
The Impact of Distributed Programming Abstractions

on Application Energy Consumption

Young-Woo Kwon and Eli Tilevich

Dept. of Computer Science
Virginia Tech

Blacksburg, VA 24060
Email: {ywkwon,tilevich}@cs.vt.edu

Abstract

With battery capacities remaining a key physical constraint for mobile de-
vices, energy efficiency has become an important software design considera-
tion. Distributed programming abstractions (e.g., sockets, RPC, messages,
etc.) are an essential component of modern software, but their energy con-
sumption characteristics are poorly understood. The programmer has few
practical guidelines to choose the right abstraction for energy-constrained
scenarios. In this article, we report on the findings of a systematic study
we conducted to compare and contrast major distributed programming ab-
stractions in terms of their energy consumption patterns. By varying the
abstractions with the rest of the functionality fixed, we measure and analyze
the impact of distributed programming abstractions on application energy
consumption. Based on our findings, we present a set of practical guidelines
for the programmer to select an abstraction that satisfies the energy con-
sumption constraints in place. Our other guidelines can steer future efforts
in creating energy efficient distributed programming abstractions.

Keywords: energy-efficiency, programming abstraction, distributed system,
measurement, software design pattern

1. Introduction

Mobile devices have been surpassing stationary computers as the primary
means of utilizing computing [6]. As a result, several software design assump-
tions need to be fundamentally reconsidered to produce applications that use

Preprint submitted to Elsevier June 28, 2013

the limited resources of a mobile device optimally. One such resource is en-
ergy, provided by constantly improving but always limited batteries. Indeed,
energy efficiency has become an important software design constraint [21].

Network communication constitutes one of the largest sources of energy
consumption in a distributed application [1]. To streamline the implemen-
tation of its network-related functionality, a distributed application can take
advantage of programming abstractions (sometimes referred to as middle-
ware), which can influence its energy consumption profile. To implement
the same application functionality, a software designer can select from a
range of distributed programming abstractions, a decision that can signifi-
cantly impact how much energy the application will consume. Unfortunately,
this impact on energy efficiency when choosing one distributed programming
abstraction over another has not been studied systematically, thus leaving
software designers no choice but to rely on their intuition when reasoning
about application energy efficiency.

Unfortunately, relying on one’s gut feeling [4] about the energy consump-
tion characteristics of distributed programming abstractions can lead to sub-
optimal designs that may compromise the application’s overall business util-
ity. Although some of the results presented here may seem “obvious,” the
main contribution of this work is empirical evidence that can support or dis-
credit these commonly held beliefs about application energy consumption.

To equip the software designer with an informed understanding of appli-
cation energy consumption, we have focused on the Open Service Gateway
Initiative (OSGi), an industry standard for deploying software in multiple
domains, including mobile platforms. In particular, we have studied how
OSGi bundles (coarse-grained software components) communicate with each
other by means of distributed programming abstractions, having considered
eight abstractions that differ on two axes: network communication footprint
and level of abstraction (See Figure 1).

In terms of network communication footprints, we have considered plat-
forms that transfer data in binary and in XML-based formats. In terms of
the level of abstraction, we have considered socket-, remote method call-, and
message-based platforms. Specifically, we have studied TCP sockets; Mes-
sage Oriented Middleware (MOM); J2EE RMI; XML-RPC; and OSGi-based
remote methods (synchronous and asynchronous), our own Remote Batch
Invocation (RBI), and SOAP-based services.

For each considered distributed programming abstraction, our experi-
ments assessed the energy consumption (1) of passing varying volumes of

2

Sync.
RPC

RBI

Async.
RPC

RMI

XML-
RPC

DOSGi

Sockets

MOM

XMLBinary

Programming
Abstraction

Network
Communication

Low

High

Figure 1: Considered DPAs and their classification.

data over networks with different latency/bandwidth characteristics, (2) of
marshaling/unmarshaling complex data, and (3) of staying idle. The main
contributions of this article include:

• A systematic study of energy consumption in distributed pro-
gramming abstraction mechanisms: We have systematically com-
pared and contrasted the energy consumption of eight distributed pro-
gramming abstraction mechanisms; by varying the mechanisms while
keeping the rest of functionality fixed, we were able to accurately esti-
mate the impact of programming abstractions on the overall application
energy consumption.

• Energy consumption profiles for the aforementioned abstrac-
tions: By analyzing the results of our study, we ranked the abstraction
mechanisms by their energy consumption profiles, thus informing pro-
grammers needing to choose between different mechanisms.

• Guidelines for energy-efficient and -aware distributed pro-
gramming abstractions: We put forward several guidelines that can
guide software engineering researchers, who strive to innovate in the
distributed programming abstraction space with energy efficiency in
mind.

3

The rest of this article is structured as follows. Section 2 introduces
the studied distributed programming abstractions. Section 3 describes our
experimental study, while Section 4 analyzes the results. Section 5 infers
energy consumption patterns and proposes new guidelines for both program-
mers and distributed system designers. Section 6 compares this work to the
existing state of the art. Finally, Section 7 presents concluding remarks and
future research directions.

2. Background

We first describe the distributed programming abstractions we have eval-
uated and then introduce the issue of measuring energy consumption in soft-
ware systems.

2.1. Distributed Programming Abstractions (DPAs)

Distributed computing coordinates the execution of multiple remote pro-
cesses. Distributed programming abstractions (DPAs) provide programming
and runtime support for one process to execute functionality in a different
process. In other words, by eliminating the need for low-level network pro-
gramming, programming abstractions offer convenient building blocks for
constructing distributed systems. Major, widely used DPAs include sockets,
messaging, remote procedure/method calls, and remote services.

2.1.1. Remote Procedure Calls

Remote Procedure Calls (RPC) serve as a foundation for a wide range of
implementations. In this model, the programmer expresses functionality to
be invoked in a different process as a regular procedure. However, when such
a procedure is invoked, the runtime executes it in a remote process, trans-
ferring the parameters and returning the results. RPC has been extended to
support object-oriented programming through Remote Method Invocation
(RMI); object proxies forward invocations across processes. Representative
RMI implementations are Java RMI and XML-RPC.

2.1.2. Message Oriented Middleware

To communicate through messages, remote processes can take advan-
tage of Message Oriented Middleware (MOM). MOM commonly supports
synchronous and asynchronous interactions through two primary message
topologies: point-to-point and publish/subscribe. With point-to-point, a

4

sender delivers messages to a particular client by depositing them onto a
message queue. With publish/subscribe, a sender publishes messages for
multiple clients through intelligent broadcasting, called a message topic.

To communicate through messages, Java programs can use the standard-
ized API of the Java Message Service (JMS) [20]. In this article, we use a
popular JMS-compliant MOM infrastructure called ActiveMQ [30].

2.1.3. Remote Services

Service Oriented Architectures (SOA) provide uniform access to a variety
of computing resources in multiple application domains. In SOA, software
components are provided as services, self-encapsulated units of functionality
accessed through a public interface. Services can access each other only via
each other’s public interfaces.

Remote OSGi (R-OSGi) [25] is an RPC-based DPA for OSGi. The R-
OSGi distribution infrastructure allows accessing OSGi services remotely
through a proxy-based approach, with proxies exposed as standard OSGi
bundles. R-OSGi is based on RPC, but both synchronous and asynchronous.
The OSGi R4.2 specification codifies the discovery and usage of remote ser-
vices [23], with Apache CXF DOSGi [31] implementing this specification as
SOAP-based Web services.

2.1.4. Remote Batch Invocation

As an alternative to RPC, whose unit of distribution is a single proce-
dure call, we introduced Remote Batch Invocation (RBI) [14], whose unit of
distribution is a block of code. RBI partitions blocks of code into remote
and local parts, while performing all communications in bulk. Batches are
specified using a batch statement, with the body of a batch statement com-
bining remote and local computation. A batch block looks like a collection of
remote method calls but is executed using remote evaluation [28], in which
all the remote calls are transmitted in a single, compiler-constructed batch
script.

2.2. Measuring Energy Consumption

To measure energy consumption, two primary approaches have been pro-
posed in the literature. One approach leverages specialized hardware (e.g.,

5

ACPI1 or IPMI2). These hardware solutions can measure energy consump-
tion quite precisely, but they do not map the consumed energy to the specific
application functions or execution phases.

Another approach leverages energy models. For example, Seo at el. [27]
put forward a model that divides the total energy consumed by an application
into the functions of computation, communication, and infrastructure (e.g,
JVM garbage collection, implicit OS routines, etc.). Kansal at el. [15] put
forward an alternate model that instead focuses on the phases of waiting,
execution, and idling.

Our measurement model amalgamates features of both of these models.
Specifically, we focus on both application functions and phases by distin-
guishing between computation and communication, while also differentiating
between the phases at which the energy is consumed. It is the amalgamated
model that makes it possible for us to infer application energy consumption
patterns. By flexibly adjusting our model for the measurement scenario at
hand, we are able to infer general energy consumption patterns while ignoring
the irrelevant factors. For example, our model omits the energy consumed
by the infrastructure (i.e., it assumes that software design does not directly
affect low-level infrastructure functions such as garbage collection and OS
calls).

3. Measuring Energy Consumption of Distributed Programming
Abstractions

In devising our approach to measuring energy consumption of DPAs, we
wanted to be able:

1. to understand which components of DPA mechanisms mainly affect
their overall energy consumption.

2. to identify temporal patterns in how DPA mechanisms consume energy;
these patterns can guide the programmer in search of an abstraction
delivering an application-specific energy consumption profile.

3. to infer opportunities for improving the energy efficiency of emerging
abstractions.

1Advanced Configuration and Power Interface: http://www.acpi.info
2Intelligent Platform Management Interface: http://www.intel.com/design/

servers/ipmi/index.htm

6

Next, we first present our energy consumption measurement model. Then
we describe our experimental measurements. And finally, discuss the results.

3.1. Energy Consumption Model

We estimate total energy consumption by computing the workload in-
curred by each major piece of functionality. Specifically, the total energy
consumption comprises two components—application and DPA:

Etotal = Eapplication + EDPA

Then, each energy consumption component is computed as follows:

Eapplication = ECPU + Emem + Edisk + Ecomm

where Eapplicaion is the application-specific energy consumption, which in-
cludes ECPU—energy consumed by CPU processing, Emem—energy con-
sumed by memory access, Edisk—energy consumed by I/O operations, Ecomm—
energy consumed by network communication.

The DPA-specific energy consumption is computed as follows:

EDPA = ECPU + Emem + Edisk + Ecomm

:= ECPU + Ecomm

where EDPA is the DPA-specific energy consumption, which includes the en-
ergy consumed by CPU processing, memory/disk access, and network com-
munication. For our experiments, we have excluded both the disk and mem-
ory access components from our measurements. The measured DPAs do not
use disk I/O, and one cannot reliably distinguish between the energy con-
sumption incurred by accessing application vs. DPA-specific memory without
specialized hardware. Thus, our model considers the energy consumed by a
DPA during CPU processing and network communication.

Furthermore, our measurements are confined to the client side of all dis-
tributed interactions; we assume a client/server communication model, in

7

which server computation and communication do not exhaust battery power.
This assumption makes this work inapplicable to energy-conscious server en-
vironments or peer-to-peer setups, with mobile devices communicating with
each other directly. We plan to extend our measurement model to a broader
set of scenarios as a future work direction.

When an application executes, it goes through several phases: initializa-
tion, execution, idling, and termination, with the resulting energy consump-
tion divided into four processes:

Etotal = Einit + Eexe + Eidle + Eterm

where the energy consumption for each of these phases is denoted as Einit,
Eexe, Eidle, and Eterm, respectively. For systematic evaluation, one must
not only measure the energy consumption of a running application, but also
the energy consumption during the application’s initialization, idling, and
termination phases.

Software systems that we are targeting in this article follow the traditional
server-client model. Our energy consumption model does not consider energy
consumption of server part.

3.2. Experimental Setup

Our experimental setup comprised a client and a server. The server ma-
chine: 3.0 GHz Intel Dual-Core CPU, 2 GB RAM, Windows 7, and JVM 1.6.0
13 (build 1.6.0 13-b03); the client machine: 2.53 GHz Intel i3 CPU (dual-
core), 4 GB RAM, Windows 7, and JVM 1.6.0 16 (build 1.6.0 23-b05). The
client and server were connected via a wireless LAN. To create a controlled
networking environment with delay and bandwidth limitation, we have used
Network Emulator for Windows Toolkit [18], a popular network emula-
tor. To measure energy consumption, we have used pTopW [5], a process-level
power profiling tool that measures energy consumption at the kernel level.

An important goal of this work is to ensure that our results are applicable
to distributed applications running on a broad range of mobile computing
devices, ranging from laptops to phones. That is why although a laptop is
a mobile device, whose energy consumption is an essential issue, we chose
our client machine’s setup (the CPU, OS, VM) to be as close as possible to
the latest models of smartphones and tablets. The somewhat high amount

8

of RAM makes it possible to run the emulator and profiling tools without
causing memory paging. Without the RAM taken by our measurement in-
frastructure, the client machine has about 1 GB left available for running
applications, a typical setup for a modern hand-held device.

Because our goal is to determine how the choice of a DPA affects ap-
plication energy consumption, our measurements focus on application-level
energy-consumption patterns rather than on the underlying systems stack
(e.g., OS and hardware). We also chose to perform our measurements over
a Wi-Fi connection rather than a cellular network such as 3G. The reason is
the increasing prominence of Wi-Fi networking, even for hand-held mobile
devices. According to CISCO, Wi-Fi networks occupy 36% of the Internet
traffic, while cellular networks deliver less than 10 % of traffic [2]. In fact, ma-
jor US cities, including San Francisco, Washington D.C., Los Angeles, and
New York City, have started to provide municipal wireless access through
Wi-Fi networks [9]. Therefore, our experimental environment is typical for
executing a substantial class of modern distributed applications.

Finally, since mobile devices run on a variety of platforms in fluctuat-
ing execution environments, the execution environment we set up for our
benchmarks is unlikely to reflect all possible real-world scenarios. To create a
meaningful approximation, we thus isolate CPU processing and network com-
munication from the rest of the functionality, so that the specific hardware
characteristic of the client device should not affect the energy consumption
patterns of these two parts of system execution. As a result, in this article,
we focus on inferring patterns and trends rather than on obtaining specific
numbers.

3.3. Measurement Methodology

3.3.1. Benchmark Applications and DPAs

We have based our test suite on the benchmarks originally proposed by
the JavaParty project [12], which is used widely in benchmarking middleware
platforms. These benchmarks comprise remote invocations with varying pa-
rameter sizes and types. Similarly, our test suite assumes that a client needs
to execute some server methods, each of which takes different parameters.
Because the executed server methods are empty, one can reasonably attribute
the measured energy consumption to the underlying DPAs.

We have implemented eight versions of the same benchmark that have
the same functionality but communicate through different abstractions. The

9

6.5786 7.574 7.574 10.509

71.727

7.295 7.44
11.722

0

10

20

30

40

50

60

70

80

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 (

J)

Figure 2: Energy consumption—initializing DPA mechanisms.

client and server parts of each version are OSGi bundles. We do not measure
the energy consumed by the server bundle.

3.3.2. Network Condition

We have experimented with three emulated network conditions that have
the following respective round trip time (RTT) and bandwidth characteris-
tics: 2 ms and 50 Mbps, typical for a high-end mobile network; 30 ms and
1 Mbps, typical for a medium-end mobile network; and 30ms and 300 Kbps,
typical for a low-end or congested mobile network [7, 29].

3.4. Benchmarks

3.4.1. Energy Consumed by Initialization

Figure 2 shows how much energy is consumed by initializing each DPA
mechanism, a phase that also includes the initialization of the OSGi frame-
work. DOSGi incurs the highest initialization costs; sockets, R-OSGi, RMI,
and XML-RPC all initialize more energy efficiently than either RBI or MOM.
DOSGi’s high initialization cost are due to its dependence of a high num-
ber of third-party OSGi services.3 The same explanation applies to RBI
and MOM, even though their reliance on third-party OSGi bundles is not as
significant as that of DOSGi.

3In case of Apache CXF Distributed OSGi, it loads 52 bundles.

10

3.4.2. Scenario 1—Energy Costs of Invoking Remote Functionality

In this experiment, we isolate the energy costs of initiating the execution
(i.e., invoking) of various remote methods. I.e., Einvoke = ECPU + Ecomm −
Einit.

We measured the aggregate energy consumption of invoking the server
method void ping(byte []) 100 times in a loop; each experiment was repeated 10
times with the results averaged. Since the goal of our work is to provide pro-
grammers with practical guidelines they can follow to create energy-efficient
applications, we chose not to report the standard deviation or extreme val-
ues. To inform the programmer, we focus on identifying the overall energy
consumption patterns.

Figure 3 shows how much energy was consumed by each DPA mecha-
nism. For all platforms, the energy consumption is directly proportional to
the increases in latency and transferred data sizes. For example, under the
emulated high-end mobile network (i.e., 2 ms latency and 50 Mbps band-
width), all distributed programming abstractions consume little energy up
until the arguments’ size reaches 100 Kbytes. Beyond this argument size, the
energy consumption begins to increase linearly. Similarly, once the latency
goes up to 30 ms and the bandwidth goes down to 300 Kbps, the energy
increases significantly. The effect is particularly pronounced for DOSGi and
XML-RPC, due to their high bandwidth requirements for transferring XML.

Figure 4 shows the energy consumed by the CPU and network communi-
cation portions. pTopW makes it possible to ascertain how the total energy
consumption is split into these two portions. Since we compare the respec-
tive levels of energy consumption of these two parts of system execution
while changing network conditions, a line graph can faithfully represent such
energy consumption trends. The left three figures depict each DPA mecha-
nism’s overall CPU energy consumption. The CPU energy consumption is
directly proportional to the size of the transferred data. Specifically, when
the latency increases and the bandwidth decreases, the energy consumed by
CPU processing remains constant. However, the energy consumed by net-
work processing increases significantly, particularly for XML-based DPAs.

A surprising result is that asynchronous processing, be it in asynchronous
R-OSGi, MOM, or sockets, does not affect the CPU energy consumption.
This could be due to the fact that idle CPU cores still consume energy. These
results indicate that the network characteristics with respect to the size of the
transferred data can significantly influence the overall energy consumption.

11

0

10

20

30

40

50

60

70

1 byte 10 byte 100 byte 1 Kbyte 10 Kbyte 100 Kbyte 1 Mbyte

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 (

J)
 Socket

R-OSGI (sync)

R-OSGi (Async)

RBI

DOSGi (HTTP/SOAP)

RMI

XML-RPC

MOM

(a) 2 ms latency and 50 Mbps bandwidth

0

20

40

60

80

100

120

140

160

180

1 byte 10 byte 100 byte 1 Kbyte 10 Kbyte 100 Kbyte 1 Mbyte

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 (

J)

Socket

R-OSGI (sync)

R-OSGi (Async)

RBI

DOSGi (HTTP/SOAP)

RMI

XML-RPC

MOM

(b) 30 ms latency and 1 Mbps bandwidth

1 byte 10 byte 100 byte 1 Kbyte 10 Kbyte 100 Kbyte 1 Mbyte

0

50

100

150

200

250

300

350

400

450

1 byte 10 byte 100 byte 1 Kbyte 10 Kbyte 100 Kbyte 1 Mbyte

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 (

J)
 Socket

R-OSGI (sync)

R-OSGi (Async)

RBI

DOSGi (HTTP/SOAP)

RMI

XML-RPC

MOM

(c) 30 ms latency and 300 Kbps bandwidth

Figure 3: Energy consumption—invoking remote functionality.

3.4.3. Scenario 2—Data marshaling/unmarshaling

In this experiment, we isolate the energy costs of marshaling/unmarshal-
ing the data sent as parameters to the invoked remote methods. We have
modified the remote methods instead of taking byte buffers to take arguments
of different types that the DPA mechanism in place has to marshal/unmar-
shal. Specifically, we measured the energy consumed by passing (1) an object
containing 32 int fields, (2) 1 non-primitive object which has two other non-
primitive objects4, or (3) a binary tree of 100 nodes, each holding an int value
and two child recursive references. Each case’s transferred data size is as fol-
lows: (1) 32 × 4 bytes = 128 bytes, (2) overall objects sizes are estimated as
approximately 420 bytes, and (3) (1 × 4 bytes + 2 × 32 bytes) × 100 = 680
bytes.

Figure 5 shows the energy consumed by each DPA configuration. Each

4This test case is widely used for assessing the efficiency of Java serialization mech-
anisms. We used revision r128 of JVM serialization benchmark: http://code.google.
com/p/thrift-protobuf-compare/source/detail?r=128

12

0

10

20

30

40

50

60

70

1 byte 10 byte 100 byte 1 Kbyte 10 Kbyte 100 Kbyte 1 Mbyte

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 (

J)
 Socket

R-OSGI (sync)

R-OSGi (Async)

RBI

DOSGi (HTTP/SOAP)

RMI

XML-RPC

MOM

(a-1) 2 ms latency and 50 Mbps bandwidth

0

10

20

30

40

50

60

70

1 byte 10 byte 100 byte 1 Kbyte 10 Kbyte 100 Kbyte 1 Mbyte

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 (

J)

Socket

R-OSGI (sync)

R-OSGi (Async)

RBI

DOSGi (HTTP/SOAP)

RMI

XML-RPC

MOM

(a-2) 30 ms latency and 1 Mbps bandwidth

0

10

20

30

40

50

60

70

1 byte 10 byte 100 byte 1 Kbyte 10 Kbyte 100 Kbyte 1 Mbyte

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 (

J)
 Socket

R-OSGI (sync)

R-OSGi (Async)

RBI

DOSGi (HTTP/SOAP)

RMI

XML-RPC

MOM

(a-3) 30 ms latency and 300 Kbps bandwidth
(a) Energy consumption—CPU.

0

50

100

150

200

250

300

350

400

450

1 byte 10 byte 100 byte 1 Kbyte 10 Kbyte 100 Kbyte 1 Mbyte

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 (

J)

Socket

R-OSGI (sync)

R-OSGi (Async)

RBI

DOSGi (HTTP/SOAP)

RMI

XML-RPC

MOM

(b-1) 2 ms latency and 50 Mbps bandwidth

0

50

100

150

200

250

300

350

400

450

1 byte 10 byte 100 byte 1 Kbyte 10 Kbyte 100 Kbyte 1 Mbyte

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 (

J)

Socket

R-OSGI (sync)

R-OSGi (Async)

RBI

DOSGi (HTTP/SOAP)

RMI

XML-RPC

MOM

(b-2) 30 ms latency and 1 Mbps bandwidth

0

50

100

150

200

250

300

350

400

450

1 byte 10 byte 100 byte 1 Kbyte 10 Kbyte 100 Kbyte 1 Mbyte

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 (

J)

Socket

R-OSGI (sync)

R-OSGi (Async)

RBI

DOSGi (HTTP/SOAP)

RMI

XML-RPC

MOM

(b-3) 30 ms latency and 300 Kbps bandwidth
(b) Energy consumption—Network.

Figure 4: Energy consumption—CPU and network communication.

bar is the sum of the energy consumed by CPU and network processing. As
expected, XML-based DPA mechanisms consume more energy than those
that use either native Java serialization (i.e., RMI, Sockets, and MOM) or
optimized serialization mechanisms (i.e., RBI and R-OSGi). Although the
inefficiency of Java serialization is well known [24], our experiments did not
indicate it to consume significantly more energy than the optimized serial-
ization mechanisms. At least, the difference was not nowhere near as large
as that between XML-based and binary serialization formats.

When breaking down the consumed energy into CPU and network pro-
cessing, XML-based DPA mechanisms are particularly vulnerable to limited

13

0

1

2

3

4

5

6

7

8

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 (

J)

Network

CPU

(a) 2 ms latency and 50 Mbps bandwidth

0

1

2

3

4

5

6

7

8

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 (

J)

Network

CPU

(b) 30 ms latency and 1 Mbps bandwidth

0

1

2

3

4

5

6

7

8

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 (

J)

Network

CPU

(c) 30 ms latency and 300 Kbps bandwidth

Figure 5: Energy consumption of three serialization cases.

network conditions, as transferring bulky XML-encoded data can quickly
increase the amount of required network transmissions, thereby raising up
the energy costs of network communication. Thus, energy-sensitive mobile
applications should prefer DPA mechanisms that encode data in binary.

3.4.4. Scenario 3—Energy Consumption per Execution Phases

In this experiment, we measured the aggregate energy consumption of
invoking the server method void ping (byte[100KB]) 100 times in a loop over
the emulated network with 2 ms latency and 50 Mbps bandwidth. Because
we could not observe any significant variability in the energy consumption
patterns occurring under different network conditions, in this section, we only
discuss the results tested for a high-end mobile network. The benchmark
initializes, executes its functionality, idles for one minute, and then exits.
We measured how much energy is consumed by each of these phases, with
Figure 6 showing the results. Phase boundaries are determined by means

14

0

5

10

15

20

25

30

35

40

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 (

J)

Socket R-OSGi(sync) R-OSGi(async) RBI MOM

Initialization + Execution + Idling Initialization +
Execution

Initilization

(a) Socket, R-OSGi(sync/async), RBI, and MOM

0

10

20

30

40

50

60

70

80

90

100

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 (

J)
 Web RMI XML-RPC

Initialization + Execution + Idling Initialization +
 Execution

Initilization

(b) DOSGi (HTTP/SOAP), RMI, and XMP-RPC

Figure 6: Energy consumption per execution phases.

of simple log entries inserted by our reference implementation. The X-axis
represents logical time and the Y-axis means cumulative energy consumption.
The dotted line means the end of each execution phase.

Despite its name, the idling phase is important: when an application is
long-running, the energy consumed when idling may constitute a significant
percentage of the application’s energy budget. In fact, our measurements
indicate that some DPA mechanisms may consume more energy when idling
than when executing remotely, for some application patterns. During idling,
it is the open network connections that consume energy. In other words,
keeping a network connection open indefinitely (i.e., until the application
exits or the connection is interrupted) consumes energy at a constant rate.
As we have determined, however, RMI, DOSGi, and XML-RPC consume
no energy when idling. Using these DPAs will save energy for long running
applications that experience prolonged idle periods.

3.4.5. Scenario 4—Impact of Energy Optimization Techniques

In our last experiment, we measured how much energy can be saved by
compressing the data transferred across the network. To quantify how much
energy this commonly used optimization could potentially save, we measured
the respective energy consumption rates when using a binary-based DPA of
R-OSGi and a text-based DPA of XML-RPC to transfer compressed and
uncompressed data. We emulated two distinct network environments with
the following round trip time (RTT) and bandwidth characteristics—a high-
end mobile network (2 ms latency, 50 Mbps bandwidth) and a low-end mobile
network (30 ms latency, 300 Kbps bandwidth).

Figure 7 shows the impact of compressing the transferred data on energy

15

0

5

10

15

20

25

30

1 B 10 B 100 B 1KB 10 KB 100 KB 1 MB

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 (

J)
 R-OSGI (2ms, 50Mbps)

R-OSGI-COMP (2ms, 50Mbps)

R-OSGI-COMP (30ms, 300Kbps)

R-OSGI (30ms, 300Kbps)

Threshold

(a) Binary-based DPA (R-OSGi)

0

10

20

30

40

50

60

70

1 B 10 B 100 B 1KB 10 KB 100 KB 1 MB

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 (

J)
 XML-RPC (2ms, 50Mbps)

XML-RPC-COMP (2ms, 50Mbps)

XML-RPC-Comp (30ms, 300Kbps)

XML-RPC (30ms, 300Kbps)

Thresholds

(b) Text-based DPA (XML-RPC)

Figure 7: Impact of compressing transferred data on energy consumption.

consumption for both of these emulated network environments. For the low-
end mobile network, the binary-based DPA transferring uncompressed data
consumes insignificant amounts of energy when transferring compressed data,
until the transferred data’s volume reaches 10 KB. Beyond this threshold, the
energy consumed transferring compressed data is lower than that consumed
transferring uncompressed data. Therefore, for the low-end mobile network,
the 10 KB threshold is a point at which one can expect to see the benefits
of compression. On the other hand, for the high-end mobile network, no
such threshold has been observed. Therefore, for high-end mobile networks,
compression only consumes additional energy, suggesting the need to consider
an alternative energy optimization strategy.

The thresholds at which compression starts to save energy in XML-RPC
are 1 KB and 10 KB for the low-end and high-end network environments,
respectively. Thus, because the network environment in place determines

16

the threshold at which compression should be engaged to reduce energy con-
sumption, the DPA runtime system should be able to turn this optimization
on and off as needed.

3.5. Threats to Validity

The measurements above are subject to both internal and external valid-
ity threats. The internal validity is threatened by the way in which we chose
to use the different DPAs to implement our benchmarks. In our day-to-day
programming practices, we do not regularly use all of the measured DPA
mechanisms. Therefore, the way we integrated them into our benchmarks
may not be fully optimal, both in terms of the APIs used and the configura-
tion options specified. It is likely that a programmer deeply experienced in
any of the measured DPA may implement the same functionality exhibiting
the energy consumption patterns differing from our observations. However,
the energy consumption patterns we have discerned are mainly due to the
physical properties of the measured setups, and as such are unlikely to change
drastically when accessed through different APIs or configurations.

The external validity is threatened by our measurement infrastructure.
Rather than measuring the physical consumed energy directly, the pTopW
profiler estimates the consumed energy based on the actual resource usage
information. As a result, the reported energy numbers are likely to be less
precise than those that would be measured through specialized hardware. In
addition, we had no choice but to execute empty remote methods to work
around the limitations of process-level energy consumption measurement.
Nevertheless, our goal is to infer energy consumption patterns, whose iden-
tification is tolerant to approximated energy consumption numbers, as long
as they remain proportional to each other.

4. Result Analysis

We next analyze the results obtained from the experiments above. We
first present and discuss the Energy Consumption/Performance ratio of the
benchmarked DPA mechanisms. Then, we report on the correlation be-
tween network characteristics, the amount of transferred data, and energy
consumption.

4.1. Energy Consumption/Performance Ratio

One can interpret the amount of energy consumed by a DPA mechanism
as the cost of performing some useful activity. An important goal for a

17

DPA mechanism is performance—the aggregate latency of executing a remote
operation. To compare the DPAs more comprehensively, we computed the
Energy Consumption/Performance ratio (EPR) for the studied platforms,
where the price component is total energy consumption.

Figure 8 presents the performance numbers for each DPA, defined as the
total roundtrip time to execute the void ping (byte []) method. We executed
this method over an emulated network with 2 ms latency and 50 Mbps band-
width 100 times with the results averaged. XML-RPC and DOSGi take the
longest time to execute the benchmark method. In general, asynchronous
platforms and RBI are more efficient than synchronous platforms, such as
synchronous R-OSGi, DOSGi, RMI, and XML-RPC.

To correlate performance and energy consumption, we define the performance-
energy consumption ratio as:

EPR(x) = Px/MAX(P0,...,Pn)
Ex/MIN(E0,...,En)

× 100

where, P is the performance represented by the total execution time and E
is the energy consumption.

The energy consumption numbers came from Section 3.4.2. Figure 9
shows calculated Energy Consumption/Performance ratio numbers. Not sur-
prisingly, raw sockets have the highest EPR for any transferred data size.
Asynchronous RPC has the next highest EPR. Batching remote calls in RBI
also yields a high EPR. Synchronous RPC has a low EPR when transferring
small data volumes. XML-based DPA mechanisms have the worst EPR for
any data size. MOM’s EPR is somewhere in between, increasing proportion-
ally to the transferred data size.

5. Energy Consumption Patterns and Guidelines

Based on the results obtained from the experiments above, we next at-
tempt to infer some general energy consumption patterns in DPA mecha-
nisms. Even though we infer the following patterns by analyzing the results
obtained from benchmarking the eight DPAs above, we express these pat-
terns in general terms, making them applicable to a wide variety of DPA
mechanisms. These patterns should inform software designers charged with
the challenges of choosing the right DPA for energy-constrained application
scenarios.

18

0.106 0.111 0.074

0.571 0.58

1.036

1.403

1.178

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Ex
e

cu
ti

o
n

 T
im

e
 (

m
s)

 x 1000

(a) 1 Byte

0.123 0.151 0.141

1.041 0.985
1.146

1.648

1.901

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Ex
e

cu
ti

o
n

 T
im

e
 (

m
s)

 x 1000

(b) 1 KByte

116.589

124.759
118.013

180.352

140.992
155.809

302.574

262.574

0

50

100

150

200

250

300

350

Ex
e

cu
ti

o
n

 T
im

e
 (

m
s)

 x 1000

(c) 1 MByte

Figure 8: Total execution time.

Because the same application behavior can be implemented by using any
of the equivalent DPAs, being aware of the application’s energy consumption
patterns becomes an important decision support aid for software design-
ers. By matching these patterns with the intended application behavior, a
software designer can make an informed choice when deciding which of the
available DPA mechanisms should be applied to a given application scenario.

5.1. Energy Consumption Patterns

• Transferring increasing volumes of data over limited networks (char-
acterized by diminishing bandwidths and growing latencies) causes a
direct increase in energy consumption. Therefore, when an applica-
tion is likely to be executed over a limited network, software designers
should favor binary-based DPA mechanisms over XML-based ones, as
the former ones encode the transferred data more concisely, which re-
duces the bandwidth requirements.

19

0
10
20
30
40
50
60
70
80
90

100

En
e

rg
y

C
o

n
su

m
p

ti
o

n
/

P
e

rf
o

rm
an

ce
 R

at
io

 1 Byte

1 KByte

1 MByte

Figure 9: Energy Consumption/Performance ratio.

• In the case of high latency networks, asynchronous DPA mechanisms
should be used to avoid having to block remote communications while
waiting for a response. Our results indicate that asynchrony does not
incur additional energy costs, and as such constitute a viable software
building block in the presence of high latency.

• Even though marshaling/unmarshaling can be computationally com-
plex, these functionalities tend to consume more energy on network
communication than on CPU processing. Transferring large, complex
object graphs across a network requires high bandwidth. At the same
time, encoding objects into concise binary representations requires sub-
stantial CPU processing. Therefore, for high-throughput networks,
simple serialization protocols can yield an acceptable energy consump-
tion, as it would reduce CPU processing and would transfer larger
volumes of data without causing an energy consumption spike due to
insufficient bandwidth. However, if the underlying network is limited
(high latency and low bandwidth as in a congested network), designs
that employ CPU-intensive routines to serialize the transferred data
concisely should be preferred, as they would reduce the energy con-
sumed by network processing, a dominant energy consumption ingre-
dient for these types of network.

• Applications with long idle periods should prefer DPA mechanisms
that do not consume energy when idling. Sophisticated DPA features,

20

such as issuing heartbeat messages and alternate service discovery, do
consume energy even if no core DPA-related functionality is utilized.
Therefore, for applications with prolonged idle cycles the energy costs
of idling DPA mechanisms should be taken into account. For example,
using DPA mechanisms that follow stateless communication protocols
(e.g., Web services) can reduce the overall energy consumption, as these
mechanisms do not maintain any state between remote interactions.

• When both high performance and low energy consumption are equally
at stake, no high-level DPA can outperform raw sockets, which has
the highest energy consumption/performance ratio. However, asyn-
chronous and batched RPC are a close second, while offering convenient
programming abstractions to the programmer. When large data vol-
umes are to be transferred across the network, binary DPA mechanisms
offer a higher ratio than XML-based ones.

5.2. Designing Energy-Efficient DPAs

Based on our results, we next present several guidelines for designing
energy efficient DPAs.

5.2.1. Minimize network interactions and transferred data size

As network communication incurs the largest costs in the overall en-
ergy budget, an energy efficient DPA mechanism should strive to transmit
small data volumes over high-throughput networks. Because limited net-
work conditions are hard to avoid, system designs should aim at minimizing
the frequency of network interactions and reducing the transferred data size.
To achieve the first objective, energy-sensitive designs should minimize state
exchange messages (e.g., service discovery message, heartbeat, etc.) to an
absolute minimum. To achieve the second objective, binary protocols should
be favored over XML-based ones, data compression and advanced serializa-
tion (e.g., kryo, protobuf, etc)5 should be used, and delta should be applied
whenever possible. Because algorithmically intensive data compression can
increase the CPU energy consumption, the right trade-offs should be sought
between transferring smaller data and encoding it into compressed formats.

5Various versions of serialization tools have been tested and discussed here:
https://github.com/eishay/jvm-serializers/wiki/

21

5.2.2. Share core DPA components across different applications

If more than one mobile application can share the same DPA mechanism,
the device’s aggregate energy consumption may be reduced for two reasons:
(1) the initialization phase in a DPA mechanism can consume substantial
energy and should be amortized across multiple applications whenever pos-
sible; (2) because when idle, a DPA mechanism can still incur energy costs,
sharing the infrastructure across applications will reduce its idling time. In
the OSGi framework, multiple applications can share common components,
realizing the benefits outlined above.

5.2.3. Monitor energy consumption levels and handle outliers

For controlling fine-grained energy consumption at the application level,
DPA mechanisms should provide energy-monitoring APIs. Such APIs can
monitor energy consumption and report potential usage outliers (e.g., at-
tempting to send a large data volume over a limited network). The pro-
grammer can then implement functionality to handle such abnormalities by
either postponing the remote interaction or even replacing it with some local
computation. Energy monitoring should not, however, consume additional
energy. Estimating energy consumption rather than measuring it directly
provides a pragmatic trade-off.

5.2.4. Provide different connection management mechanisms

Connection management policies differ: a connection can be terminated
after each remote interaction or reused a varying number of times. Reusing
connections can both waste and save energy, if managed flexibly. To pro-
vide such flexibility, an API can provide methods to select an appropriate
connection management policy for a given application’s characteristics. For
example, for an application rarely invoking remote methods, establishing a
connection at every request saves energy. However, for an application fre-
quently invoking remote methods, it is reusing a connection that saves energy.
The programmer should have the flexibility to specify the desired policy on
a per-application basis.

5.2.5. Flexibly adapt at runtime

Based on our measurements, the underlying network environment de-
termines whether and after which threshold the transferred data should be
compressed to save energy. A DPA tuned for a particular network through
a set of static optimizations is unlikely to consume an optimal amount of

22

energy when operating over networks with fluctuating bandwidth/latency
characteristics. An effective energy consumption behavior requires that the
DPA switch optimizations on and off dynamically in response to such fluctu-
ations. Although it is the application’s business logic that determines what
data needs to be transferred across the network, the DPA in place can cluster,
encode, and compress the transferred data by means of adaptive optimiza-
tion.

5.3. Discussion

The benchmark results presented above gave rise to the following two
insights: 1) the latency/bandwidth characteristics of mobile networks can
heavily affect the energy consumption of a mobile application and 2) adapting
the execution behavior of a DPA in response to changes in latency/bandwidth
can reduce the overall energy consumption. Based on these two basic insights
and the presented guidelines, DPA designers should be able to create novel,
energy-aware DPAs. In the following discussion, we give a concrete example
of how such an energy-aware DPA can handle adaptive energy optimization.

Example: Adaptive Data Marshaling

Data marshaling refers to the process of encoding program data into a
format that can be transferred across the network. For example, an integer
value can be encoded as a byte buffer. The unmarshaling process reverses the
marshaling encodings. Multiple marshaling strategies can be applied to the
same program data. With respect to energy consumption, one can consider
the trade-off between CPU processing and network transfer. Marshaling
the data into a smaller byte buffer will reduce network transfer, but will be
more computationally intensive, thus requiring additional CPU processing.
Marshalling the data into a larger byte buffer will result in transferring more
data over the network, but it will require less CPU processing. Which of
the strategies will consume less energy depends on the runtime conditions in
place.

For example, if the underlying network is limited (high latency and low
bandwidth as in a congested network), transferring data concisely should be
preferred, as it would reduce the energy consumed by network processing. In
case of high-throughput networks, simple serialization protocols can reduce
the overall energy consumption, as it would require less CPU processing
while transferring larger volumes of data without the energy consumption
spikes due to insufficient bandwidth. Therefore, the right trade-offs can only

23

be determined at runtime, as it depends on the current network conditions.
Whether to compress the transferred data presents another trade-off between
data size vs. processing overhead. Similar to basic marshaling, algorith-
mically intensive data compression or delta calculation is computationally
intensive, while reducing the amount of data transferred across the network.

In summary, the discussion above presented several high-level guidelines
that can be applied to designing energy-aware DPAs. A key insight is that
because each mobile application has different execution patterns and envi-
ronments, applying a single energy-optimization strategy to all execution
patterns for all network conditions is ill-advised. Thus, mobile application
programmers must understand the execution patterns of mobile applications
to be able to implement and configure application-specific, dynamic energy
optimization strategies.

6. Related Work

To the best of our knowledge, this work is the first attempt to assess the
energy consumption characteristics of DPA mechanisms. However, several
prior efforts have informed and inspired this work. These efforts fall into
three major categories: studies assessing different properties of DPAs, mea-
suring software energy consumption, and energy saving strategies for various
computer system layers.

6.1. Studies of DPA mechanisms

Different properties of distributed programming abstractions have been
assessed, including performance, scalability, reliability, and programming ef-
fort. Gokhale et al. [10] assess how the abstraction level of a distributed
programming abstraction affects its performance. Other efforts focused on
evaluating MOM and JMS implementations in terms of their respective per-
formance, scalability, and reliability [32, 26]. Our prior work [17] compares
DPA mechanisms in terms of performance, reliability, and programming ef-
fort. This work complements these studies by assessing the energy consump-
tion of major DPA mechanisms.

6.2. Energy Consumption Measurement

Because energy efficiency has become an important consideration in soft-
ware design, several recent research efforts have focused on creating effective
approaches to measuring energy consumption. Three primary approaches

24

have been described in the literature: at the architecture, network, and appli-
cation levels. An example of an architecture level energy measuring approach
is PowerPack [8], which physically connects to the CPU, disk, memory, and
mother board component to measure and analyze the energy consumption
of high-performance applications. Then, it maps the measured energy con-
sumption patterns to the application’s source code, making it possible to
analyze energy consumption both at the hardware and source code levels.
An example of a network level energy measuring approach is described in
reference [1], which measures energy consumption of the general network ac-
tivity for 3G, GSM, and WiFi networks. Examples of an application level
measurement approach are described in reference [11], which measures how
VoIP applications consume energy, and in reference [33], which measures how
video streaming applications consume energy; both of these focus on mobile
phones as their execution environment. JALEN monitors runtime energy
consumption by injecting the monitoring code into Java bytecode [22]. As
compared to the architecture, network, and application levels measurements,
the focus of this work is on DPAs or middleware, a software layer that is
situated in between hardware and software layers. Nevertheless, our mea-
surement methodology is an example of an application level approach.

6.3. Energy-Saving Techniques

Extending the battery life of mobile devices by reducing the energy con-
sumption of mobile applications has been the focus of multiple complimen-
tary research efforts: energy-efficient design patterns and programming lan-
guages [21]), offloading energy-intensive functions to a remote server [16],
using specialized-network protocols [1], or switching different algorithms ac-
cording to pre-defined energy consumption scenarios [13].

While the majority of these efforts focused on one particular system layer
(i.e., mainly the network), advanced techniques have been proposed to uti-
lize multiple levels of system information, a technique called a cross-layer
approach. A cross-layer approach can effectively control energy consump-
tion by leveraging the information provided by multiple system layers. DY-
NAMO [19] is a middleware platform that adapts power optimization strate-
gies across various system layers, including applications, middleware, OS,
network, and hardware, to optimize both performance and energy. The fo-
cus of DYNAMO is on reducing energy consumption for video streaming
applications. Our application energy consumption patterns can provide em-
pirical results to efforts such as DYNAMO, which can interpret and apply

25

them to specific application domains.
A recent language-based approach to energy-aware programming is ET

[3], a new object-oriented programming language that enables the program-
mer to write energy-aware code by specifying phases, which represent distinct
program workloads, and modes, which represent required energy states, such
as high and low energy consumption. A language like ET can be a useful
tool for distributed application programmers who want to take advantage of
our DPA energy consumption patterns.

7. Conclusions and Future Work

As mobile devices are rapidly replacing stationary computers as the pri-
mary means of accessing computing resources, battery lives now play a crit-
ical role in the end-user experiences. As a result, energy efficiency has come
to the forefront of system design. Because distributed programming abstrac-
tions are a mainstay for the majority of distributed applications, the energy
efficiency of DPA mechanisms can have a huge impact on the overall energy
budget. This article closes the gap in our understanding of energy consump-
tion in DPA mechanisms. By systematically measuring and analyzing the
constituent parts of major DPA mechanisms, we have identified their energy
consumption patterns. These patterns will inform both software designers
and distributed system researchers.

As a future work, we plan to conduct more systematic measurements of
other DPA mechanisms under a wider range of networks. We may also exper-
iment with obtaining our energy consumption numbers from physical devices
and compare their accuracy. As a result, our energy consumption model may
need to be adjusted. We also plan to create a new DPA mechanism that takes
our findings into consideration. By combining energy-efficient features from
the mainstream DPAs, we hope to obtain a new platform that offers the same
abstractions energy-efficiently by considering both the runtime environment
and application semantics. This new platform will benefit all distributed
applications that are mindful of their energy consumption.

Acknowledgments

This research is supported by the National Science Foundation through
the grant CCF-1116565.

26

References

[1] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani. En-
ergy consumption in mobile phones: a measurement study and im-
plications for network applications. In Proceedings of the 9th ACM
SIGCOMM conference on Internet measurement conference (IMC ’09),
2009.

[2] Cisco Market Trends. Cisco service provider: Wi-Fi: Offload mobile
data and create new services, 2012.

[3] M. Cohen, H. S. Zhu, and S. E. E. ad Yu David Liu. Energy types.
In Proceedings of the 2012 ACM international conference on Object-
oriented programming systems, languages, and applications, Oct 2012.

[4] S. Colbert. Speech at the White House Correspondents’ Association
dinner. Transcript, April 26 2006.

[5] T. Do, S. Rawshdeh, and W. Shi. pTop: A process-level power profiling
tool. In Proceedings of the 2nd Workshop on Power Aware Computing
and Systems (HotPower’09), 2009.

[6] Gartner, Inc. Gartner highlights key predictions for IT organizations
and users in 2010 and beyond, Jan. 2010.

[7] R. Gass and C. Diot. An experimental performance comparison of 3G
and Wi-Fi. In Proceedings of the 11th international conference on passive
and active measurement (PAM ’10), 2010.

[8] R. Ge, X. Feng, S. Song, H. Chang, D. Li, and K. Cameron. Power-
pack: Energy profiling and analysis of high-performance systems and
applications. IEEE Transactions on Parallel and Distributed Systems,
21(5):658–671, 2010.

[9] J. Gibbons and S. Ruth. Municipal Wi-Fi: big wave or wipeout. Internet
Computing, IEEE, 10(61):107–125, 2006.

[10] A. Gokhale and D. C. Schmidt. Measuring the performance of commu-
nication middleware on high-speed networks. In Proceedings on Appli-
cations, technologies, architectures, and protocols for computer commu-
nications (SIGCOMM ’96), 1996.

27

[11] A. Gupta and P. Mohapatra. Energy consumption and conservation in
wifi based phones: A measurement-based study. In Proceedings of the
4th Annual IEEE Communications Society Conference on Sensor, Mesh
and Ad Hoc Communications and Networks, 2007 (SECON ’07), June
2007.

[12] B. Haumacher, T. Moschny, and M. Philippsen. The JavaParty project.
www.ipd.uka.de/JavaParty, 2007.

[13] Y. Huang, S. Mohapatra, and N. Venkatasubramanian. An energy-
efficient middleware for supporting multimedia services in mobile grid
environments. In Proceedings of International Conference on Informa-
tion Technology: Coding and Computing, 2005., volume 2, April 2005.

[14] A. Ibrahim, Y. Jiao, E. Tilevich, and W. R. Cook. Remote batch invoca-
tion for compositional object services. In The 23rd European Conference
on Object-Oriented Programming (ECOOP ’09), July 2009.

[15] A. Kansal and F. Zhao. Fine-grained energy profiling for power-aware
application design. SIGMETRICS Perform. Eval. Rev., 36(2):26–31,
Aug. 2008.

[16] Y.-W. Kwon and E. Tilevich. Energy-efficient and fault-tolerant dis-
tributed mobile execution. In Proceedings of the 32nd International Con-
ference on Distributed Computing Systems (ICDCS ’12), June 2012.

[17] Y.-W. Kwon, E. Tilevich, and W. Cook. Which middleware platform
should you choose for your next remote service? Service Oriented Com-
puting and Applications, 5:61–70, 2011.

[18] Microsoft Research. Network Emulator for Windows Toolkit (NEWT)
version 2.1, 2010.

[19] S. Mohapatra, N. Dutt, A. Nicolau, and N. Venkatasubramanian. DY-
NAMO: A cross-layer framework for end-to-end QoS and energy opti-
mization in mobile handheld devices. Selected Areas in Communications,
IEEE Journal on, 25(4):722 –737, May 2007.

[20] R. Monson-Haefel and D. Chappell. Java Message Service. O’Reilly &
Associates, Inc., Sebastopol, CA, USA, 2000.

28

[21] A. Noureddine, A. Bourdon, R. Rouvoy, and L. Seinturier. A preliminary
study of the impact of software engineering on greenIT. In Proceedings
of the First International Workshop on Green and Sustainable Software,
Jun 2012.

[22] A. Noureddine, A. Bourdon, R. Rouvoy, and L. Seinturier. Runtime
monitoring of software energy hotspots. In Proceedings of the 27th

IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE ’12), 2012.

[23] OSGi Alliance. OSGi service platform release 4.2 specification, 2011.

[24] M. Philippsen, B. Haumacher, and C. Nester. More efficient serialization
and RMI for Java. Concurrency: Practice and Experience, 12(7):495–
518, 2000.

[25] J. S. Rellermeyer, G. Alonso, and T. Roscoe. R-OSGi: Distributed
applications through software modularization. In Proceedings of the
ACM/IFIP/USENIX 8th International Middleware Conference, Novem-
ber 2007.

[26] K. Sachs, S. Kounev, J. Bacon, and A. Buchmann. Performance evalua-
tion of message-oriented middleware using the specjms2007 benchmark.
Performance Evaluation, 66(8):410 – 434, 2009.

[27] C. Seo, S. Malek, and N. Medvidovic. An energy consumption framework
for distributed Java-based systems. In Proceedings of the twenty-second
IEEE/ACM international conference on Automated software engineer-
ing (ASE ’07), 2007.

[28] J. W. Stamos and D. K. Gifford. Remote evaluation. ACM Trans.
Program. Lang. Syst., 12(4):537–564, 1990.

[29] M. Sullivan. PCWorld: 3G and 4G wireless speed showdown:
Which networks are fastest? http://www.pcworld.com/article/

253808/3g_and_4g_wireless_speed_showdown_which_networks_

are_fastest_.html, April 2012.

[30] The Apache Software Foundation. ActiveMQ. http://activemq.

apache.org/, 2010.

29

[31] The Apache Software Foundation. Apache CXF Distributed OSGi.
http://cxf.apache.org/distributed-osgi.html, 2010.

[32] P. Tran, P. Greenfield, and I. Gorton. Behavior and performance of
message-oriented middleware systems. In Proceedings of the 22nd Inter-
national Conference on Distributed Computing Systems (ICDCS ’02),
2002.

[33] Y. Xiao, R. Kalyanaraman, and A. Yla-Jaaski. Energy consumption of
mobile YouTube: Quantitative measurement and analysis. In Proceed-
ings of the Second International Conference on Next Generation Mobile
Applications, Services and Technologies, 2008 (NGMAST ’08), pages 61
–69, Sept. 2008.

30

