19]. The OSGi log service records standard output and error mes-
sages printed during a bundle’s execution. The service can be configured to log
different amounts of messages by calling its setLevel methods (the higher the
level, the more messages are logged).

Imagine needing to log messages generated by a remote service locally. In this
experiment, we have used R-OSGi to access the existing log service of Knopfler-
fish, a popular, open-source implementation of OSGi. To enable remote access,
we have used the surrogation bundle approach to register the existing log service.

Network volatility should not cause a remote log service to stop functioning.
Logs are typically examined for a postmortem analysis, for which the actual
time when the messages are written to a log file is not important, as long as the
messages’ timestamps reflect their actual origination time.

In our experiment, we used the log service to record 10 text messages gener-
ated consecutively without any delay. The network is available during the remote
logging of the first 3 messages. Immediately after logging the third message, the
network becomes totally disconnected. Then after the fifth message, the network
connection is restored.

We have executed this scenario under two setups: plain R-OSGi and DR-
OSGi with a queuing strategy. Recall that queuing works by recording remote
service calls when the network is unavailable and replays the recorded calls
once the connection is restored. Under the original setup, the remote log service
recorded only 8 messages (3 before the disconnection and 5 after). Two messages
were lost irretrievably. The hardened version recorded all 10 messages.

Table 1 shows the delay for each message delivery. For the queued messages
(columns 4 and 5), the delays is significantly higher than for the other messages.
Despite the delay of the queued messages, all the messages are delivered in the
order in which they are sent. Since real-time guarantees are not required, we
can conclude that the hardening strategy has provided the requisite QoS for the
remote log service, allowing it to cope with network volatility.

Table 1. Message delivery delay under a queuing hardening strategy.

Network condition connection disconnection connection

Message number 1 2 3 4 5 6 7 8 9 10

Sent log time(min:sec) 0:00 1:12 1:21 1:51 2:51 3:19 4:01 4:03 4:42 4:46

Received log time(min:sec) 0:00 1:15 1:21 3:20 3:20 3:20 4:02 4:05 4:42 4:46

14 Young-Woo Kwon, Eli Tilevich, Taweesup Apiwattanapong

User Admin Service For this experiment, we used the User Admin Service,
which comes as a part of the core OSGi system services. The service authenticates
and authorizes users by running their credentials against a database. Oftentimes,
this service may need to be accessed remotely. To introduce distribution, we have
registered the standard User Admin Service bundle using a surrogation bundle,
similar to the approach we took in distributing the log service.

A network outage should not prevent a client from using the User Admin
Service, if the client has used the service in the past, and the security policy
specifies that user credentials change infrequently and can be cached safely. In
other words, the caching hardening strategy must be coordinated with the se-
curity policy in place, lest the system’s security can be compromised. One way
to accomplish this is to avoid caching the authentication data that may change
while the network is temporarily unavailable.

We have emulated a scenario in which 100 remote authentication attempts
have been made across the network, which randomly suffers disconnections with
the rate equal to 1 disconnection per 20 authentication attempts. Disconnections
always cause the R-OSGi version of the application to fail. The ability of the
DR-OSGi hardened version to continue executing depends on the number of
clients. In this simulation, we assume that all the clients use the service equally.
Thus, if for example, there were n authentication requests made from m users,
then the expected number of authentications performed by a single user is n/m.
Since the cache size is set to 5, the hit rate is negatively correlated with the
number of users, standing at 100% for 2 and 4, and going down to 90%, 85%,
and 78% for 6, 8, and 10 users, respectively.

Distributed Lucene For this experiment, we have used Lucene, a widely-
used Java search engine library. Among the capabilities provided by Lucene are
indexing files and finding indexes of a given search word. Because searching is
computationally intensive, there is great potential benefit in distributing the
searching tasks across multiple machines, so that they could be performed in
parallel.

Despite several known RMI-based Lucene distributions, for our experiments
we have created an R-OSGi distribution, which turned out to be quite straight-
forward. We have followed a simple Master Worker model, with the Master
assigning search tasks to individual Workers as well as collecting and filtering
search results. This distribution strategy, depicted in Figure 4, requires that only
the Master node be hardened against network volatility. This embarrassingly
parallel data distribution arrangement imposes a strict one way communication
protocol with the Master always calling Workers but never vice versa.

Once again, a caching hardening strategy has turned out to be most appropri-
ate for hardening the distributed Lucene R-OSGi application. Specifically, every
work assignment for individual nodes is used as a key mapped to the returned
result. The intuition behind this caching scheme is that files are read-only and
searching a file for the same string multiple times must return identical results.
For writable files, the caching scheme would have to be modified to invalidate all

DR-OSGi : Hardening Distributed Components 15

the cached results for the changed files. As it turns out, the absolute majority
of environments that use Lucene feature read-only files only, including digital
books, scientific articles, and news archives.

OSGi

Framework

Service

R
-O

S
G

i

Lucene

Library

Hardening

Manager

Cache

OSGi Framework

JBoss AOP

P
ro

x
y

S
e

rv
ic

e

R-OSGi

Master

Workers

OSGi

Framework

Service

R
-O

S
G

i

Lucene

Library

Fig. 4. Distributed Lucene.

5.04

5.06

5.08

5.1

5.12

5.14

5.16

5.18

5.2

5.22

R-OSGi DR-OSGi
Th

e
bi

nd
in

g
ti

m
e(

 x
10

00
m

s)

Fig. 5. The Binding Time.

Since distributed Lucene is representative of a large class of realistic applica-
tions, we have used it to assess the performance overhead imposed by DR-OSGi.
The first benchmark has measured the binding time, which is defined as the
total time expended on establishing a remote connection, requesting the service,
receiving the interface, and building the remoting proxy. R-OSGi is quite effi-
cient, with R-OSGi application consistently outperforming their RMI versions
[22]. The purpose of our benchmark was to ensure that DR-OSGi does not im-
pose an unreasonable performance overhead on top of R-OSGi. As it turns out,
there is not a pronounced difference between the binding time of a plain R-OSGi
version of Lucene and its hardened with DR-OSGi version, as shown in Figure
5. One could argue that binding is a one-time expense incurred at the very start
of a service and as such is not critical.

To distill the pure overhead of DR-OSGi, we have measured the total time
it took to synchronously invoke a remote service under three scenarios:

1. running the original R-RSGi version with no network volatility present
2. running the hardened with DR-OSGi version with no network volatility

present
3. running the hardened with DR-OSGi version with a randomly introduced

complete network disconnection

The measurements are the result of averaging the total time taken by 1 ∗ 103

remote service invocations. To emulate a complete network disconnection, we

16 Young-Woo Kwon, Eli Tilevich, Taweesup Apiwattanapong

have generated a 100% packet loss. While the original R-OSGi version takes
9043.5 ms to execute, the hardened one takes 9321.9 ms, thus incurring only 3%
overhead when no volatility is present. When the network becomes unavailable,
the DR-OSGi caching strategy improves the performance quite significantly, as it
eliminates the need for any computation to be done by the worker node. While,
somewhat unrealistically, we used the 100% hit rate to isolate the overhead of
DR-OSGi, the actual performance is likely to vary widely depending on the
applicaion-specific caching scheme in place.

These performance results indicate that the insignificant performance over-
head that DR-OSGi imposes on a hardened distributed application can certainly
be justified by the added resiliency to cope with network volatility.

4.2 Case Study

As a larger case study, we have hardened “DNA Hound,” a three-tier R-OSGi
application for assisting detectives conducting a criminal investigation. The ap-
plication works by automating the process of analyzing and warehousing DNA
evidence, collected at crime scene investigation sites. Figure 6 depicts the archi-
tecture of “DNA Hound.” The detective collects DNA evidence using a hand-held
device, and then sends it to a search facility using a mobile data network (or
any other wireless network). The search facility matches the sent DNA evidence
against a database of DNA sequences (via parallel processing) and reports if a
match is found. The collected DNA evidence is then sent to a crime evidence
warehouse for storage.

We have implemented a complete working prototype of “DNA Hound,” but
in lieu of DNA extracting hardware, we simulated the found DNA evidence by
randomly selecting DNA sequences from a GenBank NCBI database [4]. The
search is performed using a parallelization of the Smith-Waterman algorithm
[24] on a compute cluster.

Hardening “DNA Hound” Because “DNA Hound” is used in the field, it re-
lies on a wireless network that can be unreliable. Therefore, to ensure that the
application continues to provide service, we have used DR-OSGi to harden it
against network volatility. We have used two hardening strategies implemented
as regular OSGi bundles.

Replication. To harden the application for the network volatility that can
occur between the hand-held DNA extractor and the analyzer, we have used
a replication strategy. Although DNA sequence search is very computationally-
intensive, usually requiring parallel processing to shorten the search time, it
can also be done sequentially, albeit much slower. With the advance in data
storage technologies, even a hand-held device can comfortably store a substantial
database of DNA sequences. The DNA search bundle is replicated at the hand-
held device. We have used the native OSGi replication facilities to install the
search bundle at both sites. When the network is up, the search is performed
using a compute cluster at the search site, and the index of the most recently

DR-OSGi : Hardening Distributed Components 17

Portable DNA

Extractor

Replication

Bundle

Replication Assistant

Bundle

Search Bundle

Warehouse Bundle

Synchronization

R-OSGi R-OSGi

R-OSGi

Result

DNA Sequence Evidence

DR-OSGi DR-OSGi

DNA Sequence Search

DNA Evidence Warehouse

Portable DNA Extractor

Queuing

Bundle

S
to

re
 C

olle
ct

ed

D
N
A
 E

vi
den

ce

Fig. 6. DNA Hound System Architecture.

searched database sequence is periodically sent to the search bundle at the hand-
held site. Once the network becomes unavailable, the search bundle at the hand-
held site continues the search locally, using an inefficient sequential algorithm;
the search is continued from the index of the last searched sequence at the cluster.
If the index is not up-to-date, then some overlap in the search will occur. Once
the connection goes back up, the cluster could then report any matches found
while the network was not available.

Queuing. To harden the application for the network volatility that can occur
between the hand-held DNA extractor and the criminal evidence warehouse, we
have used a queuing strategy. The calls to store a new piece of DNA evidence are
queued up at the hand-held site once the network becomes unavailable. Then the
queued calls are resent to the warehouse once the network connection is restored.

Discussion The original R-OSGi version of the application was written with-
out any functionality enabling it to cope with network volatility–it thus fails im-
mediately once either network link is lost. DR-OSGi made it possible to harden
this unaware application, so that it can meaningfully continue its operation in the
presence of network volatility, thus improving the application’s utility and safety.
This demonstrates how DR-OSGi makes it possible to treat network volatility
resiliency as a separate concern that can be implemented separately and added
to an existing application. Furthermore, the queuing bundle came from the li-
brary of standard hardening strategy bundles that are part of our DR-OSGi

18 Young-Woo Kwon, Eli Tilevich, Taweesup Apiwattanapong

distribution, thus requiring no programmer effort. The replication bundle was
custom tailored for this application, but we are currently working on general-
izing the implementation, so that only the synchronization functionality would
require custom coding.

5 Related Work

DR-OSGi derives its hardening strategies from a recent survey of disconnected
operation techniques by Mikic-Rakic and Medvidovic [15]. These techniques are
used by several systems, including the Rover toolkit [11], Mobile Extension [5],
Odyssey [16], and FarGo-DA [27]. Unlike these systems, DR-OSGi enables the
programmer to harden distributed applications without having to modify their
source code explicitly. By avoiding ad-hoc modification that can be tedious and
error-prone, DR-OSGi not only hardens applications more systematically, but
also enables greater reuse of the hardening strategies across different applica-
tions.

Aldrich et al.’s ArchJava [3] extends Java to integrate architectural specifi-
cations with the implementation by providing language support for user-defined
connectors. Their techniques bears similarity to DR-OSGi in separating reusable
connection logic from the application logic and integrating them together system-
atically. ArchJava, however, operates at the source code level, using its language
extension to express different connectors. DR-OSGi is a middleware solution that
does not need to modify the source code.

Sadjadi and McKinley’s adaptive CORBA template (ACT) enables CORBA
applications to adapt to unanticipated changes [23]. To do so, ACT employs
a generic interceptor, a type of CORBA portable request interceptor [17] that
works around the constraints of replying to intercepted requests or modifying
the invoked method’s parameters. Specifically, a generic interceptor forwards re-
quests to a proxy, a CORBA object that can reply and modify the requests.
Similarly to DR-OSGi, ACT introduces additional functionality to a distributed
application without modifying its code explicitly. Using ACT to harden against
network volatility, however, would require that portable interceptors be avail-
able, which may not be the case for many distributed component infrastructures
including R-OSGi.

A number of techniques for making existing systems fault tolerant [7, 20, 26]
are related to our approach. GRAFT [26] automatically specializes middleware
for fault-tolerance. It employs the Component Availability Modeling Language
(CAML) to annotate a distributed application’s model, and then automatically
specializes the application’s middleware for domain-specific fault-tolerant re-
quirements. While GRAFT requires that the programmer express the requested
fault-tolerance functionality at the model level using a domain-specific language,
DR-OSGi provides a simple Java API for implementing hardening strategies as
OSGi bundles, which it then manages at runtime.

Our idea of hardening against network volatility was inspired by security
hardening, a systematic approach to making a pre-existing program artifact more

DR-OSGi : Hardening Distributed Components 19

secure such as Wuyts et al’s recent work [28]. Our approach hardens distributed
components to become more resilient against network volatility.

6 Future Work and Conclusions

One future work direction will assess the generality of our approach by applying
it to other distributed component infrastructures. Another direction will focus
on identifying suitable hardening strategies through the program analysis of
distributed components.

We have presented DR-OSGi, a promising approach for systematically hard-
ening distributed components to cope with network volatility. The reference im-
plementation features an extensible framework for deploying hardening strate-
gies, with caching, queuing, and replication used to demonstrate the effectiveness
of our approach. As we rely on greater numbers of network-enabled devices with
network volatility remaining a permanent presence, the importance of hardening
distributed components will only increase, motivating the creation of systematic
and flexible hardening approaches as showcased by DR-OSGi.

Availability: DR-OSGi and all the applications described in the paper can be
downloaded from http://research.cs.vt.edu/vtspaces/drosgi.

References

1. CCA-Forum. http://www.cca-forum.org/.
2. Net:Netem. http://www.linuxfoundation.org/en/Net:Netem/.
3. J. Aldrich, V. Sazawal, C. Chambers, and D. Notkin. Language support for con-

nector abstractions. In Proceedings of the European Conference on Object-Oriented
Programming (ECOOP’03), July 2003.

4. D. A. Benson, I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, B. A. Rapp, and D. L.
Wheeler. Genbank. Nucleic Acids Res., 30:17–20, 2002.

5. M. Dahlin, B. Chandra, L. Gao, A. Khoja, A. Nayate, A. Razzaq, and A. Sewani.
Using mobile extensions to support disconnected services. Technical Report CS-
TR-00-20, University of Texas at Austin, 2000.

6. C. L. Fullmer and J. Garcia-Luna-Aceves. Solutions to hidden terminal problems
in wireless networks. In In Proceedings ACM SIGCOMM, pages 39–49, 1997.

7. J. L. Herrero, F. Sanchez, O. Sanchez, and M. Toro. Fault tolerance AOP approach.
In Workshop on AOP and Separation of Concerns, pages 44–52, 2001.

8. B. Hull, K. Jamieson, and H. Balakrishnan. Mitigating congestion in wireless
sensor networks. In ACM SenSys 2004, Baltimore, MD, November 2004.

9. K. Jain, J. Padhye, V. N. Padmanabhan, and L. Qiu. Impact of interference on
multi-hop wireless network performance. In MobiCom ’03: Proceedings of the 9th
annual international conference on Mobile computing and networking, pages 66–80,
New York, NY, USA, 2003. ACM.

10. JBoss AOP. http://www.jboss.org/jbossaop.
11. A. D. Joseph, A. F. deLespinasse, J. A. Tauber, D. . Gifford, and M. F. Kaashoek.

Rover: A toolkit for mobile information access. In Proceedings of the Fifteenth
Symposium on Operating Systems Principles, December 1995.

20 Young-Woo Kwon, Eli Tilevich, Taweesup Apiwattanapong

12. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. An
overview of AspectJ. In Proceedings of the 15th European Conference on Object-
Oriented Programming (ECOOP), pages 327–353, London, UK, 2001. Springer-
Verlag.

13. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier,
and J. Irwin. Aspect-oriented programming. In European Conference on Object-
Oriented Programming(ECOOP 97), pages 220–242, 1997.

14. Microsoft. Component Object Model (COM).
15. M. Mikic-Rakic and N. Medvidovic. A classification of disconnected operation

techniques. In Proceedings of the 32nd EUROMICRO Conference on Software
engineering and Advanced Applications (EUROMICRO-SEAA’06), 2006.

16. B. D. Noble, M. Sayanarayanan, D. Narayanan, J. E. Tilton, J. Flinn, and K. R.
Walker. Agile application-aware adaptation for mobility. In Proceedings of the 16th
ACM Symposium on Operating Systems Principles, October 1997.

17. Object Management Group. The common object request broker: Architecture and
specification version 3.0. http://doc.ece.uci.edu/CORBA/formal/02-06-33.pdf,
July 2003.

18. Object Management Group. The CORBA component model specification. Speci-
fication, Object Management Group, 2006.

19. OSGi Alliance. OSGi release 4.1 specification. Specification, 2007.
20. A. Polze, J. Schwarz, and M. Malek. Automatic generation of fault-tolerant

CORBA-services. In Proceedings of the Technology of Object-Oriented Languages
and Systems (TOOLS 2000), 2000.

21. J. S. Rellermeyer and G. Alonso. Concierge: a service platform for resource-
constrained devices. In the 2nd ACM SIGOPS/EuroSys European Conference on
Computer Systems 2007, pages 245 – 258, 2007.

22. J. S. Rellermeyer, G. Alonso, and T. Roscoe. R-OSGi: Distributed applications
through software modularization. In Proceedings of the ACM/IFIP/USENIX 8th
International Middleware Conference (Middleware 2007), November 2007.

23. S. M. Sadjadi and P. K. McKinley. ACT: An adaptive CORBA template to support
unanticipated adaptation. In Proceedings of the 24th International Conference on
Distributed Computing Systems (ICDCS’04), pages 74 – 83, 2004.

24. T. Smith and M. Waterman. Identification of common molecular subsequences. J.
Mol. Biol., 147:195–197, 1981.

25. Spring Framework. http://www.springsource.org/.
26. S. Tambe, A. Dabholkar, J. Balasubramanian, and A. Gokhale. Automating mid-

dleware specializations for fault tolerance. In Proceedings of the International
Symposium on Object/component/service-oriented Real-time distributed Comput-
ing (ISORC 2009), March 2009.

27. Y. Weinsberg and I. Ben-Shaul. A programming model and system support for
disconnected-aware applications on resource-constrained devices. In Proceedings
of the 24th International Conference on Software Engineering, pages 374 – 384,
Orlando, Florida, May 2002.

28. K. Wuyts, R. Scandariato, G. Claeys, and W. Joosen. Hardening XDS-based ar-
chitectures. In ARES ’08: Proceedings of the 2008 Third International Conference
on Availability, Reliability and Security, pages 18–25, Washington, DC, USA, 2008.
IEEE Computer Society.

29. M. Zhang and R. Wolff. Crossing the digital divide: cost-effective broadband wire-
less access for rural and remote areas. Communications Magazine, IEEE, 42(2):99–
105, Feb 2004.

