
Code Quality Improvement for All:
Automated Refactoring for Scratch

Peeratham Techapalokul and Eli Tilevich
Software Innovations Lab

Dept. of Computer Science, Virginia Tech
{tpeera4, tilevich}@cs.vt.edu

Abstract—Block-based programming has been overwhelmingly
successful in revitalizing introductory computing education and
in facilitating end-user development. However, poor code quality
makes block-based programs hard to understand, modify, and
reuse, thus hurting the educational and productivity effective-
ness of blocks. There is great potential benefit in empowering
programmers in this domain to systematically improve the code
quality of their projects. Refactoring—improving code quality
while preserving its semantics—has been widely adopted in
traditional software development. In this work, we introduce
refactoring to Scratch. We define four new Scratch refactorings:
Extract Custom Block, Extract Parent Sprite, Extract Constant,
and Reduce Variable Scope. To automate the application of these
refactorings, we enhance the Scratch programming environment
with powerful program analysis and transformation routines.
To evaluate the utility of these refactorings, we apply them to
remove the code smells detected in a representative dataset of 448
Scratch projects. We also conduct a between-subjects user study
with 24 participants to assess how our refactoring tools impact
programmers. Our results show that refactoring improves the
subjects’ code quality metrics, while our refactoring tools help
motivate programmers to improve code quality.

Index Terms—block-based languages, software refactoring,
Scratch, code quality, code smells, program analysis, end-user
programming, introductory curriculum

I. INTRODUCTION

Block-based programming plays an essential role in re-
alizing the vision of CS for All [1], which renders com-
puting accessible to the broadest possible audience of pro-
grammers, many of whom are learners and end-users. A
highly popular block-based programming language is Scratch,
whose general design principles strive for “a low-barrier
to entry” for beginners and “a high-ceiling” for maturing
programmers to create increasingly sophisticated programs
over time [2]. Nevertheless, the Scratch community’s main
focus thus far has been on its “low-barrier to entry,” with
new command blocks that accommodate a wider audience by
rendering programming accessible and attractive. Perhaps as
an unintended consequence, the efforts to push the “ceiling”
higher have been somewhat deprioritized. Left to their own
devices, experienced programmers do get to work on advanced
sophisticated projects, but at the cost of their software growing
uncontrollably in size and complexity, with the overall code
quality becoming degraded over time.

As it turns out, the issues of code quality reduce the
pedagogical effectiveness of block-based programming [3], [4]
as well as the attractiveness of blocks for serious end-user
programming pursuits [5]. Consequently, this programming
community can no longer afford to neglect the issues of code
quality and its systematic improvement. To that end, support
for improving code quality can play an important role in
elevating the “ceiling” of block-based programming, while
also transforming code quality improvement into a regular
practice of novice programmers and end-user developers.

As first steps on the way to improving quality, several
recent research efforts have focused on identifying recurring
quality problems in block-based software [6], [4]. However,
once faced with the identified quality problems, a programmer
needs to decide whether to spend the time and effort required
to fix them. In fact, evidence suggests novice programmers
in this domain refrain from engaging in quality improvement
practices [7], despite being sufficiently proficient in program-
ming to improve their code. Across all levels of expertise,
novice programmers have been observed introducing a high
number of quality problems in their code [8].

Integrating quality improvement practices into the software
development process can be prohibitively expensive for pro-
fessional software developers, let alone novice programmers
and end-users. For text-based languages, automated refactor-
ing has become an indispensable quality improvement tool
[9]. Refactoring systematically improves code quality, while
keeping its functionality intact, ensured by its sophisticated
program analyses and behavior-preserving program transfor-
mations. Alas, major block-based programming environments
only support the most rudimentary Rename refactoring, which
removes the Uncommunicative Name code smell [4]. However,
other highly recurring quality problems (e.g., code duplication)
make block-based projects hard to understand, modify, and
reuse. To be able to improve the code quality of their projects,
programmers need well-documented refactorings for Scratch
and programming support, which both identifies refactoring
opportunities and applies them automatically. Systematically
supporting Scratch programmers in improving the code quality
of their projects can increase the pedagogical and productivity
benefits of this programming domain.

To address this problem, we added automated refactoring
support to Scratch 3.0, validated by implementing four refac-
torings that remove code smells, reported as highly recurring

978-1-7281-0810-0/19/$31.00 c©2019 IEEE

in prior studies [6], [4]. EXTRACT CUSTOM BLOCK puts the
repeated sequences of statement blocks into a new procedure,
invoked in place of the sequences. EXTRACT PARENT SPRITE re-
moves duplicate sprites (programmable objects) by introducing
a special construct that clones a sprite multiple times. EXTRACT

CONSTANT replaces recurring constant expressions with a new
variable, initialized to that expression. REDUCE VARIABLE SCOPE

changes a variable scope accessibility from all sprites (default
setting) to a given sprite.

With the exception of EXTRACT CUSTOM BLOCK, these refac-
torings would be novel even without automated application.
They provide the Scratch community with a vocabulary to
communicate about semantic preserving transformations that
improve code quality. These refactorings are also uniquely
applicable to Scratch, as it is this language’s domain-specific
features and distinct programming practices that cause the
code smells these refactorings remove. EXTRACT CUSTOM BLOCK

does have counterparts in text-based languages, but to correctly
carry out this refactoring in Scratch requires verifying a
different set of correctness preconditions.

To determine the potential usefulness of the introduced
refactorings, we apply them to a representative sample of
448 Scratch projects in the public domain. We ran a user
study to investigate whether the availability of our refactoring
impact the studied participants improving code quality and
their opinion about code quality and our refactoring tools.

The evaluation results show that overall (3 out of 4 refac-
torings) show the high applicability of 79% or higher, when
applied to the code smells previously shown to be highly
prevalent in the Scratch codebase. Each refactoring positively
impacts its respective software metrics, which improve various
code quality attributes, including program size, comprehensi-
bility, modifiability, and abstraction. Our user study results
suggest that the presence of actionable improvement hints and
the associated refactorings motivates programmers to improve
code quality. To the best of our knowledge, this work is the
first effort to introduce automated refactoring to Scratch. By
describing the design, implementation, and evaluation of our
approach, this paper makes the following contributions:

1) A catalog of four refactorings for Scratch that removes
highly recurring code smells.

2) An intuitive user interface for refactoring, whose ac-
tionable and contextualized coding hints encourage pro-
grammers to engage in improving code quality.

3) An experimental study that evaluates the applicability
and utility of the introduced refactorings.

4) A user study that investigates the impact of our refac-
toring tools on programmers.

5) A software architecture and reference implementation of
a refactoring engine for Scratch 3.0, featuring program
analyzers and automatic code transformation.

The rest of the paper is structured as follows. Section
II provides the technical background of this research and
compares this work to the related state of the art. Section
III presents a catalog of Scratch refactorings. Section IV
describes our automated software refactoring support. Section

V evaluates the introduced refactorings. Section VI discusses
the significance of the evaluation results. Section VII presents
concluding remarks and future work directions.

II. BACKGROUND AND RELATED WORK

This section provides the background information required
to understand our contributions and also reviews the most
closely related prior research efforts.

A. Block-Based Programming Languages

By lowering the barrier to entry for beginner programmers,
block-based programming has achieved an unprecedented level
of success and popularity [10]. The two areas in which block-
based programming has been most successful are introductory
computing education and end-user programming. In this do-
main, programming environments typically separate the front-
end blocks editor from the back-end execution engine, with
this separation enabling different languages to reuse the same
blocks editor.

Our analysis and infrastructure targets Scratch [2]. To sup-
port automated refactoring, we enhance the latest version of
Scratch, whose blocks editing interface is built on Blockly
[11], a popular blocks editing framework. With minimally
built-in semantic analyses capabilities, the Blockly framework
leaves it up to language designers to implement the nec-
essary semantic analyses capabilities. Refactoring relies on
program analyses, whose program representation differs from
the blocks editor’s representation, designed for rendering and
interactively manipulating blocks.

B. Automated Software Refactoring

Automated software refactoring has received considerable
attention from the research community [12]. We review the
most closely related examples of prior work, from which we
draw lessons and insights required to design and implement
automated refactoring support for block-based languages.

a) Analyses and Transformations: Several facets of our
refactoring infrastructure build upon the prior advances in au-
tomated refactoring despite its text-based context. Refactoring
engines commonly operates on the representation known as a
program graph [13], an AST augmented with semantics edges
that express various relationships (e.g., reference binding, def-
use chains, etc.). We adopt this representation for its flexibility
in analyses and transformations, in which additional semantics
edges are introduced as required by a given analysis. For
example, control flow and data flow analyses in Scratch
require the information about broadcast-receive relationship
in the program. To that end, we leverage JastAdd, a Java-
based language processing framework by Hedin and Eva [14].
Our analyses follow the design of the AST-level extensible
intraprocedural program analysis by Söderberg et al. [15].

b) Refactoring for Blocks: Despite its ubiquitous avail-
ability in the IDEs for text-based languages, refactoring has
only been scarcely applied in the domains of end-user pro-
gramming (e.g., pipe-like mashups [16], spreadsheet [17]).
In block-based programming, the Blockly framework pro-
vides rudimentary refactoring support: renaming variables and

changing function signatures (i.e., add parameters and change
their order). These built-in refactorings can be implemented by
following a simple match-and-replace program transformation
strategy, insufficient to support our advanced refactorings.

Several prior works analyze code quality [6], [4] and create
analysis tools (i.e., Hairball [18], Dr.Scratch [19], and Quality
Hound [20]). However, these prior works neither focus on how
to address quality problems nor on how to apply automated
tools. By identifying recurring Scratch code smells, these prior
works inspire the refactorings described herein.

We designed our refactoring user interface to favor simplic-
ity over versatility, in line with our target audience. That is, a
quality hint is presented as a light bulb, on which the program-
mer can mouse over to see the suggested code improvement
context, and then right-click to apply the suggested refactoring.
We chose this simple design over more complex interfaces,
such as those that embrace the native drag-and-drop idioms of
block-based programming. Even though these idioms inspired
a novel refactoring user interface for Java [21], they would be
poorly suited for refactoring block-based code, as they require
a detailed knowledge of the source and target destinations
of the intended refactoring transformations. Hence, drag-and-
drop refactoring interfaces are better suited for object hier-
archies, with clearly delineated boundaries between program
constructs. Our user study answers the fundamental question
of whether access to automated refactoring support motivates
novice programmers and end-users to improve code quality in
this domain.

III. REFACTORING CATALOG

Next we present our refactoring catalog. For each refac-
toring, we list its rationale and preconditions. Due to space
limitation, we only illustrate the affected program parts before
and after the application of complex refactorings.

A. Extract Custom Block

This refactoring creates a procedure, whose body comprises
the repeated code fragment being refactored, and replaces all
occurrences of this fragment with the appropriately parame-
terized invocations of the created procedure.

Precondition: For behavioral preserving transformation,
each argument to be parameterized must be a constant and
can be parameterized. Note that some blocks accept a drop-
down option value and cannot be parameterized. Finally,
the extracted fragment must not contain the control flow
terminating command (i.e., “stop <this script>” block).

B. Extract Parent Sprite

This refactoring removes duplicate sprites by extracting
the parent sprite which instantiates its children clones us-
ing “create clone of <target>” block1. Encapsulated
within a sprite, the same code is not only easier to modify, but
is also amenable to other localized refactorings (e.g., EXTRACT

CUSTOM BLOCK, EXTRACT CONSTANT, etc.). Automated refactoring
cannot remove sprite duplicates in all cases. Some of the

1https://en.scratch-wiki.info/wiki/Cloning

. . .

repeat 2

change ghost effect by -50

. . .

repeat 10

change ghost effect by -10

. . .

define fade speed step

repeat speed

change ghost effect by step

1

2

3

. . .

fade 2 -50

. . .

fade 10 -10

. . .

Fig. 1. EXTRACT CUSTOM BLOCK

removals require adding boilerplate code, which would be
hard to generate automatically and require advanced program-
ming expertise to understand. Hence, the refactoring presented
herein is applicable when sprite duplicates share similar code
(usually at the beginning when a duplicate has just been in-
troduced). Note that the “hide” block is immediately executed
in the parent sprite, so as to emulate an invisible prototype
object, whose only purpose is to clone visible children.

Preconditions: Sprite duplicates have identical set of scripts
(exact code duplication, without variation in literals and identi-
fiers (e.g. variable references)). Each sprite duplicate contains
no scripts starting with the “when I start as a clone”
block. Finally, this Each sprite duplicate uses a single costume.

when clicked

hide

switch to costume star1

create clone of myself

switch to costume star2

create clone of myself

sprite: Star1

star1

when clicked

go to random position

forever

flickers

sprite: Star

when I start as a clone

show

when I start as a clone

go to random position

forever

flickers

sprite: Star2

star2

when clicked

go to random position

forever

flickers

Star1 Star2

1

2

3

4

5

Fig. 2. EXTRACT PARENT SPRITE

C. Extract Constant

This refactoring replaces replicated constant values with a
variable. Descriptively named variables improve comprehen-
sion and modifiability [22]. The only precondition is that the
replicated values must be of type literal.

D. Reduce Variable Scope

This refactoring changes the scope of an existing variable
from being accessible to all sprites to only a given sprite. If
global scope for a variable is not needed, reducing its scope
improves the sprite’s data encapsulation.

Preconditions: Only one sprite modifies the rescoped vari-
able (though it can be read by multiple sprites)

IV. REFACTORING FOR SCRATCH

Although we introduce automated refactoring to Scratch,
our general architecture and design can be applied to any
block-based programming environment.

Overall Architecture: Exposed as remote services, the
required program analysis and transformation functionalities
integrate non-intrusively. Passed a serialized form of the edited
program as input, these services analyze and detect code
smells, returning the computed refactoring transformations.

Implementation: Based on its input parameters, the refac-
toring engine analyzes and transforms the edited program. The
refactoring parameters can be specified by the programmer
or in our case automatically extracted from the smells (e.g.,
DUPLICATE CODE → EXTRACT CUSTOM BLOCK request). Before
performing any transformations, the refactoring engine de-
termines whether a given refactoring request satisfies all of
its preconditions. In the transformation phase, the refactoring
engine modifies the analysis AST, while recording each mod-
ification as a transformation action. Having been transferred
back to the client-side, this atomic sequence of actions is
applied to the program model, maintained by the block-based
programming environment. The actions are applied in the
specified order, as each of them modifies program state.

Fig.3 shows some transformation action types used to
implement EXTRACT CONSTANT. Each action is persisted, so the
client can replay the corresponding transformations on the
client-side’s program model. Our design assumes all program
elements (both blocks and non-blocks) can be looked up based
on their string IDs, so program changes can be mapped across
representations. Additionally, the blocks editor can serialize
and deserialize its internal program model (e.g., in XML or
JSON data format).

Our program analysis and transformation operate on an AST
by means of JastAdd [14], a language processing framework

Sprite

Script

Loop
Stmt

Expr
Stmt

Assign
Stmt

/ScriptList/

/VarDecls/

VarDecl

Block
Seq

body

Expr
Stmt1

2

3

Num
Literal

Expr
Stmt

Var
Access

4

5

Extract Constant Request:
Param: List<Literal> // all "167"
VarName: "xpos"

BlockReplaceAction
target: num_literal_id
with: var1_id

VarDeclarAction
name: xpos
id: var1_id

BlockCreateAction
xml: <block type: setvar ...

BlockInsertAction
target: loopstmt_id
with: setvar_id

BlockCreateAction
xml: <block type: data-var...

Seq. of Actions

...

1

2

3

4

5

apply
transformations

1.) build AST
2.) check preconds.
3.) compute transforms

Fig. 3. Different stages of EXTRACT CONSTANT refactoring

previously mentioned in II. We express various relationships
between program elements in a program graph with its declar-
ative specification language to augment the AST classes.

Fig.3 illustrates the major phases of refactoring with an
example of performing EXTRACT CONSTANT. The first phase
starts with a refactoring request, whose parameters for EXTRACT

CONSTANT comprise all the block’s IDs of all duplicate literals
and the edited program. To determine if all preconditions
are met, the server-side refactoring engine executes various
analysis routines (e.g., check preconds) on the parsed AST.
Then, the engine computes and record a sequence of transfor-
mations (i.e., “Actions”) that put the refactoring into effect
(“compute transforms”). The resulting transformation actions
are serialized and returned to the blocks editor, which presents
the discovered smell hints along with the suggested refactoring
transformations (“apply transformations”).

Refactoring Interface Design: While experienced pro-
grammers eagerly refactor their code, novice programmers are
unfamiliar with the practice. Hence, the latter’s willingness to
refactor needs to be encouraged with a friendly and intuitive
user interface. Refactoring starts from identifying code whose
quality can be improved, a hard task that is even harder
for novice programmers. To render refactoring accessible to
our target audience, we follow two key design principles,
also demonstrated in the screenshot in Fig.4, an example of
applying EXTRACT CUSTOM BLOCK refactoring to a real-world
Scratch project.

1) Code smells should be presented as improvement op-
portunities to the programmer. Fig.4A displays a code
hint as a light-bulb icon, indicating an opportunity for
improving code quality (EXTRACT CUSTOM BLOCK in this
case). Whenever possible a hint should be visually con-
textualized. For EXTRACT CUSTOM BLOCK refactoring, our
refactoring interface highlights duplicate code blocks.

2) Refactoring should be immediately actionable. Instead
of relying on the programmer to specify the required
refactoring parameters, as in traditional refactoring, the
infrastructure should present only the actions ready for
the programmer to act upon. Fig.4B shows “Help me
create the custom block”, the only available action for
this hint in a simple terminology that can be easily
understood by novice and end-user programmers.

Note that in this example, an additional refactoring hint,
shown after the application of EXTRACT CUSTOM BLOCK, suggests
to the programmer that the just-extracted custom block should
be meaningfully renamed.

V. EVALUATION

Automated refactoring can become helpful for novice and
end-user programmers in improving the quality of their
projects, as long as the refactorings are applicable, useful,
and accessible for this programming audience. Our evaluation
seeks answers to the following questions:

RQ1. How applicable is each introduced refactoring?
RQ2. How do the refactorings impact code quality?

A

B

C

Fig. 4. A screenshot of the EXTRACT CUSTOM BLOCK refactoring invocation interface for Scratch

RQ3. Do refactoring tools motivate quality improvement?

To answer RQ1 and RQ2, we experimentally evaluate a
representative sample of Scratch projects. We refactor the code
smells, automatically detected by our infrastructure’s smell
analysis modules. To answer RQ3, we conduct an online
between-subjects study, in which participants in the treatment
group interact with our refactoring infrastructure and answer
survey questions.

A. Experimental Evaluation

We limit the scope of our evaluation to highly prevalent
smells and whether our refactorings can remove them. Note
that some refactorings can remove more than one type of
code smell (e.g., EXTRACT CUSTOM BLOCK can remove both
LONG SCRIPT [4] and DUPLICATE CODE smells). Hence, if we
were to apply the available refactorings to remove all auto-
matically detected smells, such an evaluation strategy would
distort the applicability results and the refactored code qual-
ity, as some of the detected smells may not be indica-
tive of actual quality problems (e.g.,what constitutes a LONG

SCRIPT is highly subjective). To avoid such distortions, our
evaluation considers the following fixed SMELL→REFACTORING

pairs: DUPLICATE CODE→EXTRACT CUSTOM BLOCK, DUPLICATE

SPRITE→EXTRACT PARENT SPRITE, DUPLICATE CONSTANT→EXTRACT

CONSTANT, and BROAD SCOPE VARIABLE→REDUCE VARIABLE SCOPE.
Evaluation Dataset: To assess how viable the refactorings

are, we measure the applicability and impact of applying them
to third-party Scratch programs. An API request2 to MIT’s
Scratch service retrieves a list of projects, divided into two
categories of approximately equal size: (1) trending and (2)
recent. This subject selection strategy ensures that we conduct
our evaluation on a diverse sample of projects created by
the Scratch community. We collected a total of 448 projects
51% among them were viewed at most once, with the rest
of projects were viewed on average 12,749 times. Among the
subject projects, 88% were remixed at most once and the rest
were remixed on average 93 times.

2https://scratch.mit.edu/explore/projects/all/<recent>|<trending>

Code Smell Definition and Detection Criteria

Duplicate
Code

2 or more code fragments, containing more than one statement,
are duplicate if they have identical structure except for varia-
tions in identifiers and literals (type II in clone classification
[23]). If multiple duplicate fragments overlap, the largest is
selected.

Duplicate
Sprite

2 or more sprites are duplicate if each script within one of the
sprites is duplicated in the others.

Duplicate
Constant

Exact literals of at least 3 characters that are replicated at least
twice (the thresholds identified experimentally to reduce false
positive results)

Broad Scope
Variable

A variable declared in the global scope (Stage), but assigned
only locally in a single sprite

TABLE I
CODE SMELL DEFINITIONS

RQ1. Refactoring Applicability: For each refactoring,
we assess its applicability by calculating the percent of its
associated smells that are refactorable. Because code smell
definitions affect the applicability of refactorings, Table I lists
the considered smells and their detection criteria as the bases
for interpreting our evaluation results.

Smell → Refactoring Afflicted
Projects

Total
Smells

Refactored
Smells

Duplicate Code → Extract Custom Block 181 (41%) 290 229 (79%)
Duplicate Sprite → Extract Parent Sprite 142 (32%) 193 22 (11%)
Duplicate Constant → Extract Constant 194 (43%) 453 453 (100%)
Broad Scope Var. → Reduce Var. Scope 94 (21%) 145 118 (81%)

TABLE II
APPLICABILITY (N=448)

Results: Table II summarizes the results of evaluating
refactoring applicability. In our evaluation, as long as a project
contains at least one instance of a given code smell, the project
is considered afflicted by that smell. Different smells have been
found to afflict different projects in the evaluation dataset.

Afflicting over 30% of the subject projects, duplication-
related smells are the most prevalent; afflicting around 21%,
BROAD SCOPE VARIABLE is the least prevalent smell. One project
may contain more than one instance of the same code smell
(Total.Smells > No.Afflicted.Projects). We use all detected
smells to evaluate refactoring applicability.

Metric Definition

LOC # statement blocks within a program
Complex Script Dens. % of scripts (including procedure) with Mc-

Cabe’s cyclomatic complexity [24] value > 10
(risk threshold according to [25])

Long Script Dens. % of scripts (including procedure) with LOC
> 11 LOC (threshold empirically determined in
previous work [4])

Procedure Dens. # procedures within a program per 100 LOCs
No. Literals # literals (numbers and strings) within a program
No. Global Var. # global variables
No. Create Clone Of. # CREATECLONEOF<TARGET> blocks

TABLE III
METRICS DEFINITIONS

The applicability of the introduced refactorings varies
widely. With the success rate of over 75%, EXTRACT CONSTANT,
REDUCE VARIABLE SCOPE, and EXTRACT CUSTOM BLOCK are the
most applicable refactorings. EXTRACT CUSTOM BLOCK’s precon-
dition failures are due to the variations in duplicate fragments
failing to satisfy the preconditions (60% of the variations
contain global variables and 31% contain non-constant ex-
pression blocks; 9% are located at non-parameterizable input
slots). As expected, EXTRACT PARENT SPRITE is the least ap-
plicable refactoring due to its restrictive preconditions—only
11% of the detected smell instances can be refactored. The
reason for failures is that EXTRACT PARENT SPRITE cannot handle
certain duplicate sprites, out of which 63% differ slightly in
terms of their contained code, 33% are multi-costumes, and
4% contain scripts starting with the “when I start as a

clone” block. Overall, we observe the introduced refactorings
to be satisfactorily applicable to the highly recurring smell
types. Even the least applicable refactoring—EXTRACT PARENT

SPRITE—can be applied frequently enough.
RQ2. Refactoring Impact on Quality: To assess how

each refactoring impacts program quality, we apply all the
evaluated refactorings in sequence on each of the detected
smell type instances. We then compute the relevant software
metrics of the original and the refactored versions of each
subject program, so as to determine the difference or the delta
in code quality, which serves as a measure of refactoring
quality impact. Table III defines the software metrics used.

Results: Table IV summarizes the characteristics of the
detected smells that are refactorable. Table V summarizes the
percentage changes for different software metrics before and
after performing each refactoring. To help the reader interpret
the results, the last column translates the mean deltas into
percent improvements. Group Size refers to the number of
replications of a given program element. Next, we describe
the results in terms of different code quality attributes. Total
Uses refers to the number of times a given variable is read in
a project. External Uses refers to the number of times a given
variable is read from outside the sprite in which it is defined.

Size: We expect duplication-eliminating refactorings to
remove redundant code and decrease the code size of the
afflicted projects. We observe that EXTRACT CUSTOM BLOCK

reduces a varying level of code size. A small improvement
in code size is due to the small number of repetitions detected
more frequently than bigger ones. Thus, most projects see a

Metrics N Min p25 Med Mean p75 Max

Duplicate Code
Group Size 229 2 2 3 3.05 3 20
Fragment Size 229 3 3 4 5.05 6 27

Duplicate Sprite
Group Size 22 2 2 2.5 22.86 4.75 238
Sprite Size (LOC) 22 1 1 1.0 1.64 2.00 3

Duplicate Constant
Group Size 453 5 5 6 8.96 10 113
Literal Length 453 2 2 3 3.14 3 58

Broad Scope Variable
Total Uses 118 0 1 1 2.73 2.00 60
External Uses 90 0 0 0 0.47 0.75 6

TABLE IV
CHARACTERISTICS OF REFACTORABLE SMELLS

mean decrease in LOC by 3.38%. Though less applicable,
EXTRACT PARENT SPRITE refactoring removes large duplications
at the sprite level. A subset of projects afflicted by DUPLICATE

SPRITE see a greater mean decrease in LOC by 8.49%.
Comprehension: We expect EXTRACT CUSTOM BLOCK to

help shorten some long scripts and reduce the number of
complex scripts due to the original script being extracted. We
observe 4.4% decrease in the number of long scripts. On the
other hand, we only observe a slight improvement in terms
of the reduction in the number of complex scripts (5.77%)
indicating that most refactorable Duplicate Code smells are
not located within complex scripts.

Modifiability: Although the software metrics literature
still lacks a definitive metrics known to faithfully capture code
modifiability, we can still reason about certain code modifi-
ability improvements by measuring the number of repeated
functionalities that have become localized in a single reusable
program unit (i.e., procedure for DUPLICATE CODE, parent sprite
for DUPLICATE SPRITE, and variable for DUPLICATE CONSTANT). In
Table IV, the Group Size characteristic of these refactored
duplication-related smells reflects the number of locations a
programmer needs to navigate to make similar changes in the
duplicate parts.

Abstraction: Duplication-eliminating refactorings have
an obvious impact on abstraction (i.e., EXTRACT CUSTOM BLOCK

increases procedural abstraction, EXTRACT PARENT SPRITE in-
creases object abstraction, and EXTRACT CONSTANT increases
uses of variable, a basic data abstraction). Lastly, REDUCE

VARIABLE SCOPE improves information hiding or encapsulation,
which correlates with the increase in the usage of local
variables. The result indicates the refactored projects (N=41)
which have used local variables at least once could see an
increased usage of local variables by almost 54% on average.
A great room for improvement in the usages of local variable
is expected as changing the scope of declared variable in
Scratch is an expensive and tedious transformation requiring
the programmer to create a new variable with the intended
scope and replace each existing variable block with the newly
created one manually.

B. User Study

We conducted an online user study, facilitated by Amazon’s
Mechanical Turk, in order to gain access to a diverse pool of

% Change Statistics %
Improve

Metrics N Min p25 Med Mean p75 Max

EXTRACT CUSTOM BLOCK
LOC 147 -29.70 -4.16 -1.65 -3.38 -0.67 0.00 +3.38%
Complex Script Dens. 52 -100.00 -4.00 -2.47 -5.77 -1.44 -0.28 +5.77%
Long Script Dens. 137 -100.00 -6.45 0.66 -4.40 1.97 42.24 +4.4%
Procedure Dens. 46 2.72 13.61 35.48 49.98 54.73 222.15 +49.98%

EXTRACT PARENT SPRITE
LOC 20 -94.15 -12.71 -0.69 -8.49 4.45 41.18 +8.49%
No. Sprites 20 -96.39 -58.48 -12.70 -31.07 -8.90 -3.85 +31.07%

EXTRACT CONSTANT
No. Literals 194 -65 -14.02 -8.33 -11.53 -4.7 -0.89 +11.53%

REDUCE VARIABLE SCOPE
No. Local Variable 43 2.22 7.28 20 52.42 66.67 200 +52.42%

TABLE V
PERCENTAGE CHANGES OF SOFTWARE METRICS BEFORE AND AFTER REFACTORINGS

novice and experienced participants. A total of 24 participants
took part in the study. 7 out of 13 participants in the treatment
group reported having programming experience as compared
to 4 out of 11 in the control group. The participants took 30
minutes on average to complete the study (1-hour hard limit)
and were compensated $3 for completing the assignment. This
study investigated the impact of the availability of refactoring
tools (i.e., code quality hints and automatic refactorings) on
the propensity of programmers to improve the quality of their
code. To that end, the participants were first primed to use
custom blocks to improve program comprehensibility, and then
encouraged to improve their code, amenable to the EXTRACT

CUSTOM BLOCK refactoring.
The participants first answered background questions about

their programming experience and familiarity with Scratch.
Then they received a short introduction to Scratch program-
ming and custom blocks. To prime the participants to think
about code quality, they were asked to rank two program
versions on their comprehensibility (both performed the same
animation but one was a refactored version of the other).
The participants were presented with a programming task that
required reusing in two places an existing block sequence
in the workspace. In order to understand what the block
sequence did, it was expected to be run. Manually extracting
a parameter-less custom block from this code sequence took
5 editing steps. The participants were asked to make sure
their code was easy to understand before completing the
task. In the remainder of the study, the control and treatment
groups diverged. Only the treatment group was exposed to
DUPLICATE CODE hints and the associated EXTRACT CUSTOM BLOCK

refactoring.
RQ3. Refactoring Tools Motivating Quality Improve-

ment: To investigate how the treatment affected the likelihood
of the participants improving code quality, we instrumented
our custom Scratch editor to record the following two program
versions: 1) the first submission attempt, before participants
were asked to make their code easy for others to understand;
and 2) the final submission. To understand how the presence
of refactoring tools impacted the participants’ attitude toward
code quality, we asked them to complete a post-study survey.

Results: The study results for each question are:

RQ3.1 Engagement with improving code quality: We tested
whether the participants, who chose to engage in improving
code quality, depended on receiving our improvement hints
and their suggested refactorings. To that end, we performed a
Chi-square independence test. The relationship between these
variables turned significant, (χ2 (1, N = 24) = 8.48, P=.004),
thus implying that programmers receiving hints were likely to
follow them in applying the suggested refactorings.

When asked which of the program versions they found
easier to understand, 25% of the participants chose the original
version, while 75% of them chose the refactored one. We
looked further if the participants’ preference for their choices
affected their engagement in improving code quality. Among
the participants who chose the “refactored version” as being
easier to understand, only 12.5% in the control group ended
up improving the code quality, as compared to 80% of the
participants in the treatment group.

RQ3.2 Code quality perception: When asked whether their
finished programs would be easy to understand for novice
programmers, 85% of the participants in the treatment group
agreed as compared to 91% in the control group.

RQ3.3 Improvement hints and refactoring usefulness: The
treatment group was asked how useful they found the improve-
ment hints and the associated refactorings in making their code
easy for others to understand. The vast majority of the group
members found our refactoring tools useful: 54% very useful
and 38% extremely useful.

C. Threats to Validity

Our study had several threats to validity. Our experimental
evaluation results only reflected the partial applicability and
quality impact of each refactoring to the studied code smells.
As mentioned, some of these refactorings were applicable in
additional code smells/scenarios, but not all of them could be
properly covered in one study. Because performing a refac-
toring is a subjective decision, the results did not necessarily
equate with the actual applicability and quality impact. Never-
theless, one can see from our results the potential usefulness
of providing such support for the programmers in this domain.

In our user study, the participants with some programming
experience, but no familiarity with Scratch represented almost

a half of the total participants. Although we intended to include
more results from novice participants, it would be impossible
for us to make use of their incomplete task results. Al-
though, as expected, programming experience was positively
correlated with completion rates, it showed no influence on
our intervention. The programming task used in the study
was not representative of the real world programs in this
domain. However, it was reasonably complex for a half of
the participants that had no programming experience.

VI. DISCUSSION

Overall, the results of our experimental evaluation and
user study are quite revealing. The introduced refactorings do
improve the code quality metrics by removing recurring code
smells from the representative projects. We have also observed
that the presence of improvement hints and their associated
refactorings positively influences how programmers perceive
code quality and its systematic improvement.

Suggesting Quality Improvements: Although automated
hints help detect quality problems, some of the detected
quality problems may not need to be refactored due to their
triviality. A better alternative can be to provide hints in the
form of before and after examples. Other detected problems
make poor subjects for automated refactoring due to their
high complexity. Indeed, fixing some of these problems may
require significant programmer involvement (e.g., to come up
with a meaningful name). Finally, some problems are simply
not amenable to automated refactoring due to the complexity
of formalizing the required general transformation strategies.
Nevertheless, some non-trivial refactorings would likely to
present a cognitive burden and may interrupt the creative flow,
without seamless and effective automated support to encourage
their application.

Perceived Code Quality Judging code quality remains
somewhat subjective as our user study results reveal. The
participants regardless of their programming experience per-
ceive code quality (program comprehensibility) differently.
The participants also rate their code positively on how easy
it is to be understood by other programmers new to the
language, even though their finished programs exhibit a similar
quality to the programs they previously ranked as being harder
to understand. Receiving no suggestions, programmers may
be unaware about all the different alternatives they have to
achieve their goal. The availability of automated refactoring
influences programmers to become aware of code quality and
how they can improve it.

Educational Benefits: These improvement hints and their
associated refactorings can provide a timely intervention to
help novice programmers become aware of alternative design
and implementation options that can improve code quality. For
example, certain quality hints and refactorings may alleviate
the low usage of procedures (a well-documented observation
in a prior work [26]), thus elevating the role of procedural
abstraction—a fundamental concept in CS education and pro-
fessional software development—in this domain. Our evalua-
tion results focusing on the participants without programming

experience are very encouraging. Custom blocks or procedures
are considered somewhat a hard concept not introduced until
later in the introductory curriculum. However, most of the non-
programmer participants in the treatment group were able to
take advantage of our refactoring tools and perceive the hints
and their suggested code improvement actions positively.

VII. CONCLUSION AND FUTURE WORK

This paper describes our effort to introduce automated refac-
toring to Scratch, a widely used block-based programming
language. To demonstrate the practicality of our analysis and
transformation infrastructure, we implement four refactorings
that remove highly recurring Scratch code smells, identified
in prior works. By providing their rationales, preconditions
and transformation strategy, we systematically document these
Scratch refactorings for use by both programmers and lan-
guage designers. To assess the potential usefulness of each
introduced refactoring, we experimentally evaluate the appli-
cability and quality impact of each refactoring on a dataset of
448 projects. Our evaluation results show that the introduced
refactorings are highly applicable, while their application
improves code quality.

Our refactoring infrastructure helps overcome two main
hindrances: programmers being unaware of code improvement
opportunities and the programming burden of the improve-
ments. Our infrastructure provides coding hints with immedi-
ately actionable suggestions to carry out the refactorings. Our
user study reveals that the presence of improvement hints and
associated automatic refactorings increases the likelihood of
programmers deciding to improve code quality.

Although this work focuses on Scratch, our experiences
and findings can benefit designers and developers of other
block-based programming environments. Future designs of
block-based environments can be improved to make pro-
gram analyses and transformations easily accessible, so as
to facilitate the development of semantic editing support, in
addition to improving code quality. Our findings serve as a
starting point in determining which refactorings are likely to
be useful and worthwhile to programmers in this domain. We
plan to investigate further how novice programmers interact
with the refactoring tools as part of the overall programming
process. The following research questions arise: How the
presence of refactoring tools affects how novice and end-user
programmers code? How effectively this presence raises the
code quality awareness among programmers? The answers
could inform the research community how much providing
refactoring support raises the importance of code quality in the
minds of programmers in this increasingly important domain.

ACKNOWLEDGMENTS

The authors would like to thank Franklyn Turbak and
the anonymous reviewers for their valuable feedback that
helped improve this manuscript. This research is supported
by the National Science Foundation through the Grant DUE-
1712131.

REFERENCES

[1] M. Smith, “Computer science for all,” 2016. [Online]. Available:
https://www.whitehouse.gov/blog/2016/01/30/computer-science-all

[2] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond,
K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman et al.,
“Scratch: programming for all,” Communications of the ACM, vol. 52,
no. 11, pp. 60–67, 2009.

[3] F. Hermans and E. Aivaloglou, “Do code smells hamper novice program-
ming? A controlled experiment on Scratch programs,” in 2016 IEEE
24th International Conference on Program Comprehension (ICPC), May
2016, pp. 1–10.

[4] P. Techapalokul and E. Tilevich, “Understanding recurring quality prob-
lems and their impact on code sharing in block-based software,” in
Proceedings of IEEE Symposium on Visual Languages and Human-
Centric Computing, VL/HCC, 2017.

[5] Y. Ohshima, J. Mnig, and J. Maloney, “A module system for a general-
purpose blocks language,” in 2015 IEEE Blocks and Beyond Workshop
(Blocks and Beyond), Oct 2015, pp. 39–44.

[6] F. Hermans, K. T. Stolee, and D. Hoepelman, “Smells in block-
based programming languages,” in 2016 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), Sept 2016, pp.
68–72.

[7] G. Robles, J. Moreno-León, E. Aivaloglou, and F. Hermans, “Software
clones in Scratch projects: On the presence of copy-and-paste in com-
putational thinking learning,” in Software Clones (IWSC), 2017 IEEE
11th International Workshop on. IEEE, 2017, pp. 1–7.

[8] P. Techapalokul and E. Tilevich, “Novice programmers and software
quality: Trends and implications,” in 2017 IEEE 30th Conference on
Software Engineering Education and Training (CSEE&T), Nov 2017,
pp. 246–250.

[9] E. Murphy-Hill, C. Parnin, and A. P. Black, “How we refactor, and how
we know it,” 2009 IEEE 31st International Conference on Software
Engineering, pp. 287–297, 2009.

[10] D. Bau, J. Gray, C. Kelleher, J. Sheldon, and F. Turbak, “Learnable
programming: Blocks and beyond,” Commun. ACM, vol. 60, no. 6,
pp. 72–80, May 2017. [Online]. Available: http://doi.acm.org/10.1145/
3015455

[11] N. Fraser et al., “Blockly: A visual programming editor,” URL:
https://developers.google.com/blockly/, 2013.

[12] T. Mens and T. Tourwe, “A survey of software refactoring,” IEEE
Transactions on Software Engineering, vol. 30, no. 2, pp. 126–139, Feb
2004.

[13] J. L. Overbey and R. E. Johnson, “Differential precondition checking:
A lightweight, reusable analysis for refactoring tools,” in 2011 26th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE 2011), Nov 2011, pp. 303–312.

[14] G. Hedin and E. Magnusson, “JastAdd—an aspect-oriented compiler
construction system,” Science of Computer Programming, vol. 47, no. 1,
pp. 37–58, 2003.

[15] E. Söderberg, T. Ekman, G. Hedin, and E. Magnusson, “Extensible
intraprocedural flow analysis at the abstract syntax tree level,” Science of
Computer Programming, vol. 78, no. 10, pp. 1809 – 1827, 2013, special
section on Language Descriptions Tools and Applications (LDTA’08 &
’09) & Special section on Software Engineering Aspects of Ubiquitous
Computing and Ambient Intelligence (UCAmI 2011).

[16] K. T. Stolee and S. Elbaum, “Refactoring pipe-like mashups for end-user
programmers,” in Proceedings of the 33rd International Conference on
Software Engineering. ACM, 2011, pp. 81–90.

[17] S. Badame and D. Dig, “Refactoring meets spreadsheet formulas,” in
2012 28th IEEE International Conference on Software Maintenance
(ICSM), Sept 2012, pp. 399–409.

[18] B. Boe, C. Hill, M. Len, G. Dreschler, P. Conrad, and D. Franklin, “Hair-
ball: Lint-inspired static analysis of Scratch projects,” in Proceeding of
the 44th ACM technical symposium on Computer science education.
ACM, 2013, pp. 215–220.

[19] J. Moreno-León, G. Robles, and M. Román-González, “Dr. Scratch:
Automatic analysis of Scratch projects to assess and foster computational
thinking,” RED. Revista de Educación a Distancia, no. 46, pp. 1–23,
2015.

[20] P. Techapalokul and E. Tilevich, “Quality Hound — an online code smell
analyzer for Scratch programs,” in 2017 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), Oct 2017, pp.
337–338.

[21] Y. Y. Lee, N. Chen, and R. E. Johnson, “Drag-and-drop refactoring: In-
tuitive and efficient program transformation,” in 2013 35th International
Conference on Software Engineering (ICSE), May 2013, pp. 23–32.

[22] M. Fowler and K. Beck, Refactoring: Improving the Design of Existing
Code. Addison-Wesley Professional, 1999.

[23] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach,”
Science of Computer Programming, vol. 74, no. 7, pp. 470 – 495,
2009. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0167642309000367

[24] T. J. McCabe, “A complexity measure,” IEEE Transactions on Software
Engineering, pp. 308–320, Dec 1976.

[25] M. Bray, K. Brune, D. A. Fisher, J. Foreman, and M. Gerken, “C4 soft-
ware technology reference guide-a prototype.” Carnegie-Mellon Univ
Pittsburgh Pa Software Engineering Inst, Tech. Rep., 1997.

[26] I. Li, F. Turbak, and E. Mustafaraj, “Calls of the wild: Exploring
procedural abstraction in app inventor,” in 2017 IEEE Blocks and Beyond
Workshop (B&B), Oct 2017, pp. 79–86.

