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Abstract—The applicability of the microservice architecture
has extended beyond traditional web services, making steady
inroads into the domains of IoT and edge computing. Due
to dissimilar contexts in different execution environments and
inherent mobility, edge and IoT applications suffer from low
execution reliability. Replication, traditionally used to increase
service reliability and scalability, is inapplicable in these resource-
scarce environments. Alternately, programmers can orchestrate
the parallel or sequential execution of equivalent microservices—
microservices that provide the same functionality by different
means. Unfortunately, the resulting orchestrations rely on paral-
lelization, synchronization, and failure handing, all tedious and
error-prone to implement. Although automated orchestration
shifts the burden of generating workflows from the programmer
to the compiler, existing programming models lack both syntactic
and semantic support for equivalence. In this paper, we enhance
compiler-generated execution orchestration with equivalence to
efficiently increase reliability. We introduce a dataflow-based
domain-specific language, whose dataflow specifications include
the implicit declarations of equivalent microservices and their
execution patterns. To automatically generate reliable workflows
and execute them efficiently, we introduce new equivalence
workflow constructs. Our evaluation results indicate that our
solution can effectively and efficiently increase the reliability of
microservice-based applications.

I. INTRODUCTION

Service-oriented software development has embraced the
microservices architecture [4], dividing a complex software
system into coherent and lightweight microservices, each of
which performing a cohesive business function. Although
traditionally the microservice architecture is used mainly for
composing web services/applications[17], emerging applica-
tion domains, including IoT and edge computing, have started
to increasingly apply this architecture as well[23], [27].

If different microservices fulfill the same application re-
quirement, these microservices provide equivalent functionali-
ties that can be used in place of each other. Known application
patterns that use equivalence include improving reliability via
fail-over and reducing latency via speculative parallelism. In
the realm of web applications, service equivalence has been
applied to select services: choose the one with the optimal
QoS features from its equivalent set [26]. Little prior research
has focused on simultaneously executing multiple services to
improve reliability, as web services are already quire reliable
and the additional costs of simultaneous executions cannot be
justified by the expected reliability improvements [11].

Unlike web-based microservices, the ones executed in IoT
and edge environments often suffer from partial failures

and performance bottlenecks, as is expected for distributed
execution environments with naturally dynamic and volatile
resources. This work adapts the microservice architecture
for such unreliable execution environments by systemically
supporting the execution equivalence in microservice-based
distributed applications.

The support for equivalence in existing microservice-based
programming models [19], [13], [15] is limited: they either
cannot explicitly express equivalent microservices or cannot
efficiently execute them (i.e., minimize the resources con-
sumed by executing workflows containing equivalent microser-
vices). Without intuitive programming support for equivalence,
a non-trivial development effort is required to cost-efficiently
increase the reliability of a microservice-based application.

In this paper, we describe a dataflow-based programming
model that adds support for equivalence in orchestrations
of microservice-based applications. Our programming model
extends the dataflow programming pattern in [13]: program-
mers declaratively specify microservices and their dataflow
relationships; the compiler automatically generates a workflow
that schedules the execution plan for these microservices,
with different execution strategies expressed as workflow
constructs; and the runtime steers the execution of microser-
vices based on the workflow and their execution results. In
particular, we extend the dataflow specifications and work-
flow constructs with support for equivalent microservices,
and provide rules to generate and execute such workflows.
Our evaluation demonstrates that our solution simplifies the
expression of equivalent functionalities and suites particularly
well for adapting distributed executions to dynamic contexts.

As a summary, the contribution of this paper is three-fold:
• We introduce a dataflow-based microservice orchestration

language that explicitly supports execution equivalence.
• We introduce workflow constructs for executing equiva-

lent microservices that provide a fine-grained control over
the life cycle of microservice execution.

• Through case studies, we demonstrate how our solution
can be applied to develop real applications, and how the
resulting workflows can increase their reliability cost-
efficiently. We also show that our solution outperforms
prior approaches in striking the right trade-offs between
reliability improvements and resource consumption.

The rest of this paper is organized as follows: Section
II introduces the work’s background. Section III analyzes
the problems in programming microservice-based applications



with equivalence. Section IV gives the design details of our
solution, which is evaluated by Section V. Section VI discusses
our design choices and Section VII concludes this paper.

II. BACKGROUND AND RELATED WORK

This paper focuses on providing programming support for
orchestrating services containing equivalent microservices. In
this section, we first discuss how microservice-based applica-
tions have taken advantage of equivalence, and then summarize
major programming models for engineering such applications.

A. Equivalent Microservices

Hosted at different cloud servers with dissimilar QoS char-
acteristics, various microservices can provide the same func-
tionality. In the research domain of cloud-based microservice
composition, such equivalent microservices are referred to as
competing microservices [26]. This domain focuses on how to
choose a set of services that maximize the overall QoS while
satisfying the QoS requirements of each service [3]. Hiratsuka
et al. [11] further explore the combined use of functional-
equivalent microservices to enhance the QoS. They leverage
two general orchestration patterns for equivalent microser-
vices: fail-over for reliability enhancement and speculative par-
allel for efficiency enhancement. In the edge and IoT domains,
Osmotic computing [27] switches between cloud/edge-based
microservice deployments to optimize the overall QoS.

In edge/IoT environments, equivalent microservices can also
deliver the same functionality. However, these microservices
can differ not only in their respective QoS characteristics, but
also in the way they are implemented, including the hardware/-
software resource utilization, algorithms, and compositions.
For example, [16] demonstrates that the environmental temper-
ature can be captured by a temperature sensor, or be inferred
from the CPU temperature; both wireless methods [24] and
optical methods [18] have been used to obtain the indoor
location of individuals. As an edge application is expected
to run in dissimilar edge environments that feature different
available sensor and computational resources and runtime
contexts, it is hard to guarantee the overall reliability given
the low reliability of individual microservice executions [25].
The combined use of equivalent microservices can improve
reliability while striking a good balance between the response
time and costs. Therefore, when extending the microservice
architecture to the domains of IoT and edge computing,
microservice equivalence can increase the power and expres-
siveness of existing programming models.

B. Programming Models for Orchestrating Microservices

Workflow languages (e.g., WS-BPEL [19]) are widely used
in engineering service-oriented systems and applications, due
to their ease of use and ability to manage complexity [8].
A service/application workflow can be represented as a set of
microservices and assist workflow control nodes, together with
their order of invocation and data passing relationships [2]. In
general, the assist workflow nodes consist of a start node, an
end node, and any number of repeatable pre-defined workflow

constructs. Such constructs represent different workflow con-
trol patterns (some researchers use different terms to represent
the same concept, e.g., structured activities [19] or operational
semantics [5]). At runtime, an execution engine runs work-
flows by following the operational semantics of the contained
workflow constructs.

BPEL is a block-structured workflow description language
that helps developers to express and execute workflows. The
workflow patterns that can be expressed by BPEL are: sequen-
tial processing, conditional behavior (if), repetitive execution
(while), selective event processing (pick), parallel processing
and processing multiple branches (foreach) [19]. Accordingly,
the supported workflow constructs are: sequence, parallel
(AND-fork/join), exclusive choice (XOR-fork/join), loop, and
multi-choice [21]. Although over 40 workflow patterns (in-
cluding structured discriminator, which supports speculative
parallel execution) have been developed, most of them are
not explicitly supported in general workflow orchestration
languages, such as BPEL [21].

The sheer number of BPEL features complicates the lan-
guage’s functional semantics. Besides, designed for machine
processing, BPEL requires its developers to master graphical
composition tools. Several novel domain-specific languages
improve programmability. Orc [15] is a structured language,
in which service orchestrations are specified by means of
functional programming idioms. It also provides semantic
support for handling concurrency, time-outs, exceptions, and
priority. The workflow patterns in Orc (specified as combina-
tors) support fail-over (otherwise) and speculative parallel (
pruning) execution strategies. Although these strategies can
be used to orchestrate the execution of equivalent operations,
the language provides no facilities to control the fine-grained
lifecycles of these operations.

Both BPEL and Orc require the programmers to specify
the control logic of concurrency and failure handling. To
further shift the burden of workflow orchestration from the
programmer to the compiler, dataflow-based domain-specific
languages are introduced for orchestrating workflows automat-
ically [13]. Such DSLs enable the programmers to specify
the data dependencies between microservices, and generate
the workflow accordingly, for “data dependencies equivalent
to scheduling” [14]. Dataflow programming has been widely
adopted by IoT/edge computing [9], [22], [20], [10], [6] and
stream processing [12]. However, these dataflow languages
have no support for equivalence.

III. PROBLEM ANALYSIS

We start analyzing the problem domain by giving two exam-
ple use cases that demonstrate how equivalent microservices
can be used to satisfy reliability requirements. These use cases
are a fire detection system and an offline digital store.

A. Use Cases of Leveraging Equivalent Microservices

(1) Use Case 1, fireDetection: One important security
task of smart homes is detecting fire. Flame sensors have
been commonly used in private homes and office buildings
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for a long time [1]. However, in those cases in which a flame
sensor is temporally unavailable or absent altogether, sensor
data fusion can also accurately detect fire. For example, one
alternative method can combine a temperature sensor and a
camera (two most widely deployed sensors in smart homes)
to detect fires [7]. Specifically, if both the smoke density level
extracted from captured environment images and the room
temperature captured by the sensor exhibit unusually high
levels, these two conditions happening simultaneously indicate
the presence of fire. Hence, we have two equivalent strategies
for detecting fires: (1) read a flame sensor, and (2) (a) read
a temperature sensor; (b) capture and process image. As fire
detection must be both time efficient and reliable, the strategies
(1) and (2) can be executed speculatively parallel to fulfill
these requirements.

The use case above can be expressed modularly as indi-
vidual microservices. Microservice thresholdCheck takes
as input firePossibility, and returns a boolean value
isFireDetected. Microservice readFlameSensor takes
no input, checks the states of flame sensors, and outputs
confidence, which can be used as firePossibility.
Microservice sensorFusion takes as input smokeDensity
and temperature, and outputs firePossibility. Mi-
croservice getTemperature queries the temperature sensor
and outputs temperature. Microservice getImage captures
images by camera, and outputs imageUrl. Microservice
inferSmokeDensity takes as input imageUrl, processes the
image and outputs smokeDensity. Fig. 1 lists the input/out-
put relationships of these microservices.

inferSmoke
Density

Threshold
Check

sensorFusion

readFlameSensor

getImage

getTemperature

imageUrl

firePossibility
smokeDensity

temperature

Fig. 1. Data Dependencies of Use Case 1

(2) Use Case 2, purchaseItemDetection: In offline
digital stores, a customer purchases merchandise by picking
up items from shelves; upon exiting the store, the customer’s
credit card is charged for the purchases. An enabling tech-
nology for such stores is purchase detection, using sensors to
track purchases in real time.

TABLE I
MICROSERVICES USED IN PURCHASEITEMDETECTION

Microservice Input Output
getBarcodeFromVideo video barcode
getItemIDFromBarcode barcode itemID
getShelfFromVideo video shelfID
estimateItemLocation video, shelfID row, line
getItemIDFromLocation row, line, shelfID itemID
getWeightChange shelfID weight
estimateItemIDbyWeight shelfID, weight itemID

The purchaseItemDetection application takes a video
clip of a purchase as input and outputs the itemID of the
purchased item. To recognize the purchased item, the applica-
tion first analyzes the video clip for the item’s barcode. If this

method fails, it infers the itemID by processing sensor data in
two equivalent ways: (1) use the shelf’s id and the purchased
item’s location on the shelf to infer what the purchased item
is; (2) obtain the delta of weight from the shelf’s scale, and
based on the delta infer what the purchased item is.

B. Deficiencies of Existing Programming Models

As mentioned in Section I, existing programming models
lack explicit equivalence facilities and cannot support the
above application scenarios.

(1) No semantic and syntactic facilities for equivalence
in dataflow specification languages. An approach presented
in [11] provides the pipeline, data distribution and data ag-
gregation patterns. When translated to workflows, pipelines
are converted to execute sequentially, and data distribution-
s/aggregations are converted to execute in parallel (AND-
fork/join). Hence, this dataflow specification has no semantic
and syntactic support for the fail-over and speculative parallel
workflow patterns that leverage execution equivalence.

(2) Inability to handle exceptional execution conditions
systematically: Consider removing the equivalent microser-
vice readFlameSensor to generate use case 1’ without any
equivalent microservices. Fig. 2 shows how use case 1’ can
be expressed in a dataflow language. Notice that the dataflow
contains no processing rules that specify how to handle exe-
cution failures. That is, when a microservice fails, no alternate
microservice can be invoked to continue the execution, thus
causing the overall execution to terminate.

1 //...binding microservices
2 getImage -> inferSmokeDensity
3 inferSmokeDensity -> smokeDensity
4 getTemperature -> temperature
5 (smokeDensity,temperature) -> sensorFusion
6 sensorFusion -> thresholdCheck

Fig. 2. Dataflow-based Workflow Specification for Use Case 1’

However, with equivalence, the terminate-by-default failure
handling rule no longer applies. For example, if the workflow
of use case 1’ is extended with an equivalent microser-
vice readFlameSensor, the failure of getTemperature no
longer terminates the overall execution.

(3) Poor cost efficiency: Although prior approaches, in-
cluding Orc [15] and the“ 1 out-of-m join” [21] can ex-
press the execution strategies of equivalent microservices,
these approaches were not designed to provide a fine-grained
control over the life cycle of microservices. When executing
workflows with equivalence, this lack of control may lead
to using computational resource unproductively. Consider the
following examples: 1) readFlameSensor finishes its exe-
cution at time t1, while getImage and getTemperature

remain in operation. To steer the execution cost efficiently
would necessitate passing firePossibility returned by
readFlameSensor to thresholdCheck, and immediately
terminating both getImage and getTemperature. Although
the “1-out-of-m join” pattern does execute thresholdCheck,
it does nothing to stop the now unnecessary execution
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of getImage and getTemperature; 2) getTemperature

times-out at time t2, while getImage remains in opera-
tion. As sensorFusion requires both temperature and
smokeDensity, missing either one of these required inputs
would make it impossible to execute sensorFusion. Hence,
efficiency would necessitate terminating getImage and wait-
ing for readFlameSensor to complete. However, Orc would
wait for getImage to finish its execution and then proceed to
executing inferSmokeDensity.

IV. WORKFLOW AND DSL FOR EQUIVALENCE

We first introduce special equivalence-supporting workflow
constructs and discuss how they are supported in the runtime.
As a specific example of supporting equivalence program-
matically, we discuss the design and implementation of our
dataflow DSL.

A. Workflow Overview

The main distinction of workflows with equivalence is that
the successful/failed execution of microservices may affect the
execution status of other microservices currently in operation
or to be invoked. In traditional workflow graphs, nodes denote
microservices, and a directed edge between them denotes
their execution order. Although handling equivalence requires
storing and executing additional control flows for each mi-
croservice, we maintain the basic structure of traditional work-
flows, adding to it new workflow constructs and notification
rules. Unlike the operational semantics of general workflows,
our new workflow control constructs collect the necessary
execution states of the microservices within their scope and
react accordingly.

B. Workflow Constructs

A workflow graph, representing a service, contains a set of
nodes as a set of directed edges, G =< N,E >.

Edges: A directed edge e(n,m, d) connects node n to node
m, ∀n,m ∈ N , and specifies the data d passed from n to m.
We call n predecessor and m successor.

Nodes: N = Nms ∪ Ncontrol, where Nms denotes a
set of microservice nodes and Ncontrol denotes a set of
control nodes. Ncontrol contains one service start node start,
one service end node end, and any number of pairs of
workflow control nodes. For any microservice node in Nms,
n(i, o, timeout) maintains its required input i, generated out-
put o, and allowed execution time timeout.

Workflow Patterns: C(k) denotes a pair of control nodes,
with Cstart, Cend, and k representing the start node, the end
node and the start node’s out-degree, respectively. A pair of
control nodes can be one of the following three types:
• parallel, where k represents the number of concurrent
branches. A parallel pair starts all k branches simultaneously,
until all executions complete. If one branch fails, the pair fails,
terminating the executions of the remaining branches.
• fail-over, where k represents the number of equivalent
branches. It starts one branch at a time and outputs the results
of the first successful execution.

• speculative parallel, where k represents the number of
equivalent branches. It starts all the k branches simultaneously,
and outputs the first obtained result. If one branch succeeds,
the pair terminates the executions of the remaining branches.

C. Multi-threading and Execution State

The workflow’s execution can be described as a finite
state automata of states and transitions [28]. We introduce
the operational semantics from the perspective of states and
transitions. In particular, we introduce how the states and
transitions are combined with concurrency (thereafter, we use
threads to demonstrate all general concepts).

A service’s execution starts from the root thread. Mul-
tiple child threads can be spawned by and joined to one
parent thread. Each spawned child thread maintains a parent
handle, synchronized across all its siblings, used to notify
the parent of whether the child’s execution succeeded or
failed. Each thread maintains a counter and a currentNode.
The currentNode indicates the current node being executed
by this thread. An executing thread can be terminated by
its currentNode or interrupted by its parent thread, with
the currentNode handling the interruption. The counter
indicates the number of successfully executed branches if the
thread is executing a parallel control pair, the current executed
branch for a fail-over pair, and the number of failed branches
for a speculative parallel pair.

Our workflow design possesses the following features:
• Each microservice node has only one direct predecessor and
one direct successor. In other words, the control node pairs
control all the spawning and joining concurrency actions.
• For a pair of control nodes, the start node’s out-degree
equals the end node’s in-degree. Although the control nodes
can be nested (e.g., a pair of control node is contained in
another pair of control nodes), the number of spawned threads
at the start node of the pair equals to the number of joined
threads at the end node.

A node’s execution status can be in one of the three
states: running, succeeded, and failed. The start and
end nodes can be only in the running state. The start nodes
of control pairs can be in the running and succeeded
states, while other nodes can be in any of the three states. A
running state can transition to either succeeded or failed.
In the succeeded or failed state, the currentNode runs
as dictated by the operational semantics of its type, which
comprises terminating the current thread, sending notifications
to the parent thread, interrupting child threads, and setting the
currentNode to another node.

D. Workflow Operational Semantics

The semantics is implemented by following these state
transition rules. If the current state is:

1) running: A microservice node starts the microservice’s
execution. The node transitions to the failed state if the
execution fails or times out, and transitions to the succeeded
state if the execution succeeds. The start node sets the
currentNode to its successor, and end outputs the results.
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The start node of a parallel pair and a speculative parallel
pair set the counter to k (the number of branches), spawn k
child threads, set the currentNode of the child threads to the
first nodes of these threads, and transition to the succeeded
state (see Fig. 3.a and Fig. 5.a). The start of a fail-over pair sets
counter to k if it equals 0, executes the counterth branch,
and transitions to succeeded (see Fig. 4).

The end node of a control pair waits to be signaled by its
child threads. Upon receiving a succeeded signal, 1) the end
of a parallel pair decrements the counter, and transitions
to the succeeded state if counter == 0, or maintains the
running state if counter>0 (see Fig. 3.b); 2) the end of a
fail-over pair or a speculative parallel pair transitions to the
succeeded state; Upon receiving a failed signal, 1) the
end of a parallel pair transitions to the failed state; 2) the
end of a fail-over or speculative parallel pair decrements the
counter, and transitions to the failed state if counter==0
(see Fig. 5.b). If otherwise counter>0, the end of a fail-over
pair sets the currentNode to its pair start (see Fig. 4), and
the end of a speculative parallel pair maintains the running
state. If the thread is interrupted, the end node of its control
pair interrupts all child threads in turn.

2) succeeded: 1) A microservice node sets the
currentNode to its direct successor. If the direct successor is
the end node of a control pair, the thread sends a succeeded
signal to its parent and terminates itself. Otherwise, it
continues to execute the new currentNode. 2) the start node
of a control pair sets the currentNode to its pair end node.
3) a pair end node sets counter to 0, interrupts all child
threads if the pair is speculative parallel, and follows the
microservice node’s processing rules.

3) failed: 1) A microservice node checks if it is executed
by the root thread: if so, it sets the currentNode to the end
node; otherwise, the thread sends a failed signal to its parent
and terminates itself. 2) an end node of a control pair sets the
counter to 0, interrupts all child threads if the pair is parallel,
and follows the microservice node’s processing rules.

Parallel Start
Parallel End

Succeeded: Counter -- 
Failed: Counter =0

MS 1

succeeded
MS ...

MS k

counter>0
counter==0

Next MS

failed failed

Counter = k

(a) Parallel Start Node (b)    Parallel End Node

Fig. 3. Parallel Pair State Transition

Failover Start 
if(counter==0) counter=k

Failover End
Succeeded: counter=0

Failed: counter -- 

succeededStart Branch 
counter

failed

succeeded

failed, if counter==0counter>0

Fig. 4. fail-over Pair State Transition

E. DSL and Workflow Generation

To demonstrate how dataflow specifications can support
equivalence, we create a domain specific language, MDLE
(Microservice Dataflow Language with Equivalence). A

Speculative 
Parallel Start

Specu. Parallel End
Succeeded: counter=0

Failed: counter--

Equivalent 1

succeeded
Equivalent ...

Equivalent k

counter>0

Next MS 

failed
failed, if counter==0

Counter = k

(a) Speculative Parallel Start Node

succeeded

(b)    Speculative Parallel End Node

Fig. 5. Speculative Parallel Pair State Transition

MDLE script declaratively specifies a collection of microser-
vices. Aliases implicitly define the data flow between mi-
croservices. Multiple microservices providing the same input
are considered equivalent.

1 <Service> ::= <ID> <Description>
2 <ID> ::= "Service "String
3 <Description> ::= "{"[<Params>] <MSs>"}"
4 <Params> ::= "input:"|"output:" [<Variable> ","]
5 <MSs> ::= [Microservice]+
6
7 <Microservice>::="MS:"<MSID>"{" [<MSDetail>]+ "}"
8 <MSID>::=String
9

10 <MSDetail>::=<Timeout>|<Input>|<Output>|<Prior>
11 <Timeout>::="timeout:" [<Select_Rule> "."]+
12 <Input>::="input": [<MS_input> ","]+
13 <Output>::="output": [<MS_output> ","]+
14 <MS_output>::=<output_Variable> ["as" <Alias>]
15 <MS_input>::=[<Alias> "as"] <input_Variable>
16 <Alias>::=String
17 <Prior>:="priority:" "high"|"low"|"medium"

Fig. 6. DSL EBNF Definition.

1) MDLE EBNF: Fig. 6 defines the syntax of MDLE in
EBNF. Some of the key features are as follows:
• Each service is identified by a unique id, ID. Params can
either be input, which must be passed when the service is
invoked, or output, which is the returned execution result.
• A service comprises Microservices, identified by
unique MSIDs, and containing additional attributes.
• A microservice invocation comprises the following at-
tributes: 1) the Input parameters that specify the microser-
vice’s invocation parameters; 2) the Output that specify what
results should be returned, which can be renamed to Alias;
3) the Priority of a microservice, which can be high,
medium, or low. Programmers can use the priority parameter
to indicate which equivalent microservice should be preferred
to provide the required input; 4) the optional timeout rules
that specify the timeout values for each microservice. If the
value is not specified, a default timeout value is used.

1 Service example {
2 output: y
3 MS: A { output: a as x
4 //priority: medium}
5 MS: B { output: b as x
6 //priority: medium}
7 MS: C { output: c as x
8 //priority: high}
9 MS: D {

10 input: x; output: y}}

Fig. 7. Example Service Suite
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Fig.7 shows an example MDLE script. The original outputs
of microservices A, B, C are a, b, c, and are aliased to x.
Microservices A, B, and C are equivalent, and unless explicitly
specified, their priorities are medium by default. Hence, they
should be executed in a speculative parallel way. If line 4, 7
and 10 are uncommented, microservice C and the speculative
parallel of A and B should be orchestrated as fail-over.

2) Aliasing Output and Input: A microservice may require
multiple inputs, and can generate multiple outputs. To dif-
ferentiate these inputs and outputs, a microservice developer
assigns different names to these inputs and outputs. In a ser-
vice script, these names are identified as input_Variable
and output_Variable. MDLE uses alias to implicitly
specify equivalent microservices. Two or more microservices
are considered equivalent if their output is set to the same
alias, which is a required input for another microservice.

3) Compiling a MDLE Script to a Workflow Graph: The
MDLE compiler converts dataflows into a workflow graph,
via a bottom-up procedure. The compiler maintains a dynamic
set of nodes to process. The end node is inserted into the
set first. Each node in the set is processed in turn, with the
newly added nodes replacing the processed ones: 1) if the
processed node requires more than one input, the parallel start
and end nodes are added to the graph, with each required input
becoming a special single-input branch node; 2) if multiple
microservices can provide the input of the current node, a
pair of corresponding execution control nodes are added, so
the data providing microservices become the branch nodes of
these control nodes; 3) if only one microservice provides the
required input of the current node, it is added to the graph
directly. While adding these nodes to the graph, if the current
node already has an incoming edge, the new nodes are added
between the edge’s source node and the current node. The
graph generation algorithm terminates once the dynamic set
is empty. If the same microservice is invoked in all branches
of a control pair, while being directly connected to the pair’s
start node, the microservice is removed from all branches and
added before the pair’s start node.

V. EVALUATION

We start with a case study of generating and executing
a workflow. Then, we assess how our solution improves
reliability and efficiency, as compared with workflows without
equivalence and those without fine-grained lifecycle control.

A. Case Study

Continuing with a use case from Section III, Fig. 8 shows
the MDLE source code of the fireDetection service. Our
workflow compiler and runtime are implemented in Java. Figs.
9 and 10 show the generated workflows of fireDetection
and purchaseItemDetection, respectively.

Our execution parameters are 80% for the microservice
execution success rate and a random number from 1-500ms
for the microservice execution time. To demonstrate how the
runtime works, we analyze the trace of one execution.

1 Service fireDetection {
2 output:isFireDetected
3 MS: readFlameSensor {
4 output: confidence as firePossibility
5 priority: medium
6 }
7 MS: SensorFusion {
8 input: smokeDensity, temperature
9 output: firePossibility

10 priority: medium
11 }
12 MS: getTemperature {output: temperature}
13 MS: getImage {output: imageUrl}
14 MS: inferSmokeDensity {
15 input: imageUrl
16 output: smokeDensity
17 }
18 MS: thresholdCheck {
19 input: firePossibility
20 output: isFireDetected
21 }}

Fig. 8. Source File of fireDetection Service Suite

For use case 1, the ’Speculative Parallel Start’ node starts
executing at 1ms by forking two threads to execute the ’Paral-
lel Start’ node and readFlameSensor. At 4ms, the ’Parallel
Start’ node forks two threads to execute getTemperature

and getImage. At 318ms, getImage finishes its execution,
with inferSmokeDensity continuing on the same thread.
At 471ms, readFlameSensor finishes its execution, passing
a succeeded signal to the ’Speculative Parallel End’ node,
waiting on the main thread. Upon receiving the signal, the
’Speculative Parallel End’ interrupts its child threads, and
then executes thresholdCheck. Upon receiving the interrupt,
the ’Parallel End’ node further interrupts its child threads,
thus terminating the execution of inferSmokeDensity. At
722ms, thresholdCheck finishes its execution, and the ’End’
node outputs the result of thresholdCheck.

For use case 2, the ’Start’ node transitions to the ’fail-
over Start’ node, which sets the counter to 2 and the
currentNode to ’fail-over End’, spawning a new thread
to execute the second branch, getBarcodeFromVideo. The
microservice fails at 203ms, terminating its thread and sending
a failed signal to ’fail-over End’, which transitions to the
‘fail-over Start’ node to execute the first branch. At 327ms,
getShelfFromVideo finishes its execution, and the con-
nected ‘Speculative Parallel Start’ node spawns two threads.
At 790ms, the weight change based approach finishes its exe-
cution and sends a succeeded signal to ‘Speculative Parallel
End’, which passes the output to the end node and terminates
its child threads, still executing estimateItemLocation.

B. Reliability and Cost efficiency

To evaluate the reliability and cost efficiency of our work-
flow framework, we first set the microservice success rate to
0.8, while varying the average execution time between 100,
200, 300, 400, and 500 (ms). Table II shows the results of
1000 runs for each parameter combination. We observe that the
overall successful rate is almost stable. The overall execution
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Threshold
Check

sensorFusion

readFlame
Sensor

Speculative 
Parallel End
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TABLE II
AVERAGE RESULTS OF 1000 RUNS WITH VARYING EXECUTION TIME

avg execution time 100 200 300 400 500
successful rate 0.714 0.706 0.695 0.721 0.687
ms execution 380 719 1072 1444 1845
finish time 226 433 652 844 1139

TABLE III
AVERAGE RESULTS OF 1000 RUNS WITH VARYING RELIABILITY

reliability 0.2 0.4 0.6 0.7 0.8 0.9
ms execution 542 600 680 710 750 753
finish time 379 398 441 431 443 424
successful rate 0.034 0.193 0.363 0.543 0.718 0.872

(i.e., cost) and completion times are proportional to the average
microservice execution time.

Then, we set the average microservice execution latency
to 200ms, varying the microservice success rate between 0.2,
0.4, 0.6, 0.7, 0.8 and 0.9. Table III shows the results of 1000
runs. With the increase of the microservice success rate, the
overall reliability and the overall execution time increase. The
successful execution of the first microservice causes additional
microservice invocations.

We further compare our use case 1 solution with two
alternatives: 1) without equivalence—randomly ex-
ecute one of the two equivalent methods; 2) without
terminating—execute the generated workflow graph with-
out terminating any microservices in operation. We set the mi-
croservice reliability to 0.8 and the average latency to 100ms,
repeating the simulation 1000 times. Table IV shows that
in comparison to without equivalence, our solution
improves the reliability by 45.9%, reduces the completion time
by 24.7%, with the cost of the overall microservice execution
time (which can be taken as the resource cost) increasing by
37.7%. Compared to without terminating, our solution
reduces execution time (i.e., cost) by 27.3%.

We compare use case 2’s execution results with those of the

TABLE IV
COMPARISON AMONG THREE SOLUTIONS FOR USE CASE 1

successful rate execution time finish time
our method 0.706 380 226
without equivalence 0.484 223 300
without terminating 0.706 523 226

TABLE V
COMPARISON AMONG THREE SOLUTIONS FOR USE CASE 2

successful rate execution time finish time
our method 0.888 308 259
without equivalence 0.555 276 250
without terminating 0.888 320 259

aforementioned two alternatives, parameterized identically. Ta-
ble V shows that compared with without equivalence,
our solution improves the reliability by 60%, while the overall
cost and completion time increase by 11.4% and 3.8%, respec-
tively. Compared to without terminating, our solution
reduces the execution time (i.e., cost) by 3.9%.

The results of both use cases show that our solution en-
hances the reliability of microservice-based applications. Due
to its fine-grained lifecycle execution control, our solution
eliminates the costs of executing microservices that have
become unnecessary, a particularly effective optimization for
the parallel and speculative parallel execution patterns.

VI. DISCUSSION

Based on the evaluation results, we revisit some of the
design decisions behind our workflow and MDLE.

A. Supported Workflow Constructs

Although our workflow lacks the “if-else” switch and the
“while” loop control patterns, in line with other dataflow-based
DSLs [13], we discuss how they can be added to the workflow
and MDLE. Adding the “while” loop to the workflow can be
treated as a special variant of sequential execution, without
spawning any threads. The the switch branches of “if-else”
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can join in one microservice. For example, to identify a
person in a video: if a face image is detected, invoke a face
recognition microservice; otherwise, invoke a gait recognition
microservice. With the two branches in a “if-else” switch
generating the same output, the runtime can execute these
switches sequentially. A dataflow-based DSL can encapsulate
the “while” conditions within microservices and express the
“if-else” switch by conditionally aliasing microservice outputs.

B. Syntactic Support for Equivalence

To support equivalence, programmers must specify: 1)
which microservices are equivalent; and 2) how to orchestrate
their execution. A dataflow-based DSL can use other alterna-
tives as well. For example, a ∗ b− c can denote that a, b, c are
equivalent and orchestrated to execute a, b first speculatively
parallel and then execute c if both a, b fail.

However, we choose aliasing and priority to implicitly
denote equivalence and orchestrations as: 1) an alias has
a unique meaning throughout an application. Aliasing the
output in a microservice clearly expresses that the output
has its correct physical meaning, thus avoiding programming
errors; 2) in the presence of multiple equivalent microser-
vices, programmers only have to decide which microservice’s
QoS features express the requirements, without having to
explicitly orchestrate microservice execution. Our design shifts
the burden of orchestrating equivalent microservices from the
programmer to the compiler.

VII. CONCLUSION

We add programming support for equivalence in
microservice-based applications by introducing a dataflow-
based DSL that extends the notion of dataflow with
declarations of equivalent microservices and their execution
patterns. Our new equivalence workflow constructs enable the
automatic generation of reliable and efficient microservice
execution workflows. Supporting equivalence enhances the
reliability of microservice-based applications, while our
workflow design enhances their cost efficiency.
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