
An Assessment of Middleware Platforms for Accessing Remote Services

Young-Woo Kwon and Eli Tilevich
Dept. of Computer Science

Virginia Tech
{ywkwon,tilevich}@cs.vt.edu

William R. Cook
Dept. of Computer Sciences

The University of Texas at Austin
wcook@cs.utexas.edu

Abstract

Due to the shift from software-as-a-product (SaaP)
to software-as-a-service (SaaS), software components that
were developed to run in a single address space must in-
creasingly be accessed remotely across the network. Dis-
tribution middleware is frequently used to facilitate this
transition. Yet a range of middleware platforms exist, and
there are few existing guidelines to help the programmer
choose an appropriate middleware platform to achieve de-
sired goals for performance, expressiveness, and reliabil-
ity. To address this limitation, in this paper we describe a
case study of transitioning an Open Service Gateway Initia-
tive (OSGi) service from local to remote access. Our case
study compares five remote versions of this service, con-
structed using different distribution middleware platforms.
These platforms are implemented by widely-used commer-
cial technologies or have been proposed as improvements
on the state of the art. In particular, we implemented a
service-oriented version of our own Remote Batch Invoca-
tion abstraction. We compare and contrast these implemen-
tations in terms of their respective performance, expressive-
ness, and reliability. Our results can help remote service
programmers make informed decisions when choosing mid-
dleware platforms for their applications.

1 Introduction

The next couple of years will see a fundamental shift
in how the average user takes advantage of computing
resources. Traditional shrink-wrapped software applica-
tions will move in the direction of a computation model
dominated by cloud computing [4, 19]. In this shift, the
provisioning of software will evolve from software-as-a-
product (SaaP) to software-as-a-service (SaaS). For exam-
ple, a desktop application could be modified so that much
of its execution takes place at a remote server in the cloud,
with only the GUI rendered locally. The GUI part is likely
to run on a mobile device, for example a smart phone.

Two levels of infrastructure are needed to realize this vi-
sion of software services. Firstly, component models are
needed to define services and their interfaces. The Open
Service Gateway Initiative (OSGi) [10] provides a platform
for defining and managing components that can be used as
services. It is used by developers to package features as
components for separate deployment, and by end users to
select components they need. Secondly, middleware infras-
tructure is needed to allow services to be accessed remotely.
There are several different kinds of middleware, and each
has different performance, expressiveness, and reliability
characteristics. Middleware can be based on messaging, re-
mote procedure calls, or remote evaluation, with the option
of asynchronous processing. The trade-offs between these
approaches have not been properly examined and, as a re-
sult, are poorly understood.

To address this lack of understanding, in this paper we
describe a case study we have conducted to examine the
trade-offs of using different middleware platforms of ac-
cessing services remotely. For the case study, we chose
a realistic OSGi service that has been integrated into sev-
eral commercial applications. This service is the Lucene
search engine library 1 that provides functionality to index
and search text files in Java. For the case study, we imple-
mented a simple dictionary application that can search and
return definitions, find synonyms, as well as suggest correc-
tions for misspelled or partially-specified words.

We have implemented three Lucene-based services us-
ing five different middleware platforms: TCP sockets, syn-
chronous and asynchronous remote calls in R-OSGi [12],
Message Oriented Middleware (MOM) [1], and Remote
Batch Invocation (RBI) [5]. For each implementation, we
measured: (1) the total number of lines of uncommented
code and its cyclomatic complexity, (2) the aggregate la-
tency of invoking remote service methods, and (3) the de-
gree of reliability of remote service methods in the presence
of network volatility. The lines of code and its cyclomatic
complexity are commonly used to assess the complexity and
quality of a software artifact. The aggregate latency of in-

1http://lucene.apache.org/



voking a service indicates how long it takes for the clients
to derive the service’s expected benefits. This metrics com-
prehensively assesses the Quality of Service (QoS) from the
end user’s perspective. Finally, the ability of a remote ser-
vice to cope with network volatility is critical to maintaining
the required QoS in the majority of realistic network envi-
ronments.

One of the evaluated platforms is our own Remote Batch
Invocation (RBI), a middleware abstraction we have re-
cently introduced [5]. In RBI, a batch is a collection of
method calls, conditional statements, and loops that is trans-
fered in bulk to the server, which executes the collection
and returns the results to be assigned to local variables. Al-
though RBI clients resemble traditional RPC clients, they
have a fundamentally different, service-oriented execution
model. As such, our implementation of OSGi in RBI is the
first non-RPC implementation of the OSGi R4.2 specifica-
tion, which codifies how OSGi bundles should be accessed
remotely.

Based on the results of our case study, the technical con-
tributions of this paper are as follows:

• The first non-RPC remote implementation of the OSGi
R4.2 specification.
• A comprehensive evaluation of the trade-offs between

the performance, expressiveness, and reliability of
middleware platforms for accessing services remotely.
• A systematic analysis of the evaluation that can help

inform a working programmer about which middle-
ware platform should be used to access services re-
motely.

The rest of this paper is structured as follows. Section 2
introduces the concepts and technologies used in this work.
Section 3 describes the implementation of OSGi in RBI.
Section 4 describes our case study and its results. Section
5 discusses related work, and Section 6 presents future re-
search directions and concluding remarks.

2 Background

In the following discussion we describe Service Oriented
Architecture (SOA), OSGi, and middleware platforms, in-
cluding R-OSGi and Message Oriented Middleware.

2.1 Service Oriented Architecture

Service Oriented Architectures (SOA) has been recently
employed as a means of providing uniform access to a va-
riety of computing resources across multiple application
domains. In SOA, software components are provided as
services, self-encapsulated units of functionality accessed
through a public interface [11]. Essential characteristics of

service-orientation are platform independence and support
for stateless communication models.

Services can access each other only via each other’s pub-
lic interfaces. Loosely coupled services may be collocated
in the same address space or be geographically dispersed
across the network. Among the software engineering ad-
vantages of SOA are strong encapsulation, loose coupling,
ease of reusability, and standardized discovery.

OSGi

The Open Service Gateway Initiative (OSGi) provides a
platform for implementing services [10]. It allows any Java
class to be used as a service by publishing it as a service
bundle. OSGi manages published bundles, allowing them
to use each other’s services. OSGi manages the lifecycle of
a bundle (i.e., moving between install, start, stop, update,
and delete stages) and allows it to be added and removed at
runtime.

OSGi is a mature software component platform. It has
been widely adopted by multiple industry and research
stakeholders, organized into the OSGi Alliance. OSGi is
used in large commercial projects, including the Spring
framework 2 and Eclipse 3, which use this platform to
update and manage plug-ins. The OSGi standard is cur-
rently implemented by several open-source projects, includ-
ing Apache Felix 4, Knopflerfish 5, and Eclipse Equinox 6.

2.2 Distribution Middleware

Distribution Middleware provides mechanisms for soft-
ware on one system to invoke operations on a remote sys-
tem. Middleware eliminates the need for low-level net-
work programming and offers convenient building blocks
for constructing distributed systems. There are several dif-
ferent platforms used in middle ware applications, including
messaging, remote procedure calls, and remote evaluation.

Message Oriented Middleware

MOM is an infrastructure for distributed communication us-
ing messages. Although originally all message based com-
munication was presumed to follow the asynchronous inter-
action model, most MOM systems now support both syn-
chronous and asynchronous interaction models. In addi-
tion, MOM provides two messaging models, point-to-point
and publish/subscribe. In the point-to-point model, a sender
sends messages to a particular client through a message

2http://www.springsource.org/
3http://www.eclipse.org/
4http://felix.apache.org/
5http://www.knopflerfish.org/
6http://www.eclipse.org/equinox/



queue. In the publish/subscribe model, a sender publishes
messages to multiple clients through a message topic.

Java Message Service (JMS) [8] is a standard API from
Sun Microsystems that enables Java programs to use mes-
sage based communications. JMS is implemented in widely
used MOM infrastructures, including Apache’s ActiveMQ
7 and JBoss Messaging 8. For the purposes of this paper, we
evaluate the publish/subscribe model of ActiveMQ.

2.3 Remote Procedure Calls

Remote Procedure Calls (RPC) are the basis for a wide
range of middleware implementations. In this model, each
call to a remote interface is transfered from the client to the
server for execution, and the results returned to the client.
RPC has been extended to support object-oriented program-
ming by introducing object proxies, which forward calls
from client to server. This approach is the basis for DCOM
[2] and CORBA [9].

Remote OSGi (R-OSGi) [12] is an RPC-based middle-
ware platform for OSGi. The initial OSGi specification
codifies inter-bundle communication as occurring within a
single host. The R-OSGi distribution infrastructure allows
accessing OSGi services remotely through a proxy-based
approach, with proxies exposed as standard OSGi bundles.
R-OSGi is based on RPC, but allows both synchronous and
asynchronous calls, which can reduce latency. The dis-
tributed service registry of R-OSGi makes it possible to
treat remote and local services uniformly.

More recently, the OSGi alliance released the OSGi R4.2
specification that describes how remote OSGi services can
be discovered and used [10]. The OSGi R4.2 specification
does not specify how remote OSGi services should be ac-
cessed. Instead, the specification codifies only how remote
service interfaces should be discovered and retrieved. Once
a remote service interface is obtained, it is up to the imple-
mentor of this specification how interface methods are to be
invoked at a remote OSGi framework and how their results
are to be transferred back to the caller.

The first reference implementation of R4.2 is D-OSGi 9,
which implements the specification as Web services, using
SOAP over HTTP for transmission and WSDL contracts for
exposing services. This implementation is also RPC-based.

Although an RPC-based implementation naturally sat-
isfies the method calling semantics of OSGi service inter-
faces, other middleware abstractions can also be used to im-
plement R4.2.

7http://activemq.apache.org/
8http://www.jboss.org/jbossmessaging/
9http://cxf.apache.org/distributed-osgi.html

2.4 Remote Batch Invocation

Remote Batch Invocation (RBI) [5] is a distributed mid-
dleware abstraction based on partitioning blocks of code
into remote and local parts, while performing all commu-
nication in bulk. Batches are specified using a batch state-
ment. The body of a batch statement combines remote and
local computation. In Java, a batch block looks like a col-
lection of remote method calls but is executed using remote
evaluation [15], in which all the remote calls are sent in a
single batch script. In addition, data is moved in bulk be-
tween client and server. RBI differs from RPC in that the
unit of distribution is a block of code rather than a single
procedure call.

The details of RBI are discussed in the following section,
which also shows how RBI can be used to provide remote
access to OSGi services.

3 OSGi in RBI

RBI introduces a batch statement that executes multiple
remote calls using a single remote round trip to the server.
Figure 1 shows how the Lucene OSGi service can be ac-
cessed with RBI. Note that the batch block includes looping
and conditional statements. The batch language extension
is transformed into standard Java.10

1 batch (Lucene ls : new Service(Lucene.class)) {
2 final TopDocs topDocs = ls.search(query);
3 StringBuffer defBuffer = new StringBuffer();
4 for (ScoreDoc hits : topDocs.scoreDocs) {
5 Document doc = ls.doc(hits.doc);
6 if (doc != null) {
7 defBuffer.append(doc.getValues(DEFINITION));
8 } } }

Figure 1. Example of batch invocation.

The RBI runtime executes multiple calls (combined with
conditional and looping constructs) to a given remote ser-
vice. Finally, RBI/OSGi does not require any changes to
remote service interfaces, which are discovered and bound
using a standard OSGi registry.

3.1 RBI Runtime System

The runtime architecture of RBI, shown in Figure 2, con-
sists of a service consumer, service provider, batch proces-
sor, and distribution provider. Once the service provider
registers a service in the OSGi framework, the distribution

10Please refer to our ECOOP 2009 papers for translation details [5].



Distribution
Provider

Service Hook
Service

Discovery

Se
rv

ic
e

RBI-OSGi

OSGi

Proxy

Network
Channel

Client Batch
Processor

Distribution
Provider

Service Listener

Service

RBI-OSGi

Server

Network
Channel

Server Batch
Processor

Service RegistrationService Retrieve OSGi

Service Consumer Service Provider

Figure 2. OSGi with RBI Architecture.

provider instantiates a server that can be accessed remotely.
The service consumer discovers and retrieves the remote
service, and then the distribution provider creates a proxy
for importing the service. Upon the service consumer mak-
ing remote calls, the batch processor aggregates them into a
single descriptor, which is transmitted across the network to
the service provider. The service provider’s batch processor
interprets the descriptor, invoking the appropriate service
methods, and sends the results back to the service consumer.

To integrate OSGi with RBI, we connected RBI to
the standard OSGi services, Service Listener and
Service Hook. Once a Service Listener is regis-
tered with OSGi, it starts receiving lifecycle change events
for the registered service. The distribution provider uses
a Service Listener to determine when a server must
be instantiated to process remote requests. The Service
Hook service, introduced only in the OSGi R4.2 specifi-
cation, intercepts service events, raised in response to the
service consumer retrieving the remote service, and creates
a proxy for accessing services remotely.

The Service Hook service makes it possible to treat
local and remote services uniformly, with the only differ-
ence concerning their configuration. In other words, switch-
ing from using the local version of a service to a remote
version and vice verse does not require any source code
changes, which are confined to configuration files. Be-
cause the OSGi R4.2 specification requires that remote ser-
vice interfaces be decoupled from their implementations,
the Service Hook service accomplishes that by making
it possible to switch implementations through a simple con-
figuration file change.

4 Case study

To compare different middleware platforms, we com-
pared remote access to a set of three services packaged as an
OSGi bundle. We chose the Lucene search engine library,

which is distributed as an OSGi bundle, thus providing a
service interface. Using Lucene, we implemented three ser-
vices to search for (1) a word’s definition, (2) a word’s list
of synonyms, and (3) a list of spelling suggestions for a mis-
spelled word. Note that service (2) extends the functionality
of service (1), and service (3) extends the functionality of
service (2). Thus, service (2) includes all the functionality
of service (1), and service (3) includes that of services (1)
and (2).

For our case study, we examined how these services can
be accessed remotely using five different middleware plat-
forms. To that end, we compared each of the five implemen-
tations in terms of their respective performance, expressive-
ness, and reliability.

For the purposes of this study, we define our metrics as
follows:

• Performance: the total execution time it takes to ex-
ecute a service, including both network latency and
business processing.
• Expressiveness: ease of implementation, measured by

the total of Uncommented Lines of Code (ULOC) it
takes to write the service, and their McCabe cyclo-
matic complexity (MCC) [7].
• Reliability: the ability to withstand temporary net-

work volatility, when the communication network ex-
periences an outage.

In this benchmark, we compare these metrics for five
middleware platforms: (1) synchronous R-OSGi, (2) asyn-
chronous R-OSGi, (3) Message-Oriented Middleware, (4)
raw sockets, and (5) our own RBI interface to OSGi.

4.1 Experimental Setup

All the experiments were conducted on the client ma-
chine running 3.0 GHz Intel Dual-Core CPU, 2 GB RAM,
Windows XP, JVM 1.6.0 13 (build 1.6.0 13-b03), and the



Dictionary Service

Legacy Search 
System

Search Service 
Interface

LAN

Dictionary Service Request
(HTTP)

Servlet Engine

Dictionary 
Service Interface

OSGi
OSGi

Internet

Results (HTTP)

Search Service
Request (DM 1 … 5)

Results (DM 1 … 5)

Legacy Search SystemDictionary Service ProviderUser

Web 
Client

D
M

 1

D
M

 2

D
M

 3

D
M

 4

D
M

 5 D
M

 1

D
M

 2

D
M

 3

D
M

 4

D
M

 5

Figure 3. Dictionary System.

server machine running 1.8 GHz Intel Dual-Core CPU, 2.5
GB RAM, Windows 7, JVM 1.6.0 16 (build 1.6.0 16-b01,
connected via a local area network (LAN) with a 100Mbps
bandwidth, and 1ms latency.

Figure 3 depicts a diagram describing the specifics of
our experimental setup. The Lucene OSGi bundle is lo-
cated on a separate node (server) and is accessed remotely
from another node (client). To start the benchmarking of a
given setup, we constructed a simple Web client that com-
municates with the client node through HTTP. By navigat-
ing a Web browser to a URL associated with any of the five
middleware implementations, a servlet at the client node in-
vokes its corresponding benchmark method.

4.2 Performance

Each benchmark method calls three services in se-
quence, repeating each service call 1,000 times and then
reporting the averaged time. Only the time to invoke
the Lucene-based services is taken into account, while the
HTTP communication to trigger different benchmarks is
omitted.

Figure 4 shows the averaged performance for each ser-
vice. Because each of the three services takes an increas-
ing number of remote roundtrips, for each middleware plat-
form, the total execution time grows for services 2 and 3.

For each service, raw sockets provide the best per-
formance. Asynchronous R-OSGi comes close second.
RBI/OSGi using synchronous communication comes quite
close to asynchronous R-OSGi. Synchronous R-OSGi is al-
ways slower than RBI/OSGi, due to the latter middleware
platform aggregating multiple remote calls and invoking
them in bulk.

Surprisingly, our MOM-based implementation consis-
tently showed the poorest results across all benchmarks.

0

5

10

15

20

25

1 2 3

A
ve

ra
ge

 e
xe

cu
ti

o
n

 t
im

e 
(m

s)

The number of services 

MoM

Sync. 
R-OSGi
Async. 
R-OSGi
RBI-OSGI

Socket

Figure 4. Performance Comparison.

The reason is because the implementation we used, Ac-
tiveMQ, is based on a publish-subscribe rather than peer-to-
peer communication model. Publish-subscribe models are
beneficial when messages have to be broadcast to a large
number of recipients. In our setup, when using MOM for
client-server communication, the overhead of involving a
message queue was never amortized.

4.3 Expressiveness

Table 1 shows the total uncommented lines of code
(ULOC) it takes to implement each of the three services
using different middleware platforms. It also shows their
McCabe Cyclomatic Metric (MCC). The ULOC numbers
in Table 1 combine the client and server portions, while ex-
cluding 1918 ULOC that it takes to implement the func-
tional processing part of all the remotely-accessed services.

As expected, our sockets-based implementation is the
longest. A programmer has to design and express a low-



Table 1. Expressiveness Comparison.
Middleware Service ULOC Max.

platform MCC

Sync. R-OSGi
Service 1 14 7
Service 2 14 10
Service 3 14 17

Async. R-OSGi
Service 1 148 8
Service 2 170 12
Service 3 212 25

RBI/OSGi
Service 1 23 7
Service 2 27 10
Service 3 33 17

MOM
Service 1 1172 8
Service 2 1207 13
Service 3 1231 23

Sockets
Service 1 2722 8
Service 2 2793 13
Service 3 2839 23

level communication protocol, which also includes the for-
mat for each transferred message. In addition, avoiding
deadlocks and ensuring good performance requires that
message sending and receiving be handled by different
threads.

The MOM implementation is the second longest. A pro-
grammer has to implement a listener interface and register it
with the messaging system and handle messages that arrive
out of order. In addition, the programmer must define the
messages and process them at the application level.

Asynchronous R-OSGi follows next. A programmer also
has to implement a listener, but R-OSGi eliminates the need
for the programmer to implement messages and setup the
communication.

The RBI/OSGi implementation takes about an order of
magnitude fewer lines of code than the asynchronous R-
OSGi one. RBI/OSGi is a method-based middleware mech-
anisms that does not require the programmer to write any
communication-specific code.

The synchronous R-OSGi implementation takes about
the same amount of code as that of RBI/OSGi. RBI adds
a couple of lines of code to setup and express a batch.

MCC metrics is indicative of the programming effort re-
quired to understand a codebase. As expected, the raw sock-
ets, asynchronouns R-OSGi, and MOM implementations
have high MCC, while synchronous R-OSGi and RBI/OSGi
ones have lower MCC.

4.4 Reliability

As it turns out, only our MOM-based implementation
has built-in fault tolerance capabilities provided by Ac-

Table 2. Reliability Comparison.
Middleware Fault 3rd party

platform handling solution
Sync. R-OSGi N/A DR-OSGi

Async. R-OSGi N/A DR-OSGi
RBI/OSGi N/A DR-OSGi

MOM built-in N/A
Sockets N/A N/A

tiveMQ. It can operate in what is called “persistent mode”
that stores every message to be sent in stable storage. Upon
disconnection, the undelivered messages are rescheduled
for delivery after the network becomes reconnected.

If reliability in the face of network volatility is required,
Table 2 summarizes how fault handling mechanisms can be
adopted in each middleware platform. When a middleware
mechanism lacks built-in facilities for dealing with network
volatility, our recent research has shown how such facilities
can be factored into a middleware infrastructure [6].

4.5 Discussion

Here we discuss some of the implications of the perfor-
mance, expressiveness, and reliability measurements pre-
sented above. In our discussion, we attempt to provide spe-
cific recommendation for the developers of service-oriented
applications.

Figure 5 depicts the trade-offs between the performance,
expressiveness, and reliability guarantees offered by each
middleware platform. Because no platform satisfies all
three guarantees, programmers should choose an appropri-
ate platform having considered the immediate needs of their
service applications.

Threats to Validity The measurements above are subject
to both internal and external validity threats. The internal
validity is threatened by the way in which we chose to im-
plement our subject services by using different middleware
platforms. In our daily programming practices, we do not
regularly use all of the five platforms. Therefore, the way
we chose to implement our service may not be fully optimal,
in terms of using the proven design patterns. We believe,
however, that our programming practices are representative
of that of the common programmer.

The external validity is threatened by our choice of an
existing OSGi bundle to be accessed remotely. OSGi pub-
lic interfaces have been carefully designed to be coarse-
grained, and more naively-designed service interfaces can
have finer granularity. In that case, the performance dispar-
ities between synchronous R-OSGi and the asynchronous
alternatives would be even more pronounced.



Sync. 
R-OSGi

Async. 
R-OSGi

Expressiveness

Performance Reliability

RBI-
OSGi

Java
Sockets

Async.
MOM

Local
Service

Figure 5. Trade-offs between the expressive-
ness, performance and reliability levels.

Performance Even coarser grained service interfaces
cannot completely eliminate latency concerns. As our mea-
surements show, asynchronous communication leads to bet-
ter performance. Unfortunately, business logic may require
synchronous service calls. Our RBI/OSGi platforms can re-
duce the aggregate latency of multiple remote service calls
without asynchronous processing.

Expressiveness Despite their performance advantages,
asynchronous designs tend to be more complicated, taking
more code that is more complex to express. RPC-based ab-
stractions, including our own RBI/OSGi, are more straight-
forward to implement and understand.

Reliability The reliability of a distributed application
is dependent on the reliability of its constituent compo-
nents, which include both the execution units implementing
the application’s functionality and the network connecting
them. One can argue that the ULOC metrics is inversely
proportional to the level of reliability of an individual soft-
ware component. If the probability of a bug can be ex-
pressed in terms of the lines of code and its complexity
(e.g., X% that a software defect exists within N lines of
code), then shorter and less complex implementations are
less likely to contain bugs. In the light, our ULOC and cy-
clomatic complexity metrics can also serve a double duty as
local reliability metrics.

With respect to distributed execution, the common wis-
dom of distributed system development suggests that relia-
bility is best implemented on a per-application basis. There
is value, however, in handling system-level errors at the
middleware level. In that light, using MOM leads to ap-
plications that can withstand temporary network disconnec-

tions. Such fault-tolerance capacities can be factored into
existing systems, as demonstrated recently [6].

0

5

10

15

20

MOM Sockets Sync. 
R-OSGi

Async. 
R-OSGi

RBI-OSGi

The Price-Performance 

Figure 6. The price-performance ratio com-
parison.

Price-Performance Ratio So far, we compared our dif-
ferent middleware platforms using a single metrics. To
obtain deeper insights, we introduce a new metrics, price-
performance, represented by the following

PP =
RULOC/LULOC

LET/RET

where RULOC and LULOC are local and remote uncom-
mented lines of code, respectively; and LET and RET
are local and remote execution times, respectively. The
minimum price-performance ratio is 1, which can only be
achieved when no distribution is present. In other words,
the price-performance ratio is minimized when its numer-
ator and denominator are approaching 1. Since LULOC
and LET are fixed, only RET and RULOC can affect the
ratio.

Figure 6 shows that MOM has the largest price-
performance ratio, followed by sockets, synchronous R-
OSGi, asynchronous R-OSGi, and RBI/OSGi. The price-
performance ratio of MOM is most likely not fully repre-
sentative; our benchmark does not exercise the advanced
features of ActiveMQ (i.e., efficient broadcasting of mes-
sages to multiple receivers). If standard middleware must be
used, asynchronous RPC (i.e., as in R-OSGi) seems to mini-
mize price-performance. Based on this analysis, RBI/OSGi
represents a highly-promising alternative to standard mid-
dleware, offering a low price-performance ratio along with
an intuitive programming model.

5 Related Work

Remote Procedure Call (RPC) [17] has been one of
the most prevalent communication abstractions for build-
ing distributed systems, but its shortcoming and limitations



have been continuously highlighted [16, 21, 14]. Some
experts even claim that RPC has been harmful in terms
of its influence on distributed systems development, and
argue that a different communication abstraction becom-
ing dominant instead would have been beneficial [20].
Asynchronous messaging and events, including publish-
subscribe platforms [3], are frequently mentioned as supe-
rior alternatives to RPC.

As confirmed by our study, exposing distributed func-
tionality through a familiar procedure call paradigm of RPC
and its object-oriented counterparts provides expressiveness
and ease of implementation advantages. Our RBI/OSGi
abstraction attempts to address some of the limitations of
RPC, but to retain its advantages without the complexi-
ties of asynchronous processing incurred by message- and
event-based abstractions.

Some research has evaluated MOM and JMS implemen-
tations in terms of their respective performance, scalability,
and reliability [18, 13]. This research pursues a similar ob-
jective by evaluating five different middleware platforms to
help developers choose an appropriate platform for access-
ing services remotely.

6 Conclusion

Due to the advantages provided by services, SaaS has en-
tered the mainstream of commercial software development
and a growing percentage of computing functionality is be-
coming accessible as a service. The programmers who need
to access remote services are faced with the challenges of
choosing an appropriate middleware platform for the task at
hand. To assist the programmers in their decision process,
in this paper, we described a case study that compared the
performance, expressiveness, and reliability of five differ-
ent middleware platforms for accessing services remotely.
Our measurements and analysis not only help the program-
mers in choosing between different middleware platforms,
but also can inform the design of new abstractions for ac-
cessing services remotely.

References

[1] G. Banavar, T. Chandra, R. Strom, and D. Sturman. A case
for message oriented middleware. In Proceedings of the
13th International Symposium on Distributed Computing,
pages 1–18. Springer-Verlag London, UK, 1999.

[2] N. Brown and C. Kindel. Distributed Component Object
Model Protocol–DCOM/1.0, 1998. Redmond, WA, 1996.

[3] C. Damm, P. Eugster, and R. Guerraoui. Linguistic support
for distributed programming abstractions. In Proceedings of
the 24th International Conference on Distributed Comput-
ing Systems, 2004.

[4] B. Hayes. Cloud computing. Commun. ACM, 51(7):9–11,
2008.

[5] A. Ibrahim, Y. Jiao, E. Tilevich, and W. R. Cook. Remote
batch invocation for compositional object services. In The
23rd European Conference on Object-Oriented Program-
ming, July 2009.

[6] Y.-W. Kwon, E. Tilevich, and T. Apiwattanapong. DR-
OSGi: Hardening distributed components with network
volatility resiliency. In Proceedings of the ACM/I-
FIP/USENIX 10th International Middleware Conference,
Urbana, IL, USA, December 2009.

[7] T. J. McCabe. A complexity measure. In Proceedings of the
2nd International Conference on Software Engineering, Los
Alamitos, CA, USA, 1976.

[8] R. Monson-Haefel and D. Chappell. Java Message Service.
O’Reilly & Associates, Inc., Sebastopol, CA, USA, 2000.

[9] Object Management Group. The CORBA component model
specification. Specification, Object Management Group,
2006.

[10] OSGi Alliance. OSGi service platform release 4.2 specifi-
cation, 2009.

[11] M. P. Papazoglou and W.-J. V. D. Heuvel. Service-oriented
design and development methodology. International Jour-
nal of Web Engineering and Technology, 2(4):412–442,
2006.

[12] J. S. Rellermeyer, G. Alonso, and T. Roscoe. R-OSGi:
Distributed applications through software modularization.
In Proceedings of the ACM/IFIP/USENIX 8th Interna-
tional Middleware Conference, Newport beach, CA, USA,
November 2007.

[13] K. Sachs, S. Kounev, J. Bacon, and A. Buchmann. Per-
formance evaluation of message-oriented middleware us-
ing the specjms2007 benchmark. Performance Evaluation,
66(8):410 – 434, 2009.

[14] U. Saif and D. Greaves. Communication primitives for ubiq-
uitous systems or RPC considered harmful. In Proceedings
of the 21st International Conference Distributed Computing
Systems Workshop, 2001.

[15] J. W. Stamos and D. K. Gifford. Remote evaluation. ACM
Trans. Program. Lang. Syst., 12(4):537–564, 1990.

[16] A. S. Tanenbaum and R. v. Renesse. A critique of the remote
procedure call paradigm. In EUTECO 88, 1988.

[17] B. Tay and A. Ananda. A survey of remote procedure calls.
Operating Systems Review, 24(3):68–79, 1990.

[18] P. Tran, P. Greenfield, and I. Gorton. Behavior and per-
formance of message-oriented middleware systems. In
Proceedings of the 22nd International Conference on Dis-
tributed Computing Systems, pages 645–654, Washington,
DC, USA, 2002.

[19] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lind-
ner. A break in the clouds: towards a cloud definition. SIG-
COMM Comput. Commun. Rev., 39(1):50–55, 2009.

[20] S. Vinoski. RPC under fire. IEEE Internet Computing, pages
93–95, 2005.

[21] J. Waldo, A. Wollrath, G. Wyant, and S. Kendall. A note on
distributed computing. Technical report, Sun Microsystems,
Inc. Mountain View, CA, USA, 1994.


