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Abstract
Programs written in managed languages are compiled to a
platform-independent intermediate representation, such as
Java bytecode. The relative high level of Java bytecode has
engendered a widespread practice of changing the bytecode
directly, without modifying the maintained version of the
source code. This practice, called bytecode engineering or
enhancement, has become indispensable in introducing var-
ious concerns, including persistence, distribution, and secu-
rity, transparently. For example, transparent persistence ar-
chitectures help avoid the entanglement of business and per-
sistence logic in the source code by changing the bytecode
directly to synchronize objects with stable storage. With
functionality added directly at the bytecode level, the source
code reflects only partial semantics of the program. Specif-
ically, the programmer can neither ascertain the program’s
runtime behavior by browsing its source code, nor map the
runtime behavior back to the original source code.

This paper presents an approach that improves the utility
of source-level programming tools by providing enhance-
ment specifications written in a domain-specific language.
By interpreting the specifications, a source-level program-
ming tool can gain an awareness of the bytecode enhance-
ments and improve its precision and usability. We demon-
strate the applicability of our approach by making a source
code editor and a symbolic debugger enhancements-aware.

Categories and Subject Descriptors D.2.3 [Software En-
gineering]: Coding Tools and Techniques—Program editors;
D.2.5 [Software Engineering]: Testing and Debugging—
debugging aids, tracing; D.3.4 [Programming Languages]:
Processors—debuggers, interpreters

[Copyright notice will appear here once ’preprint’ option is removed.]

General Terms Languages, Design, Experimentation

Keywords Domain-specific languages, enhancement, pro-
gram transformation, bytecode engineering, debugging

1. Introduction
Managed languages, including Java and C#, reduce the com-
plexity of software construction by providing portability,
type safety, and automated memory management. A Gartner
report predicts that by 2010, as much as 80% of new soft-
ware will be written in C# or Java [17]. Another reason for
the widespread popularity of managed languages is that they
feature multiple standard libraries and portable frameworks,
whose use improves programmer productivity. In fact, it has
been observed that the third-party libraries and frameworks
of a typical commercial enterprise application commonly
constitute the majority of the codebase [13].

Object-oriented frameworks have become an integral part
of enterprise software development, as their reusable de-
signs and predefined architectures streamline the software
construction process. A major draw of modern enterprise
frameworks is that the developer can write business logic
components using a Plain Old Object Model (e.g., Plain
Old Java Objects (POJOs) and Plain Old Common Lan-
guage Runtime Objects (POCOs)), business-level applica-
tion objects that do not implement special interfaces or call
framework API methods. Among Plain Old Object Models,
POJO-based frameworks have become mainstream in the en-
terprise computing community, as they improve separation
of concerns, speed up development, and improve portabil-
ity [36].

To provide services to application objects, a framework
employs bytecode engineering to enhance their intermediate
representation (i.e, bytecode or CLR), commonly at runtime.
Figure 1 demonstrates the main steps of such framework-
based development. First, the source code is compiled to
an intermediate representation. Then an enhancer uses byte-
code engineering [11] to add new functionality to the com-
piled bytecode as guided by the corresponding custom meta-
data. Each framework uses different metadata formats, com-
monly expressed using XML files or Java 5 annotations, to
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Figure 1. Enhancing intermediate code via bytecode engineering.

mark framework-related program constructs. Further, the en-
hancer can run as a separate tool or be integrated with a
class loader. Finally, the enhanced bytecode, which differs
in functionality from the original source code, is executed
by the framework.

Although intermediate code enhancement has entered
the mainstream of enterprise software development due to
the widespread use of frameworks, no standard technique
has been introduced to capture and document the enhance-
ments. Metadata guiding the enhancement process not only
is custom for each framework, but also specifies what pro-
gram constructs are relevant for a particular framework (e.g.,
which fields are persistent) rather than how the intermediate
code should be enhanced. As a result, the enhancements
are, at best, documented through an informal narrative (i.e.,
documentation) or treated as a black box.

Lacking any formal description of bytecode enhance-
ments, source code does not faithfully reflect the full se-
mantics of an enhanced program. For source-level program-
ming tools, this inability to express all the functionality of
a program in source code leads to reducing the utility of
those programming tools that rely on the one-to-one corre-
spondence between the running version of a program and its
source-level representation. The presence of bytecode en-
hancements not only hinders the ability to understand the
real behavior of a program by browsing its source code, but
also makes it non-trivial to map the execution of a program
to its source code. The programmer may need to understand
the observed behavior of a program, while relating the ob-
served behavior of the enhanced intermediate code back to
the original source and vice versa.

Although optimizing compilers have long changed inter-
mediate representations to improve performance, the tech-
niques developed for dealing with such optimized code
(i.e., debugging optimized code) are unsuitable for dealing
with enhanced bytecode. While optimizations are always
semantics-preserving transformations (sometimes under cer-
tain input), enhancements change the semantics of a program
in custom and difficult-to-generalize ways.

The optional Java class file’s attribute LineNumberTable
provides little value as a mechanism for mapping enhanced
bytecode to the original source code. An enhancer cannot
adjust the LineNumberTable of an enhanced class, as the
enhancements are expressed only in bytecode and have no
representation in source code.

Even though Aspect Oriented Programming (AOP) [24]
is often used for introducing crosscutting concerns, the AOP
languages such as AspectJ [23] do not capture all the en-
hancements commonly introduced directly at the bytecode
level, which include changing program construct names, re-
moving program constructs, and generating new classes.

This paper presents an approach that improves the util-
ity and precision of source-level programming tools by cap-
turing and documenting bytecode enhancements. First, we
have classified commonly-used bytecode enhancements by
examining the API of two widely-used bytecode engineer-
ing toolkits and by reverse-engineering the enhancements
performed by two commercial enterprise frameworks. Based
on our classification, we have created a declarative, domain-
specific language for describing bytecode enhancements. To
demonstrate the expressiveness of our language, we used it
to describe the enhancements performed by several indus-
trial and research systems that use bytecode engineering. Fi-
nally, we have used our approach to make a source code ed-
itor and a symbolic debugger enhancement-aware, thereby
improving their precision and utility.

This paper makes the following contributions:

• A novel approach to improving the precision and utility
of source-level programming tools in the presence of
intermediate code enhancements.
• The Structural Enhancement Rule (SER) language, a

Domain-Specific Language (DSL) for concisely ex-
pressing structural enhancements that modern enterprise
frameworks commonly apply to intermediate code.
• A debugging architecture that enables symbolic debug-

ging of programs whose intermediate code has been
transparently enhanced.
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The rest of this paper is structured as follows. Section
2 provides a background for this work, demonstrating how
intermediate code enhancement is used in implementing a
commercial persistence architecture. Section 3 presents our
approach to expressing and leveraging intermediate code en-
hancement information. Section 4 reflects on our experi-
ences of implementing and evaluating two enhancements-
aware programming tools: a code editor and a symbolic de-
bugger. Section 5 compares our approach with the existing
state of the art. Section 6 discusses future work directions,
and Section 7 presents concluding remarks.

2. Background
In modern enterprise software development, the program-
mer expresses business logic components using application
classes that do not inherit from special framework types or
have any other functionality besides business logic. Then ex-
tra functionality is added to the intermediate code1 of the
application classes via bytecode enhancement to enable en-
terprise frameworks to provide services, thereby implement-
ing various (usually non-functional) concerns, including per-
sistence, transactions, and security. This development model
relieves the programmer from the burden of having to im-
plement these important concerns by hand. The programmer
simply uses metadata (such as XML files or Java 5 annota-
tions) to designate specific application objects as interacting
with a framework, and all the tedious details of enabling the
interaction happen entirely behind the scenes. Despite the
convenience afforded by the use of such intermediate code
enhancement, as we demonstrate next, its use compromises
the utility and precision of source-level programming tools.

2.1 Transparent Persistence Frameworks
The following example comes from the domain of transpar-
ent persistence, which is used by several persistence frame-
works in industrial software development, including Hiber-
nate [6] and JDO [37]. A transparent persistence architecture
combines features of both orthogonally persistent languages
[5, 28, 29, 4] and data access libraries, such as Java Database
Connectivity (JDBC)[44] and Open Database Connectivity
(ODBC)[30].

When program data outlives the program’s execution,
the data is said to be persistent. Transparent persistence
architectures provide a software framework for managing
the program data marked as persistent by the programmer.
The management entails synchronizing the persistent data
and its stable storage representation.

A representative of a transparent persistence infrastruc-
ture for Java is Java Data Objects (JDO) [37]. JDO uses
static post-compile enhancement to enable Java objects with
persistence capabilities. The programmer writes Java ob-
jects to be persisted as regular Java Beans [43]. A sepa-

1 In the rest of the manuscript, we use the terms intermediate code and
bytecode interchangeably.

rate JDO metafile (in XML) specifies which fields of a class
should be persisted and how they map to stable storage. Fi-
nally, as specified by the metadata, the JDO enhancer adds
persistence-specific methods and fields to each persistent
class, enabling its instances to interact with the JDO run-
time.

In particular, the enhancer changes a persistent class to
implement interface PersistenceCapable and wraps all read
and write accesses to a persistent field with special methods
that interact with the JDO runtime. Thus, before the value
of a persistent field is retrieved or modified, an appropri-
ate JDO-specific action is triggered, thereby ensuring that a
fresh copy of the data is retrieved from stable storage and all
the changes in the application space are properly persisted.

The design of JDO satisfies the stated goal of introduc-
ing persistent capabilities transparently. JDO enables rank
and file programmers to focus on what data is being per-
sisted and treating how the data is persisted as a black box.
Enterprise programmers may be aware that some bytecode
enhancement is taking place, but the specific enhancements
are not relevant to their primary concern—expressing the re-
quired business logic.

2.2 Example: Mortgage Authorization Application
Consider a mortgage authorization application used by a
bank to calculate the maximum amount of mortgage eligi-
bility, according to a set of business rules that use a cus-
tomer’s salary and credit score. The application uses sev-
eral transparently persistent classes, including SalaryLevel

and CreditLevel , whose objects are persisted in a relational
database such as MySQL or Oracle using the JDO frame-
work.

Consider the code listing in Figure 2, showing a method
displayMaxMortgageEligibility. The method displays
the amount of maximum mortgage eligibility given a dis-
play object and a projected salary increase amount. As is
usually the case, the method manipulates different concerns
of the application: business logic and graphical user inter-
face. Assume that the GUI part of the method contains
a bug: method getMortgageField returns null, thereby
causing a NullPointerException to be thrown in the
next statement. Although the bug is in the GUI logic of the
method and has nothing to do with persistence or enhance-
ments, the JDO bytecode enhancements complicate source
level debugging of the code. As an illustration, consider the
enhanced bytecode of the method displayed in Figure 3.
The programmer stepping through displayMaxMortgage-
Eligibility with a standard debugger will encounter the
enhancements, including various new methods, including
jdoGetSalaryLevel and jdoGetCreditLevel, which
can be misleading, obfuscating the location of the bug. Al-
though tracing the enhanced bytecode with a standard de-
bugger may accidentally lead the programmer to discover
a suspect bytecode instruction, matching the instruction to
the corresponding statement in the original source code may
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1 public void displayMaxMortgageEligibility
2 (Display display , double projectedIncrease ) {
3 double newSalary =
4 salaryLevel . getSalary () + projectedIncrease ;
5 salaryLevel . setSalary (newSalary);
6 double maxMortgage =
7 calcMaxMortgage(salaryLevel, creditLevel );
8 FrameField mortgageField =
9 display .getMortgageField();

10 mortgageField. setVal(maxMortgage);
11 ...
12 }

Figure 2. Original source code.

1 public void displayMaxMortgageEligibility (Display , double);
2 Code:
3 aload 0
4 invokestatic // jdoGetsalaryLevel;
5 invokevirtual
6 i2d
7 dload 2
8 dadd
9 dstore 4

10 aload 0
11 invokestatic // jdoGetsalaryLevel;
12 dload 4
13 invokevirtual
14 aload 0
15 aload 0
16 invokestatic // jdoGetsalaryLevel;
17 aload 0
18 invokestatic // jdoGetcreditLevel;
19 ...

Figure 3. Bytecode enhanced by the JDO enhancer.

quickly turn nontrivial. Bytecode-only enhancements do not
have any source code level representation.

From a different perspective, a programmer who first en-
counters this application with the goal of adding new fea-
tures or fixing a bug would not get a realistic picture of the
application’s behavior by browsing the source code. In par-
ticular, the source code contains no information pertaining
to the intermediate code enhancements introduced to enable
transparent persistence. Thus, any change to the code could
potentially lead to an unrelated change in the persistence
functionality, leading to difficult-to-find errors. The meta-
data used to designate persistent classes only marks classes
as such, but does not describe how exactly they will be en-
hanced.

This simple but realistic example demonstrates how
transparent enhancement hinders the effectiveness of source-
level programming tools. Because intermediate code en-
hancement has become an indispensable part of enterprise
software development, new approaches are required to make
source level programming tools enhancements-aware.

3. Understanding and Expressing Bytecode
Enhancement

Because intermediate code is enhanced using special-purpose
libraries, typically at class load time, the enhancements are
poorly understood and not well-documented, if at all. The
problem stems from a lack of the right expression medium
for such enhancements. If intermediate code enhancements
could be expressed in regular source code, there would be no
need to manipulate intermediate code directly, such as with
bytecode engineering. Conversely, bytecode is too low level
a representation to be useful for most programming tools.

As a means of understanding and expressing intermediate
code enhancements, we have introduced Structural Enhance-
ments Rules (SER), a special purpose language for doc-

umenting bytecode enhancements. Figure 4 demonstrates
how using SER can improve the precision and utility of
source level programming tools. Specifically, the upper part
of the figure shows a SER interpreter helping inform the pro-
grammer about how various program constructs will be en-
hanced at the bytecode level, and can be integrated with a
source code editor. The lower part of the figure shows a SER
interpreter being used to map the enhancements to the orig-
inal source code at runtime, and can be integrated with a
symbolic debugger.

SER
Script Enhancement

Documentation

SER
Script

Enhanced
Intermediate code

Original
Source code

Source code

Source‐level Prog. Tool

SER Interpreter

Source‐level Prog. Tool

SER Interpreter

Figure 4. Source level programming tools with intermedi-
ate code enhancement information.

Next we first explain our analysis and classification of
structural enhancements. Then we describe the design and
implementation of SER.
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3.1 Structural Enhancements
Intermediate code enhancement is concerned with structural
changes, which are large scale program transformations. The
purpose of SER is to document structural enhancements in
sufficient enough detail to improve the precision and utility
of source-level programming tools that manipulate the origi-
nal source code of an enhanced program. To ensure that SER
provides the requisite facilities for expressing common in-
termediate code enhancements, we first catalog and classify
common structural enhancements.

To determine what constitutes a structural enhancement,
we have reverse-engineered several industrial and research
systems that use bytecode enhancement.2 In addition, we
have also examined the capabilities of two major Java byte-
code engineering libraries Apache BCEL[2] and Javassist
[38].

Structural enhancements are the subset of general pro-
gram transformations that affect the structure of an object-
oriented program, including classes, methods, and fields, as
well as limited changes to method bodies. Structural en-
hancements to method bodies are primarily confined to re-
placing direct field accesses with setter and getter methods
as well as with other wrapper methods.

A more strict definition of structural enhancement is as
follows. Modify a program, confining the set of changes to
the following operations:

• Adding a new class or interface.
• Changing the type of a class or an interface (i.e., changing

the parent interfaces and/or classes)
• Adding a new method or field
• Removing a method or field
• Changing the signature of a method (e.g., adding or re-

moving parameters or changing the return type).
• Changing the type of a field
• Replacing direct field accesses with setter/getter methods

3.2 Semantics of Structural Enhancements
Next we provide a more formal treatment of the program
transformations that constitute the structural enhancement
operations commonly applied to intermediate code.

Figure 5 lists the symbols that we use in describing the
enhancement operations, with the sets of transformed pro-
gram constructs appearing first. The original program con-
sists of a set of classes. During the enhancement, new classes
can be generated and added to the program. In the origi-
nal program, a class can implement some interfaces. An en-
hancer can add new interfaces to the set of implemented in-
terfaces and can also change the super class. Methods and

2 Reverse-engineering these systems is perfectly legal, as they follow an
open-source development model. Reverse- engineering enhanced bytecode
turned out to be more effective than understanding the source code of the
enhancers.

fields can be added to and removed from a class. Finally, ex-
isting methods can serve as templates for other methods. We
refer to this operation as “replication.” For example, a new
wrapper method could be created based on some existing
method–the new method will have the same signature, but a
different name. There are no explicit constructs for chang-
ing a field or a method–this transformation can be expressed
by removing the old version and subsequently adding a new
one.

Figure 6 demonstrates the semantics of structural en-
hancement operations using set operations. Adding new pro-
gram elements to existing ones is described using ∪, the set
union operator. Removing program elements is described us-
ing \, the set difference operator. Replicating program ele-
ments is described using 7→ and ∪, which designate a new
element being created based on some existing element and
added to the set, but the existing element still remaining in
the set.

A set of original classes, C = {c1, c2, . . . , cn}
A set of added classes, C+ = {c+

1 , c+
2 , . . . , c+

n }

A set of original interfaces, I = {i1, i2, . . . , in}
A set of added interfaces, I+ = {i+1 , i+2 , . . . , i+n }

A set of original methods, M = {m1, m2, . . . ,mn}
A set of replicated methods, M ′ = {m′1, m′2, . . . ,m′n}
A set of added methods, M+ = {m+

1 , m+
2 , . . . ,m+

n }
A set of removed methods, M− = {m−1 , m−2 , . . . ,m−n }

A set of original fields, F = {f1, f2, . . . , fn}
A set of added fields, F+ = {f+

1 , f+
2 , . . . , f+

n }
A set of removed fields, F− = {f−1 , f−2 , . . . , f−n }

〈c〉p denotes a class c of program p
〈C〉p denotes a set of classes C of program p
〈i〉c denotes a interface i implemented by class c
〈I〉c denotes a set of interfaces I implemented by class c
〈m〉c denotes a method m of class c
〈M〉c denotes a set of methods M of class c
〈f〉c denotes a field f of class c
〈F 〉c denotes a set of fields F of class c
ext denotes class inheritance relationship
impl denotes interface inheritance relationship

Figure 5. Syntax definition

3.3 SER Language Design
The Structural Enhancement Rules (SER) language is a
declarative, domain-specific language that was designed to
be easy to learn, use, and understand. To show how SER can
serve as an effective medium for expressing intermediate
code enhancements, we introduce it by example.
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AddClass(〈C〉p, 〈C+〉p) = ∪i∈C〈i〉p ∪ ∪j∈C+〈j〉p

AddSuperClass(〈C〉p , 〈C+〉p) = ∪i∈C〈i〉p ext ∪j∈C+ 〈j〉p
RemoveSuperClass(〈C〉p, 〈C−〉p) = ∪i∈C〈i〉p \ ∪j∈C−〈j〉p

AddSuperInterface(〈I〉c , 〈I+〉c) = ∪i∈I〈i〉c impl ∪j∈I+ 〈j〉c
RemoveSuperInterface(〈R〉c, 〈R−〉c) = ∪i∈R〈i〉c \ ∪j∈R−〈j〉c

AddMethod(〈M〉c, 〈M+〉c) = ∪i∈M 〈i〉c ∪ ∪j∈M+〈j〉c
RemoveMethod(〈M〉c, 〈M−〉c) = ∪i∈M 〈i〉c \ ∪j∈M−〈j〉c
ReplicateMethod(〈M〉c) = 〈M〉c 7→ 〈M ′〉c = ∪i∈M 〈i〉c ∪ ∪j∈M ′〈j〉c

AddField(〈F 〉c, 〈F+〉c) = ∪i∈F 〈i〉c ∪ ∪j∈F+〈j〉c
RemoveField(〈F 〉c, 〈F−〉c) = ∪i∈F 〈i〉c \ ∪j∈F−〈j〉c

Field[Get | Set]Replacer(〈F 〉c) = 〈F 〉c 7→ 〈M ′〉c = ∪i∈F 〈i〉c ∪ ∪j∈M 〈j〉c ∪ ∪k∈M ′〈k〉c

Figure 6. Structural Enhancement Operations.

Describing the JDO Enhancement
Figure 7 shows the SER script, which documents the en-
hancements performed by the JDO enhancer, discussed in
Section 2. The script starts with the keyword Program fol-
lowed by the name of the script. SER scripts can use each
other by means of the keyword Using. The body of the
script is delineated by the Begin and End keywords rather
than curly braces. We have deliberately made SER look dif-
ferent from the C family of languages. Another distinctive
feature of SER is not using semicolons to terminate program
statements–each statement is expected to start from a new
line. Each script makes available to the programmer two re-
flective objects, OrgClass and EnhClass, representing the
original class and the enhanced class, respectively. This de-
sign decision is guided by the observation that bytecode en-
hancement either modifies an existing class or generates a
brand new class, using some original class as a template.
In both cases, the program in the enhanced class can be
expressed as a function of the corresponding constructs in
the original class. Each reflective class object has built-in
attributes Name and Type, which represent their name and
class type (i.e., class or interface), respectively. The state-
ment on line 3 expresses that the enhancer will modify the
original class rather than generate a brand new one.

In addition, to the attributes, the reflective class objects
make available to the programmer both accessor and modi-
fier methods. The accessor methods of SER mirror the ones
in the Java Reflection API [19], with two notable excep-
tions. First, SER accessor methods return declarative iter-
ators, which can only be passed as parameters to SER mod-
ifier methods as we discuss later. Second, accessor methods
can accept as parameters Pattern objects, which describe
properties of program constructs. For example, the Pattern
starting on line 5 is named fieldP, and it describes all the
fields or methods that are private. The statement on line
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02 
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Program SPLIT_CLASS 

Begin 

-- field to be split. 

Var Pattern _tmp  

   Begin 

name = “y” 

    End 

Var Iterator field2SplitIter  

= OrgClass.Fields(_tmp) 

 

Module SPLIT_MAIN_PARTITION 

Begin 

 EnhClass.Name = OrgClass.Name 

-- add all fields from the original class 

Var fieldIter1 = OrgClass.Fields() 

EnhClass.AddField(fieldIter1) 

-- remove the fields that’ll go to  

-- the secondary partition. 

EnhClass.RemoveField(field2SplitIter) 

....... 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
01 

02 

03 

04 

 

05 

06 

07 

08 

09 

 

10 

11 

12 

 

13 

 

14 

Program JDO Using SUPER_JDO_SER 

Begin 

EnhClass.Name = OrgClass.Name 

EnhClass.AddInterface 

("javax.jdo.spi.PersistenceCapable") 

Var Pattern fieldP  

Begin 

modifiers = "private" 

    End 

Var Iterator fieldIter =  

OrgClass.Fields(fieldP) 

-- add method that’ll have prefix,  

-- ‘jdoSet’ or ‘jdoGet’. 

EnhClass.AddMethod 

(FieldSetReplacer("jdoSet", fieldIter))

EnhClass.AddMethod 

(FieldGetReplacer("jdoGet", fieldIter))

End 

 

01 

02 

03 

04 

05 

06 

07 

08 

09 

10 

11 

12 

13 

14 

15 

16 

Program REMOTING 

Begin 

Module REMOTING_PROXY 

Begin 

Var Pattern fieldP 

Begin 

    modifiers = "private" 

    type = REMOTING_IFACE.EnhClass.Name 

    name = "obj" 

  End 

EnhClass.AddField(fieldP) 

....... 

End 

 

Module REMOTING_IFACE 

Begin 

....... 

Figure 7. SER Script for the JDO Enhancement.

9 uses the fieldP Pattern to obtain an Iterator of all
the private fields in the original class. SER Patterns pro-
vide records describing every existing property of a program
construct, including its name, type, modifiers, and signature.
A Pattern can include any combination of records, as nec-
essary.

The SER modifier methods can only be applied to the
EnhClass reflective object. SER provides modifier meth-
ods for adding and deleting all the language constructs,
including constructors, fields, and methods. Changing a
construct can be expressed by removing it first and then
adding a new construct back. The statement on line 4 doc-
uments the enhanced class modified to implement interface
PersistenceCapable. Every modifier method can accept
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Program SPLIT_CLASS 

Begin 

-- field to be split. 

Var Pattern _tmp  

   Begin 

name = “y” 

    End 

Var Iterator field2SplitIter  

= OrgClass.Fields(_tmp) 

 

Module SPLIT_MAIN_PARTITION 

Begin 

 EnhClass.Name = OrgClass.Name 

-- add all fields from the original class 

Var fieldIter1 = OrgClass.Fields() 

EnhClass.AddField(fieldIter1) 

-- remove the fields that’ll go to  

-- the secondary partition. 

EnhClass.RemoveField(field2SplitIter) 

....... 
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Program JDO Using SUPER_JDO_SER 

Begin 

EnhClass.Name = OrgClass.Name 

EnhClass.AddInterface 

("javax.jdo.spi.PersistenceCapable") 

Var Pattern tmp  

Begin 

modifiers = "private" 

    End 

Var Itererator fieldIter =  

OrgClass.Fields(tmp) 

-- add method that’ll have prefix,  

-- ‘jdoSet’ or ‘jdoGet’. 

EnhClass.AddMethod 

(FieldSetReplacer("jdoSet", fieldIter))

EnhClass.AddMethod 

(FieldGetReplacer("jdoGet", fieldIter))

End 
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Program REMOTING 

Begin 

Module REMOTING_PROXY 

Begin 

Var Pattern fieldP 

Begin 

    modifiers = "private" 

    type = REMOTING_IFACE.EnhClass.Name 

    name = "obj" 

  End 

EnhClass.AddField(fieldP) 

....... 

End 

 

Module REMOTING_IFACE 

Begin 

....... 

Figure 8. SER script for the Remoting enhancement.

an iterator as a parameter, and then every element repre-
sented by the iterator will be added. Methods and fields must
be explicitly added to the EnhClass object, even if the en-
hancer modifies an existing class represented by OrgClass.
A shorthand notation EnhClass = OrgClass represents
copying all the language constructs of the original class to
the enhanced class. This shorthand is useful when the en-
hanced class differs from the original class only by a small
margin.

SER also provides special constructs for replacing direct
field accesses with setter and getter methods. To that end,
SER provides methods FieldSetReplacer and Field-
GetReplacer, respectively, which can be taken as parame-
ters to the modifier method AddMethod. These methods take
a prefix for the getter or setter method names and an iterator
representing the fields, accesses to which are replaced. The
statements on lines 12 and 13 express the rule that JDO re-
places direct field accesses with setter and getter methods,
whose names start with “jdoSet” and “jdoGet”, respectively.

Describing the Remoting enhancement
A SER program can be comprised of multiple modules,
which can refer to each other’s reflective objects. A standard
SER program is likely to contain multiple modules, each
representing the enhancements applied to a different class.

Figure 8 shows a fragment of an enhancement that trans-
forms direct references into proxy references in order to en-
able their execution on a remote machine. In this enhance-
ment, used in several research systems [32, 31, 46], for each
original class, proxy, implementation, and interface classes
are generated. The Pattern starting on line 5 refers to the
type of the EnhClass of REMOTING IFACE, which is an-
other module in the same script. In this case, the Name of
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Program HIBERNATE Using SUPER_HIBERNATE_SER 

Begin 

-- class name that’ll have new class name  

-- containing ‘EnhancerByCGLIB’. 

EnhClass.Name =  

OrgClass.Name + “*EnhancerByCGLIB*” 

EnhClass.AddInterface 

("org.hibernate.proxy.HibernateProxy")

EnhClass.AddInterface 

("net.sf.cglib.proxy.Factory") 

EnhClass.AddSuperclass(OrgClass.Name) 

 

Var Pattern publicP  

Begin 

modifiers = “public” 

End 

Var Iterator methodIter =  

OrgClass.Methods(publicP) 

Var Pattern nameP 

Begin 

name = “CGLIB*” + name 

End 

-- add method that’ll have new method name 

-- containing ‘CGLIB’ 

EnhClass.AddMethod 

(methodIter.CreateNewIterator(nameP)) 

End 

 Figure 9. SER Script for the Hibernate Enhancement.

the EnhClass in the other module represents the type of the
field added on line 11.

Describing the Hibernate Enhancement
As an example of a more advanced feature of SER, consider
the script that appears in Figure 9. This description captures
how Hibernate [6], another widely-used commercial persis-
tence architecture uses bytecode enhancement. Unlike JDO,
Hibernate does not modify persistent classes; instead, it cre-
ates proxy classes that extend the original persistent classes,
as is expressed by the statement on line 8. Furthermore, the
exact name of the created proxy classes as well as the names
of their methods start with hard-coded prefixes (“Enhancer-
ByCGLIB”, “CGLIB”), appended with randomly-generated
integers.

To express that the names of proxy methods are based on
the names of the corresponding methods in the original per-
sistent classes, SER introduces the ability to create a deriva-
tive iterator, given an iterator and a pattern. On line 14, an
Iterator describing the public methods in the OrgClass is
obtained. Then on line 15, a new Pattern describes adding
the prefix CGLIB∗ to the name of a program construct. Fi-
nally, on line 21, the AddMethod method takes as its pa-
rameter the return value of method CreateNewIterator,
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Program SPLIT_CLASS 

Begin 

-- field to be split. 

Var Pattern _tmp  

   Begin 

name = “y” 

    End 

Var Iterator field2SplitIter  

= OrgClass.Fields(_tmp) 

 

Module SPLIT_MAIN_PARTITION 

Begin 

 EnhClass.Name = OrgClass.Name 

-- add all fields from the original class 

Var fieldIter1 = OrgClass.Fields() 

EnhClass.AddField(fieldIter1) 

-- remove the fields that’ll go to  

-- the secondary partition. 

EnhClass.RemoveField(field2SplitIter) 

....... 
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Program JDO Using SUPER_JDO_SER 

Begin 

EnhClass.Name = OrgClass.Name 

EnhClass.AddInterface 

("javax.jdo.spi.PersistenceCapable") 

Var Pattern tmp  

Begin 

modifiers = "private" 

    End 

Var Itererator fieldIter =  

OrgClass.Fields(tmp) 

-- add method that’ll have prefix,  

-- ‘jdoSet’ or ‘jdoGet’. 

EnhClass.AddMethod 

(FieldSetReplacer("jdoSet", fieldIter))

EnhClass.AddMethod 

(FieldGetReplacer("jdoGet", fieldIter))

End 
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Program REMOTING 

Begin 

Module REMOTING_PROXY 

Begin 

Var Pattern fieldP 

Begin 

    modifiers = "private" 

    type = REMOTING_IFACE.EnhClass.Name 

    name = "obj" 

  End 

EnhClass.AddField(fieldP) 

....... 

End 

 

Module REMOTING_IFACE 

Begin 

....... 

Figure 10. SER script for ‘split a class to minimize the
amount of network transfer’ enhancement.

which creates a new iterator by applying a pattern, nameP,
to an iterator, methodIter. In effect, the one-liner on line
21 declaratively expresses that the public methods in the
newly-generated EnhClass will have names that start with
“CGLIB”, followed by some random number, and ending
with the corresponding method’s name in the OrgClass.
For example, of a persistent class has a method named foo,
the generated proxy’s corresponding method could be named
CGLIB123foo.

In essence, SER provides programming support for ma-
nipulating sets of methods, constructors, and fields. An it-
erator representing a set of class constructs can be obtained
based on a pattern. SER has a functional feel in that SER
does not allow changing iterators, but rather makes it possi-
ble to derive new iterators by applying a pattern to an exist-
ing iterator. Also, program constructs can only be added to
or removed from EnhClass, thus simplifying the API.

Describing the Split Class enhancement
Consider the script depicted in Figure 10, which describes
one of the enhancements required to split a class into parti-
tions, so that only the fields used by a remote computation
be transferred across the network. This enhancement entails
selecting a subset of fields of the original class and placing
them into a newly created class, representing the primary
partition, which will be sent across the network. In SER,
the selection of the required fields is accomplished by first
adding to EnhClass all the fields contained in the original
class (Line 15). And then the fields intended for the sec-
ondary partition are removed (Line 18).

SER language summary
Figure 11 summarizes the SER programming constructs.
The language follows a minimalistic design, introducing
new constructs only if necessary, with the goal of making
it easier to learn and understand. SER conveys the enhance-
ments declaratively and does not have explicit conditional
or looping constructs. As a result, a SER script does not
contain a sufficient level of detail to be used as input for a
bytecode enhancer, but it is descriptive enough to document
the enhancements for source-level programming tools as we
discuss in Section 4.

In validating the usability of SER, we have documented
four enhancements used in production and research systems:
JDO [37], Hibernate [6], Remoting [46], and Split Class
[8, 47]. The scripts describing these enhancements in their
entirety can be downloaded from the project’s website [40].
In the discussion above, we have presented only fragments
of these scripts to demonstrate various language features of
SER. SER is an interpreted language, and its interpreter can
be integrated into existing programming tools. We discuss
the SER interpreter’s design In Section 3.4, and how we
used the interpreter to enhance two existing source-level
programming tools in Sections 4.2 and 4.3.

3.4 SER language interpretation
The purpose of documenting enhancements with a SER
script is to provide a bi-directional mapping between the
source code of a class and its enhanced bytecode represen-
tation. The SER interpreter can take either a Java source file
or a bytecode class file as parameters, corresponding to the
original or enhanced versions of a class, respectively. An-
other required parameter is the SER script associated with
the input file. Although it would be possible for the inter-
preter to search for SER scripts based on the input files’
names, in the current implementation it uses a configuration
file that specifies which SER files work with which Java or

SER
Script

Org.
Java
Src

Enh.
Byte‐
code

Enh.
Byte‐
Code
Info

Org.
Src

Code
Info

SER Interpreter

Src. code
Processor

Bytecode
Processor

Symbolic
Undo

Symbol
Table

SER Script Parser

Figure 12. SER Interpreter.
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Program script-name1 [Using script-name2]
Begin
[Module module-name Begin...End]
...

End
A SER script can include other scripts and can be divided into modules.

OrgClass / EnhClass
Reflective class objects: original and enhanced class.

Var Pattern pattern-name
Begin
property=‘‘value’’

...

End
Patterns for matching program constructs, based on their properties.

Var Iterator iterator-name
An iterator for a collection of program constructs.

Constructors/Methods/Fields([pattern-name])
Return a collection of program constructs, [possibly matching pattern-name]

Field[Get/Set]Replacer(prefix, iterator-name)
Replace direct accesses to the fields specified by iterator-name

with getter/setter methods starting with prefix, and return them as an iterator

iter-name.CreateNewIterator(pattern-name)
Create a new iterator by applying pattern-name to iter-name

[Add|Remove]Interface/Superclass/Method/Field([iterator-name|pattern-name])
Add or remove program elements specified by iterator-name or pattern-name to or from EnhClass

Figure 11. SER language constructs.

class files. If the SER file cannot be located, the interpreter
signals an error.

When processing a SER script, the interpreter parses the
main script and all the included scripts specified with the
Using keyword. Figure 12 demonstrates the interpreter’s
process flow, which differs depending on the type of the
input file used to parameterize the interpreter.

If a Java source file, containing the original source code,
is passed to the interpreter, the file is processed using the
Eclipse JDT API [15]. Then the enhancement information
processed by the SER parser is combined with the one of the
original Java source. The result is stored into a symbol table
module that implements a quick lookup mechanism capable
of retrieving, in constant time, all the enhancements applied
to a given program construct. Finally, an external API to the
symbol table makes it possible to retrieve the enhancement
information. In summary, the API uses JDT AST constructs
as lookup keys to retrieve the enhancements associated with
them. For example, sending a class object as a parameter will
return a list of lists, containing the methods, constructors,
and fields that the bytecode enhancer adds to this class. Of
course, some of these lists could be empty.

If a binary class file, containing the enhanced bytecode,
is passed to the interpreter, the file is processed using the
Javassist library [38]. Then the enhancement information
processed by the SER parser is combined with the one of the
enhanced bytecode. The result is stored in a format that we
call Symbolic Undo, which is a collection of instructions that
can be used to map every enhancement back to the original
source code. We will detail the exact format of Symbolic
Undo when we discuss a symbolic debugger for enhanced
programs that we implemented as a case study.

4. Case Studies: Enhancements-Aware
Programming Tools

To evaluate the applicability of our approach, we have aug-
mented two existing source-level programming tools with an
awareness of bytecode enhancements. Specifically, we have
added a new browsing view to a widely-used source code
editor to present the bytecode enhancements applied to the
program constructs of the displayed compilation unit. We
have also created a new debugging architecture that enables
a symbolic debugger running an enhanced program to dis-
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play the original source code, undoing the enhancements at
runtime.

4.1 Example Applications
To check the effectiveness of the enhancements-aware tools,
we have applied both of them to four different applications,
each using a different bytecode enhancement scheme. The
first two applications use transparent persistence architec-
tures, albeit with drastically different enhancement strate-
gies. While JDO modifies persistent classes, Hibernate gen-
erates proxy classes that inherit from them. Another dif-
ference between JDO and Hibernate is the time when the
enhancement takes place: while JDO enhances persistent
classes as a static post-compilation step, Hibernate generates
proxy classes at class load time.

Two other applications come from the domain of dis-
tributed computing. The first application performs an RMI
Remoting enhancement, in which the original, local class
is rewritten into a remote implementation class, and new
proxy and RMI remote interface classes are generated. This
rewrite is performed by several systems designed to make
distributed computing in Java more intuitive, both at the
source level such as JavaParty [33], and transparently at the
bytecode level such as J-Orchestra [46].

Another enhancement from the distributed computing do-
main modifies the structure of a data class to optimize the
network transfer of its instances. Class fields are divided into
a set that is used by a remote server and the one that is not,
and the class is rewritten into two partitions containing those
sets, using the Split Class binary refactoring [47]. Finally,
the partition to be transferred across the network is made to
implement Serializable to enable the marshaling of its
instances. Because the rewrite adds a new capability, it is
classified as an enhancement.

We expressed each enhancement scheme in SER. For the
transparent persistence architectures, we reverse-engineered
the enhancements by comparing the original and enhanced
versions of multiple application classes. In the distributed
application cases, we simply documented in SER the trans-
formations informally described in the respective research
publications [46, 47].

4.2 Source Editor with Zoom-in-on-enhancements
View

Intermediate code enhancement introduces new functional-
ity behind the scenes, transparently to the programmer. Fur-
thermore, leaving the programmer unaware of the specific
changes applied directly to the bytecode has been recog-
nized as a key benefit of the technique—it improves sep-
aration of concerns, with the programmer being responsi-
ble for business logic only. Nevertheless, as we argue next,
making the bytecode enhancement information accessible to
the programmer can yield software engineering benefits. For
example, bytecode enhancers follow a certain convention in
choosing the names of program constructs that they add. In

Figure 13. Documentation for the JDO Enhancement.

Figure 14. Documentation for the Hibernate Enhancement.

particular, JDO starts the names of all the added setter/getter
methods with prefix jdoSet/Get. There is nothing, how-
ever, that would prevent the programmer from writing a
method starting with these prefixes, thus creating a difficult
to diagnose name clash. By examining the enhancements
that will be applied to a class, the programmer can quickly
identify such inappropriately-named program constructs. As
another example, consider the restriction of Hibernate of
not being able to persist instances of final classes and
any classes that have final methods. This restriction seems
completely arbitrary, unless the programmer can examine
how Hibernate enhances the persistent classes. This restric-
tion becomes immediately apparent, as soon as the pro-
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grammer observes that persistence-enabling proxies gener-
ated by Hibernate extend the persistent classes. As yet an-
other example, certain performance bottlenecks in the en-
hanced code can be identified by examining the enhance-
ments. For example, the use of RMI in remoting enhance-
ments can be detrimental to performance in some network-
ing environments. As a final example, some bugs in meta-
data, which describes which program constructs are to be
enhanced, can be more easily identified if the enhancement
code is visible.

Figure 15. Documentation for the Proxy class Enhance-
ment.

Figure 16. Documentation for the Split class Enhancement.

In this case study, we have integrated the SER interpreter
with an Eclipse Java code editor. Whenever the programmer

selects a class whose bytecode is subject to enhancement, a
new view pops up displaying an abbreviated description of
the enhancements. We call this view window a zoom-in-on-
enhancements view. Following the Eclipse tooling strategy,
the view is visible only if activated, so if they so choose, the
programmers are free to remain oblivious about the nature
and specifics of enhancements. In the case if the original
class is modified at the bytecode level, the enhancements are
shown as special comments in the main editor. Since not all
the information about the enhancements in known at source
edit time, the enhancements cannot be expressed in source
code form. If a single class is associated with several classes
created during an enhancement, each of the created classes
is displayed in a separate view.

Figures 13, 14, 15, and 16 show the screen-shots of the
zoom-in-on-enhancements views, which document the en-
hancements used in the example applications described in
Section 4.1. The views have been integrated with Eclipse.

Figure 17 presents a collaboration diagram that shows
the backend processing triggered by the source editor to
launch a zoom-in-on-enhancements view. When the SER in-
terpreter’s main module receives a Java source file as input,
the corresponding SER script is identified (using a configu-
ration file), loaded, and parsed. The interpreter employs sev-
eral abstract syntax tree walkers (using Visitors) to traverse
the Java program, collecting the information about how the
general enhancement instructions in the SER script will af-
fect the specific program constructs (e.g., fields, methods,
constructors, etc.). The collected enhancement information
is stored in a symbol table for fast searching and retrieval. Fi-
nally, the interpreter compiles a complete documentation of
the enhancements, which it uses to parameterize the zoom-
in-on-enhancement viewer.

4.3 A Symbolic Debugger for Enhanced Intermediate
Code

Because intermediate code enhancements are not repre-
sented at the source code level, source-level debugging of
such enhanced bytecode is nontrivial. Application code is
enhanced to be able to interact with a framework, and the
enhancements cannot be simply turned off to facilitate de-
bugging. Thus, tracing, analyzing, and fixing flawed pro-
grams whose bytecode has been enhanced with a standard
debugger is misleading—the debugger will show all the en-
hanced program’s code faithfully, both the original logic and
the transparently introduced enhancements. From the de-
bugging perspective, enhancements obfuscate the original
source code’s logic.

The debugging of transparently enhanced programs can
be facilitated by making a symbolic debugger aware of the
enhancements. The debugger could execute an enhanced
program, but report the source code information pertaining
to the original source code. As our proof of concept, we have
created a new debugging architecture that leverages the fa-
cilities offered by the Java Platform Debugger Architecture
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Figure 17. The zoom-in-on-enhancement view collaboration diagram.

(JPDA) [42]. We then applied the new architecture to aug-
ment the capabilities of the standard debugger distributed
with Sun’s JDK with an awareness of the enhancements in
debugged programs.

Figure 18 demonstrates our new debugging architecture,
which integrates a SER interpreter. When debugging en-
hanced bytecode, the debugger also takes the SER descrip-
tion of the enhancements as input. The integrated SER in-
terpreter then computes symbolic undo instructions that map
the enhanced bytecode to the original source code.

JPDA  Architecture

Enhanced
Bytecode

SER
Script

Symbolic Debugger

Mapping
Instruction

SER  Interpreter

JDI Interface

Figure 18. Debugging transparently enhanced programs.

To reverse the enhancements that add and change pro-
gram constructs, our debugging architecture introduces the
skip and reverse symbolic undo instructions, which can be
applied to classes, methods, fields, and entire packages. The
debugger organizes the symbolic undo instructions as a hier-
archical collection through the “contains” relationship (i.e.,
packages contain classes, classes contain methods, etc.). All
the instructions are sorted in the order of their qualified
full names, so that they could be efficiently located through
binary search in logarithmic time. The debugger executes
the symbolic undo instructions on the encountered enhance-
ments, so that the information reported to the user pertains
to the original programmer written code.

The symbolic undo instructions work as follows. The
skip instruction suppresses the output of those program el-
ements that, in the original version, have not been repre-

sented in source code. Skip operations raise a special pur-
pose debugging event whose semantics is similar to the reg-
ular debugger’s step event; however, the output associated
with handling the event is suppressed. The reverse instruc-
tion changes the name of a program construct displayed
through the standard debugging output. For example, if an
enhancer has changed the name of a class, a reverse instruc-
tion will direct the debugger to report the class’s original
name.

From the user’s perspective, our symbolic debugger is a
plug-in replacement for the standard JDK command-line de-
bugger, providing the capabilities to step through the code,
set breakpoints, print variable values, etc. The implemen-
tation leverages the Java Platform Debugger Architecture
(JPDA)[42], which consists of several layers of protocols
and interfaces provided by the Java Virtual Machine. The
functionality required for symbolically undoing transparent
enhancements is implemented by inserting additional trans-
lation logic to the standard operations used by debuggers
based on JPDA. JPDA includes a client interface for access-
ing the debugging services, which are connected to the JVM
through an event queue. To receive events from the queue,
the client must set a breakpoint by calling an API method.
Triggering a breakpoint delivers a debugging event to an
event handler method that can access all the breakpoint’s in-
formation, including its location, value of variables,etc.

Event Handler ThreadReference

SERInterpreter SymbolicDebugger SymbolicUndoModule

Event Queue

5: loadMapStructure

6:return ‘MapStructure’

1:remove

2:return ‘eventSet’

3:setCurrentThread

4:vmInterrupted

7:undoInstruction

Figure 19. The symbolic debugger’s collaboration diagram.
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Figure 20. Debugging enhanced code: Debugger with an enhancements awareness vs. JDB

Events are also triggered when the step command moves
the debugger to the next source code line. The values of
member and local variables can be printed at any point af-
ter a breakpoint has been triggered or the step command has
been executed. Our symbolic debugger intercepts each de-
bugging event and executes a corresponding symbolic undo
instruction, thus mapping the enhanced bytecode back to the
original version of the code.

Figure 19 shows a collaboration diagram that details
the runtime architecture of our symbolic debugger. The
diagram depicts the main events driving the execution of
our symbolic debugger. The main module of the debugger,
SymbolicDebugger, manages the symbolic undo informa-
tion, using the services of the EventHandler. The Even-
tHandler receives debugging events from the JPDA Even-
tQueue and delegates them to SymbolicDebugger by call-
ing vmInterrupted. SymbolicDebugger then evaluates the re-
ceived event against the symbolic undo information, which
can be generated on demand, and symbolically undoes any
encountered enhancement. By using JPDA, which is thread-
aware, our debugger can effectively handle multi-threaded
programs.

As a demonstration of the utility of the new debugger, we
inserted a bug to the example mortgage eligibility applica-
tion presented in Section 2. We then traced the bug using
both our augmented debugger and JDB. In our experiences,
the enhancements introduced by the JDO framework com-
plicate the debugging process. Figure 20 shows two screen
shots, corresponding to debugging with our symbolic debug-

ger and JDB, respectively. Points marked as (1) and (3) mark
the start of the traced method, in their respective debug-
ger’s displays. Individual debugging steps are circled. Point
(2) shows the original code as displayed by our debugger.
Points (4) and (5) show the bytecode instructions that would
be skipped and reversed by our debugger, respectively. Our
experience suggests that our debugger has the potential to
become an effective aid in locating bugs in enhanced pro-
grams. Nevertheless, only a controlled user study can con-
firm the veracity of this conjecture. We plan to conduct such
a study as future work.

5. Related Work
Our approach to augmenting source-level programming
tools with an awareness of intermediate code enhancements
is related to several research areas including the debugging
of transformed code, program transformation languages, and
structural program differencing.

5.1 Debugging Transformed Code
Debugging Optimized Code. Modern compilers have pow-
erful code optimization capabilities. Compilers optimize
code via performance-improving transformations. However,
because compilers transform an intermediate representation
of a program, the relationship between such a transformed
representation and the original source code of a program be-
comes obscured. Specifically, performance-improving trans-
formations reorder and delete existing code as well as insert
new code. Thus, debugging optimized code is hindered by
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the changes in data values and code location. A significant
amount of research aims at the problem of debugging opti-
mized code [20, 21, 7, 27, 16, 9, 18]. The proposed solutions
enable source-level debuggers to display the information
about an optimized program, as if the original (unoptimized)
version of the code was being debugged.

The techniques for debugging optimized code deal with
the challenges arising as a result of optimizing compilers
transforming intermediate code to improve performance.
While these transformations can be quite extensive, they
are usually confined to method bodies and do not alter
the debugged program’s semantics. By contrast, structural
enhancement aims at larger-scale program transformations
that can add new classes and interfaces to a program. Thus,
source level debugging of structurally enhanced programs
requires different debugging techniques such as the pre-
sented symbolic undo.

Debugging for AOP. Aspect-Oriented Programming
(AOP) [24] can be viewed as an enhancement technol-
ogy, and several approaches aim at debugging support for
AOP [14, 34, 22]. However, debugging aspect-oriented pro-
grams is different from debugging transparently enhanced
programs. AOP provides a domain-specific language for
programming enhancements such as AspectJ [23], and an
AOP debugger traces the bytecode generated by AspectJ to
its aspect source file. By contrast, transparent bytecode en-
hancements have no source code representation. Thus, the
approaches to debugging AOP software cannot be applied to
debugging transparently enhanced programs.

In addition, AspectJ as a language cannot express all the
structural enhancement transformations. For example, it is
impossible to express in AspectJ that the name of a program
construct (e.g., class, field, or method) be changed. AspectJ
does not provide facilities for removing a program construct,
something that program enhancers need to do on a regu-
lar basis. For example, the split class enhancement moves
fields from a class to another class, thus removing them from
the original class. Finally, program enhancers often gener-
ate new classes and interfaces and reference them in the en-
hanced program. AspectJ is not designed for expressing how
to generate a new class, whose structure is based on some ex-
isting program construct. Thus, we could not have used As-
pectJ instead of SER to represent structural enhancements.

5.2 Program Transformation Languages
SER is a domain-specific language for expressing how byte-
code is enhanced structurally. Other domains also feature
domain-specific languages for expressing program transfor-
mations.

JunGL [48], a domain-specific language for refactor-
ing, combines functional and logic query language idioms.
JunGL represents programs as graphs and manipulates refac-
torings via graph transformations. The language provides
predicates to facilitate the querying of graph structures.

JunGL uses demand-driven evaluation to prevent scripts
from becoming prohibitively complex.

Sittampalam et al. [39] specify program transformations
declaratively and generate executable program transformers
from specifications. The Prolog language is augmented with
facilities for incremental evaluation of regular path queries.
The augmented language is used to specify program trans-
formations by expressing a program and its transformed
counterpart. The transformations can be combined with a
strategy script, based on Stratego [49], to specify the traver-
sals of a program and the order of the transformations.

Whitfield and Soffa’s code-improving transformation
framework consists of a case tool and a specification lan-
guage [50]. The specification language, called Gospel, de-
clares program transformations; the case tool, called Gene-
sis, generates a program transformer given a Gospel speci-
fication. A Gospel script consists of a declaration section,
containing variables declarations, a precondition section,
containing code pattern descriptions and control dependence
conditions, and an action section, containing a set of trans-
formation operations.

The Coccinelle [41] tool introduces the SmPL language
for locating and automatically fixing bugs. SmPL programs
specify how in response to some runtime condition, a pro-
gram should be transformed to fix a bug and log the changes.

FSMLs [10] is a domain specific modeling language for
describing the framework-provided knowledge, including
framework instantiation, procedures for implementing in-
terfaces, and proper usage of framework services. FSMLs
bears similarity to our approach in its ability to provide a bi-
directional mapping between framework features and their
abstract representation.

JAVACOP [1] introduces a declarative rule language
for expressing programmer-defined types, called pluggable
types. The types are described as user-defined rules, which
JAVACOP uses for transforming the abstract syntax tree of a
program.

Because these program transformation languages were
designed specifically for their respective domains, we could
not have used any of them for our purposes. The main de-
sign goal of our SER language was to be able to express
structural enhancements used by bytecode enhancers declar-
atively and to provide special constructs for domain-specific
transformations such as adding getter/setter methods.

5.3 Program Differencing
SER scripts describe generalized structural program differ-
ences. Program differencing is an active research area and
several new differencing algorithms have been proposed re-
cently.

Previtali et al.’s technique [35] generates version differ-
ences of a class at bytecode level. Their algorithm produces
the information on added, removed, or modified classes.
Dmitriev incorporates program change history into a Java
make utility that selectively recompiles dependent source

Accepted to OOPSLA 2009 14 2009/5/14



files [12]. The JDIFF [3] algorithm identifies changes be-
tween two versions of an object-oriented program using an
augmented representation of a control-flow graph. M. Kim
et al. [25] infer generalized structural changes at or above
the level of a method header, represented as first-order re-
lational logic rules. These techniques could be leveraged to
generate SER scripts automatically by generalizing the dif-
ferences between the original and enhanced versions of mul-
tiple classes.

Our own Rosemari system [45] generalizes structural dif-
ferences between two versions of a representative example.
Such examples are usually supplied by framework vendors
to guide the developers in upgrading their legacy applica-
tions from one framework version to another. Rosemari fea-
tures a DSL for describing program transformations, but can
be retargeted to present structural changes in SER instead.

5.4 Symbolic Execution
The idea of symbolic undo, used in implementing our de-
bugger, is influenced by symbolic execution [26], which an-
alyzes a program by executing it with symbolic inputs, but
without actually running it. By analogy, our symbolic undo
technique enables source level debugging of enhanced byte-
code by mapping it back, via symbolic operations, to its orig-
inal source code, also without affecting the program’s exe-
cution.

6. Future Work
The initial evaluation results of our approach have been pos-
itive. To demonstrate the effectiveness of our approach, we
have conducted two case studies. Specifically, we have aug-
mented two source-level programming tools with enhance-
ment-awareness, so that the tools could handle programs that
use four different bytecode enhancement strategies.

As future work, we plan to conduct user studies to evalu-
ate the value of our approach for programmers with different
levels of expertise. One such study could evaluate whether a
symbolic undo debugger is more effective than a regular de-
bugger in helping the programmer to locate and fix bugs.
Another study could evaluate the value of integrating the en-
hancement information with a programming editor.

We plan to create a debugger for SER scripts. Although
the declarative nature of SER scripts makes it easier to en-
sure their correctness, bugs still can be introduced, particu-
larly if a SER script is developed by someone other than a
framework developer. Having a SER debugger is likely to
improve the usability of our approach.

We plan to extend our approach to programs that have
been transparently enhanced more than once, possibly by
different enhancers. For example, the same application can
use multiple frameworks, each enhancing intermediate code
in its own way.

Bytecode enhancement could add functionality in lan-
guages other than the host language, including query lan-

guages such as SQL or Datalog. Our approach would have
to be extended to add the enhancements-awareness to pro-
gramming tools handling multi-language applications.

There could be potential benefit in synthesizing the
source code representation of bytecode-only enhancements.
To that end, the SER interpreter would have to be integrated
with a decompiler that is enhancements-aware. The success
of this approach would mainly depend on the decompiler’s
efficiency and precision.

Generating SER scripts automatically will reduce the
framework programmer’s effort and make our methodology
more appealing to the average programmer. A promising ap-
proach would require generalizing program differencing, a
target of several recent research efforts [25].

Finally, we would like to make our symbolic debugger
available as an Eclipse IDE plug-in.

7. Conclusions
This paper has argued about the value of enhancing source-
level programming tool with an awareness of transparent
program transformations. To enable such awareness, we
have introduced SER, a declarative language that concisely
describes structural enhancements. To validate our approach,
we have augmented two existing source-level programming
tools with an awareness of bytecode enhancement. We have
also expressed in SER four enhancement strategies followed
by different enhancers and used our augmented program-
ming tool to handle the enhanced programs. As part of en-
hancing a source level debugger, we have introduced a new
debugging architecture that makes it possible to calculate
reverse-mapping instructions based on a SER specification.

Bytecode enhancement has already entered the main-
stream of enterprise software development, and future en-
hancers are likely to transform programs in even more com-
plex ways. As a result, source code alone will become even
less sufficient in presenting a realistic picture about the func-
tionality of a program. Our approach of making program-
ming tools aware of bytecode enhancements has the poten-
tial to address this problem, and help programmers enjoy
the benefits of transparent bytecode enhancement without
suffering any of its disadvantages.

Availability
All the software described in the paper is available from:
http://research.cs.vt.edu/vtspaces/ser/.
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