
Assessing the Benefits of Computational
Offloading in Mobile-Cloud Applications

Tahmid Nabi Pranjal Mittal
Pooria Azimi Danny Dig

Oregon State University, USA
nabim,mittalp,azimip,digd@oregonstate.edu

Eli Tilevich
Virginia Tech, USA
tilevich@cs.vt.edu

Abstract
This paper presents the results of a formative study conducted
to determine the effects of computation offloading in mobile
applications by comparing application performance (chiefly
energy consumption and response time). The study exam-
ined two general execution scenarios: (1) computation is
performed locally on a mobile device, and (2) computation
is offloaded entirely to the cloud. The study also carefully
considered the underlying network characteristics as an im-
portant factor affecting the performance. More specifically,
we refactored two mobile applications to offload their com-
putationally intensive functionality to execute in the cloud.
We then profiled these applications under different network
conditions, and carefully measured application performance
in each case. The results indicate that on fast networks, of-
floading is almost always beneficial. However, on slower
networks, the offloading cost-benefit analysis is not as clear
cut. The characteristics of the data transferred between the
mobile device and the cloud may be a deciding factor in de-
termining whether computation offloading would improve
performance.

Categories and Subject Descriptors D.2.8 [Software En-
gineering]: Metrics—Complexity Measures, Performance
Measures

Keywords Cloud offloading, Mobile applications, Energy
efficiency, Execution performance

1. Introduction
Mobile application developers often need to increase a mobile
application’s performance. The advancement of cloud and

distributed systems as well as growing bandwidth, can greatly
enrich the capabilities of today’s pervasive mobile devices.
Cloud computing provisions resources, including processor,
memory, and storage, not physically present on a local
device. Unlike traditional mobile applications, a mobile-
cloud application extends its execution beyond a local device,
utilizing the cloud to perform some or all of time-consuming
computations or queries which are beyond the device’s
capacity.

However, application developers lack clear guidelines to
determine whether offloading computation to the cloud would
improve performance. It may not be advantageous to offload
every computation in every situation. When determining
whether a computation is to be offloaded, one must balance
trade-offs, affected by several factors. In the past, these factors
have been studied in depth for traditional mobile applications,
but there is a need for a comprehensive study specifically for
cloud-backed mobile applications, also known as distributed
mobile applications. This paper reports on a formative study
we conducted to answer the following research questions:

• RQ1: What factors (e.g., input size, bandwidth) improve
application performance when offloading the computa-
tion?

• RQ2: Which of these factors are application-specific, and
which are device-specific?

• RQ3: How do variations in these factors affect application
performance for local and offloaded computations, and
can these factors alone inform whether one should offload
a computation at runtime?

To conduct our study, we identified a representative do-
main that might benefit from offloading; Optical Character
Recognition (OCR). Our reasons are outlined in section 3.1.
We then refactored two OCR applications (1 for Android and
1 for iOS) to offload their computation to the cloud. Using 4
different smartphones, we measured these app performance
metrics in different network situations (outlined in section
2.3.5 and table 2). We used multiple profiling tools, and
profiled our apps several times. We used 10 representative



test images, ranging in dimensions, file size, and complex-
ity, investigating the effects of these factors on application
performance.

The results show that in almost all cases, offloading
seemed beneficial, but only on fast networks (WiFi or LTE).
On slower networks, the offloading benefits depended on the
“complexity” of the image. Complexity is related to but also
different from image size or even the number of characters
in an image; some images are inherently more “complex” to
OCR. We expand upon this in the related work section.

This paper makes the following contributions: We identify
use cases when computation offloading might be beneficial,
identify some quantifiable “app performance” metrics, pro-
vide guidance on refactoring techniques on different mobile
platforms (e.g., tools and challenges) with a focus on pro-
filing tools, provide detailed data (about 200 data points: 4
smartphones, 10 images, 3–8 network conditions), and finally,
provide some hypotheses and directions for future research.

2. Methodology and Tools
Network bandwidth, CPU utilization, and memory usage can
be measured directly from the device or in the development
environment (emulator/simulator). Measuring the energy us-
age of an application is a challenging task. Neither iOS nor
Android currently expose the energy usage of each com-
ponent. To measure energy usage, researchers used special
instrumentation. Banerjee et al. [11] measure component uti-
lization (e.g., LOADWiFi and LOADCPU ) using a special-
ized power meter. Alternatively, software-based solutions like
PowerTutor [22] for Android and Apple’s Instruments [3]
can also be used. We used both these tools in our study.

2.1 Profiled Devices
Table 1 shows the devices we used to do our profiling. We
could not use all devices for all network conditions (Edge,
3G, LTE), but we used at least 2 network conditions for each
device. Details can be seen in Table 5. On the whole, we
profiled 17 network conditions on 4 mobile devices.

Table 1. Profiled Devices

CPU Memory 
(MB)

Battery Capacity 
(mAh)

Server Intel Xeon 2.4GHz 
(E5-2630L v2) 512 –

iPhone 6 Dual-core 1.4 GHz 
Cyclone (Apple A8) 1024 2,915

iPad 4 Dual-core 1.4 GHz 
(Apple A6X) 1024 11,560

Moto X Dual-core 1.7 GHz Krait 
(Qualcomm Snapdragon) 2048 2,200

Walton H2 Quad-core 1.2 GHz 
Cortex A7 1024 2,050

2.2 Android Profiling
Profiling Android applications is a challenging task because
a single tool that can profile every performance related aspect
of an application like energy usage, response time, memory
usage, and network usage is not available. As a result, in
our study we used a variety of tools to profile different
performance metrics and assimilate data in the end.

2.2.1 Energy Profiling
For energy profiling we use the PowerTutor application.
Zhang et al. [22] present PowerTutor’s computation model.
PowerTutor profiles the energy comnsumption of four com-
ponents: LCD, CPU, WiFi and 3G antenna.

The developers of PowerTutor used the following steps to
generate their Power Model:

1. Obtain the battery discharge curve for each individual
component on a particular device using built-in battery
voltage sensors.

2. Determine the power consumption for each component
state.

3. Perform regression to derive the power model.

2.2.2 Network Profiling
The Android SDK ships with a debugging tool called the
Dalvik Debug Monitor Server (DDMS). DDMS communi-
cates with a client device via a tool called adb (android debug
bridge).

When DDMS is started, it starts the adb server if it was not
already running. The adb server then sets up connections to
emulator/device instances. A VM monitoring service is setup,
and DDMS uses adb to connect to the VM’s debugger and
retrieve information. DDMS is a powerful tool and allows us
to profile several aspects of an Android application.

DDMS includes a Detailed Network Usage tab that can
track when an application is making network requests. Using
this tool, we monitored the frequency of data transfers, and
the amount of data transferred during each connection.

2.2.3 Memory and CPU Profiling
Using DDMS, we invoke garbage collection, which collects
unused heap data. When this operation completes, we inspect
the object types and the memory that has been allocated
for each type. We also inspect the heap size, the allocated
memory, and the free memory.

Using the shell provided by adb, we invoked the unix
command “top” and obtain the cpu percentage used by a
particular process. This enabled us to profile the CPU usage
of an application.

2.2.4 Measuring Response Time
We interpret response time as the time it takes for the
application to receive an input for subsequent computation
and then return the result of that computation to the user. It is



important to isolate the computation we offloaded from the
rest of the UI-related computations.

Based on this definition, we add our instrumentation
code to the investigated applications to measure and log
response time. We later use logviewer in DDMS to obtain
the measured response time.

2.3 iOS Profiling
For iOS application profiling, we use the Instruments [3]
tool bundled with Apple’s IDE, Xcode [10]. Instruments is “a
performance-analysis and testing tool for dynamically tracing
and profiling OS X and iOS code” [3]. Instruments profiles
different aspects of applications running inside iOS Simulator,
as well as applications running on the physical devices. In
either case, it uses DTrace [2] for low-overhead sampling.

Instruments can profile many aspects of an iOS applica-
tion’s behavior such as: energy usage level, CPU activity
(per-process and per-thread), Memory allocation, release, and
possible leaks, File and socket access, Networks activity,
OpenGL activity, User interface events.

Instruments profiles everything at the same time, which,
unlike Android, allows us to easily combine them into a single
report.

The unified nature of these profiling tools allows for better
understanding of different aspects that can affect energy
consumption.

2.3.1 Energy Profiling
Instruments traces the energy usage of an application in a
scale of 0 to 20, with 0 being the lowest energy draw. At
present, it does not offer fine-grained results as to which
component (e.g., LCD, CPU, various antennas) consumes
more energy, and the reported energy impact is simply an
aggregate of all components. The reported energy usage level
has an inverse linear relationship with the time that app can be
run continuously until the battery is completely depleted (20
hours minus energy usage level). An app with energy usage
of 4 runs out the battery (of the device reporting the measure)
in 16 hours. We use this formula to convert the scale into the
number of “minutes” of available battery each computation
has consumed.

We run our test applications on the device in “release
mode”, to ensure realistic measurements.

Energy reporting is accurate only when the device is not
being charged; but we need the device to be connected to
a computer for actual profiling. So we use a USB hub that
doesn’t draw as much current as the device as an intermediary,
so, even though the device is connected to the computer, it
completely runs off its own battery.

2.3.2 Network Profiling
Instruments (and Xcode) provide detailed, exhaustive infor-
mation about an application’s network activity, including the
number of bytes and packets sent/received, the type and pro-

Table 2. Network Conditions
Network Condition In/Out Bandwidth 

(MB/s)
In/Out Delay 

(ms)
Packet Loss 

(%)

WiFi - High Speed 60 / 60 0 / 0 0%

WiFi - ADSL 5 / 1 20 / 20 0%

LTE 10 / 3 45 / 45 0%

Excellent 3G 1 / 0.78 100 / 100 0%

Edge 0.64 / 0.32 300 / 300 0%

Lossy 3G 1 / 0.78 500 / 500 10%

tocol of each packet, the number and rate of dropped packets,
and other statistics.

2.3.3 Memory and CPU Profiling
Instruments also measures the physical and virtual memory
allocated to each process:

CPU utilization is also provided on a per-process, per-
thread, and even per-queue basis, allowing for even more fine
grained analysis.

2.3.4 Measuring Response Time
As with the Android application, we plan to change the source
code of both the original and the refactored applications
to measure exactly how much time the computation takes
(including the time spent sending data to and receiving
from the server). This allows us to both form a baseline
for comparison not only between the original and refactored
applications on the same platform, but also between the two
platforms.

2.3.5 Network Link Conditioner
One of the most important factors in computation offloading
is the network used to transfer data between the local device
and the Web service. The energy used by different antennas
(WiFi, Edge, 3G, LTE, Bluetooth) depends not only on the
type of the connection, but also on the signal reception and
strength [14].

Low signal reception drastically increases latency and
energy consumption (Ptr) while decreasing the available
bandwidth (B). It means that in such situations, only the most
computationally expensive operations should be offloaded.

Network Link Conditioner is a tool provided by Apple that
can simulate various network conditions, including reduced
bandwidth, high latency, DNS delays, and packet loss. It
allows fine grained control and also ships with presets for
simulating WiFi, 3G, DSL, Edge, High Latency DNS, and
Lossy Networks. We use these different conditions when
profiling the energy and network usage of our refactored
application. Table 2 displays the specifics of each condition.



3. Our Approach
3.1 OCR: A Representative Use Case
We would classify OCR (Optical Character Recognition) as
a moderately computationally intensive problem. We want
the app (computation involved) to fall in the region where
the benefit due to computational offloading could switch due
to small changes in realistic values of independent variables
like input size, mobile processing power, bandwidth, etc.
This apart from helping us do a comparative study could
help us demonstrate that dynamic computational offloading
decisions might be possible for certain types of applications
or computations. By “realistic values” we imply those values
that are closer to what could be encountered in real life as
on date. With growth in computational ability, bandwidth
available, what counts as a close to real-life value for an
independent variable might change.

There are quite a few OCR engines available, and some are
open-source. The performance and accuracy of such engines
varies. In our current work we are focusing on using the
tesseract engine[6] and open-source Android apps that make
use of the tesseract engine to do OCR. Tesseract [19] is one
of the most accurate OCR engines freely available. It was one
of the top 3 engines in the 1995 UNLV Accuracy test and has
continually grown to become more accurate and efficient.

3.2 Test Images
We used a total of 10 representative images that vary in file
size, dimensions, number of characters, and quality of scan
(table 3). We specifically chose such a diverse set of images
to investigate effects of each of these parameters. The images
can be viewed online [8]. They are showcased in Figure 1
(scaled to fit on this paper).

3.3 Refactoring
We refactored two applications, “Simple Android OCR” [4]
and “Tesseract-OCR-iOS” [7], to make use of the cloud.
These applications used the Tesseract library and ran entirely
locally. We wrote a Web service, “ocrbackend“ [9], that uses
the same library to perform the OCR computation completely
on the cloud and deployed it on 1 core virtual machine on
Digital Ocean [1]. After refactoring, our applications can
optionally use this Web service to offload the computation.

Using a Web service that uses the same OCR library
enables us to isolate the effects of the offloading more
precisely, as the algorithm and the parameters used are the
same both on the device and on the server.

4. Results
4.1 Android
We tested each image on two devices: a Moto X and a Walton
H2. We did not use any simulated network conditions for
either of these two devices. Instead, for the Moto X we

profiled for WiFi and 4G LTE networks, and for Walton
H2 we profiled for WiFi and Edge networks.

To ensure reliability, we ran each test thrice and averaged
them across the three tests. We ran the experiments a total
of 90 times (two devices, 5 images, 3 network conditions for
each device, three tests each).

Before starting the test, the device was rebooted. During
the test it was ensured only the profiled app was running.
Before each measurement, we killed and restarted the app.
Before taking measurements, we waited until the CPU activ-
ity became zero and energy consumption by the application
had stabilized after startup.

On Android, for WiFi, for both our devices, for image of
any size and complexity, response time and CPU utilization
improved when computation was offloaded to the cloud.
Memory usage was typically constant across both local and
WiFi. However, for very large and long image the local
computation consumed more memory than other conditions.
For energy consumption, no conclusion could be drawn for
shorter images because energy consumption decreased for
one device and increased for the other when using WiFi.
However, for images with a high amount of text content
image7andimage7 2, energy consumption improved when
computation was offloaded to cloud.

For 4G LTE network condition, for image of any size
and complexity, response time and CPU utilization improved
when computation was offloaded to cloud. Memory usage
was typically constant for both local and 4G LTE network,
except that local computation consumed more memory for
very large image with long content. If computation was
offloaded to cloud, energy consumption typically increased.
However, for very large image with high content of text,
offloading to cloud was more energy efficient.

For Edge network condition, response time and energy
consumption worsened when computation was offloaded to
cloud while memory and cpu usage remained constant.

To summarize, we found that response time and CPU
utilization always improves if computation can be of-
floaded to cloud under fast network conditions (WiFi,
LTE). For small images, it was not conclusive whether of-
floading to cloud even under fast network conditions was en-
ergy efficient. However, offloading computation of images
with high amount of text content was observed to be en-
ergy efficient under fast network conditions (WiFi, LTE).
For poor network conditions (Edge), offloading computa-
tions ended up worsening both response time and energy
efficiency and left other metrics unchanged.1

4.2 iOS
We tested each image on two iOS devices: a WiFi-only
4th gen. iPad, and an iPhone 6. Because iPad could not
connect to cell networks, we used Network Link Conditioner
to “simulate” those conditions, i.e., restrict bandwidth and

1 All our experimental data has been made available online [5].



Table 3. Test Images
image_# Name (size, quality, length) Width x Height 

(px x px)
Size (KB) Text Length 

(lines)
Text Length 
(characters)

0 small, crisp, very short 400 x 216 12 2 10

1 small, handwriting scan, short 314 x 300 13 7 37

2 medium, good scan, medium 884 × 809 126 37 780

3 medium, noisy scan, medium 690 × 667 102 23 1,096

4 big, crisp, short 2048 × 1536 251 6 65

4_2 small, crisp, short 307 x 230 20 6 65

5 big, sepia scan, long 688 × 1096 101 36 2,069

6 big, bad scan, long 800 × 956 153 122 3,641

7 very big, good scan, very long 3768 × 5256 2,316 72 4,324

7_2 medium, good scan, very long 942 x 1314 363 72 4,324

Figure 1. Test Images

introduce delays to simulate e.g., a lossy 3G network, while
still using the WiFi antenna. As a result, our energy profiles
were not accurate and wee didn’t include them in our tables.
They were, however, reliable in other “performance metrics”
(e.g., response time and memory usage), so we have made
them available online [5].

To ensure reliability, we ran each test twice and averaged
the results. Overall, the tests were run 280 times (two devices,
10 images, 7 network conditions, two tests each).

Before starting the test, the device was rebooted; during
the test, only our profiled application was running; we killed
the application and re-loaded it into the device for each
measurement; and before starting to profile, we waited until
all the assets were loaded, CPU activity dropped to 0%, and
energy usage was stable for at least 10 seconds.

Table 4 shows the results of local OCR on the server and
iOS devices (for comparison). We found that on iOS, it is
almost always beneficial to offload the OCR computation
to the cloud, provided you have a fast WiFi network or
are on a LTE network. In such cases, offloading improves
most of our “app performance” metrics: drastically less
energy usage, an order of magnitude faster response time,

and almost no CPU or memory usage, while network usage
naturally increases.

When on a 3G or 2G network, however, the results are not
really conclusive—we could not identify a pattern between
the image size and whether or not offloading improves “app
performance.” We suspect that we need to further study
another, unexplored factor, called “image complexity.”

4.3 Images with Large Font Size
2 of our test images (Images 4 and 7) were unusual in the
sense that, when viewed at 100% scale, their font size seemed
respectively 150pt and 50pt, as opposed to the usual 18–
20pt of other images. We shrunk them significantly (from
2048x1536 pixels to 307x230 pixels in the case of image 4)
to study how this affects our “app performance”. Tables 6 and
7 show the results (compare to tables 5 and 6 respectively).

Surprisingly, the dramatic decrease in image size did not
have a great impact on local response time or energy usage,
but it significantly improved the response time and energy
usage on offloaded computations. We hypothesize that the
reason local computation did not improve is that reducing the
size of the image does not change its “complexity” (as defined
in the next section), while the improve in speed and battery



Table 4. Local OCR – Time and Energy UsageDevice–Time–Energy (Local)

image_0 image_1 image_2 image_3 image_4 image_4_2 image_5 image_6 image_7 image_7_2

Server Time (ms) 38 84 1,372 3,621 359 279 10,504 19,854 7,479 8,651

iPhone 6 Time (ms) 440 790 3,700 10,850 1,190 900 29,700 78,480 13,060 19,591

Energy (min) 0.1 min 0.05 min 0.25 min 0.65 min 0.07 min 0.033 1.62 min 4.87 min 0.63 min 1.27 min

iPad 4 Time (ms) 1,180 1,450 8,550 23,780 2,630 1,890 73,110 151,250 28,580 34,750

Energy (min) 0.13 min 0.15 min 0.63 min 1.53 min 0.12 min 0.05 min 1.55 min 3.08 min 0.8 min 0.44 min

Table 5. Image 0 – Small, crisp, very short and Image 4 – Big, crisp, short

Table 6. Image 4.2 – Small, crisp, short and Image 7 – Very large, good scan, very long

Table 7. Image 7.2 – Medium, good scan, very longimage_7: very big, good scan, very long

Device Network Response 
Time (ms)

Average CPU 
Utilization (%)

Transmitted 
Bytes (B)

Memory 
Usage (MB)

Total Energy 
Usage

Server – 8,930 100 0 26 –

iPhone 6 Local 19,590 88 0 54 1.27 min

WiFi - High Speed 9,240 3 1385 8 0.08 min

WiFi - ADSL 33,130 3 1388 11 0.78 min

LTE 12,960 4 1385 7 0.28 min

Excellent 3G 43,010 5 1385 8 0.3 min

Edge 67,130 5 1390 9 0.92 min

Lossy 3G 93,230 6 1520 6 1.58 min

iPad 4 Local 34,570 84 0 67 0.43 min

WiFi – High Speed 9,460 3 1386 13 0.15 min

WiFi – DSL 41,780 5 1386 14 0.23 min

Moto X Local 1,296 4 0 17 1.6 J

WiFi – High Speed 172 3 13842 17 1.23 J

LTE 230 3 13738 17 3.03 J

Walton H2 Local 1,452 13 0 4 1.6 J

WiFi - High Speed 119 3 13290 4 0.85 J

Edge 5,635 2 13721 4 1.65 J



usage on offloaded computations can be entirely attributed to
smaller image size and bandwidth usage.

5. Future Work
During our study we discovered that apart from known
factors, such as input size, other input characteristics can
affect app performance. Two images A & B of the same size
can have A taking longer to OCR due to larger number of
characters, using a font that is harder to read, or other factors
that are briefly explored by Smith [19]. We collectively refer
to such characteristics as “complexity” which is hard to
measure quantitatively. Complexity in the context of OCR
might be different from complexity in image segmentation.

In this paper, we studied the effects of variation in
application-specific and device-specific factors for OCR com-
putations (for both local and offloaded computations). Much
of the findings can be generalized, as OCR is nothing but a
general computation task which could be replaced by some
other task and still lead to similar results when the factors like
input size are varied. However, certain application-specific
factors (like “complexity of image”) seem to be dependent
on the type of computation. There is scope for doing the
same study in context of more mobile applications because
of computation dependent factors like “input complexity”
might vary from study to study. “Input complexity” is also an
ambiguous term and needs to be defined properly.

6. Related Work
Barbera et al. [12] investigate the bandwidth and energy
costs of mobile cloud computing. It models the use of the
cloud by associating each real device with its corresponding
cloud-clone. Clones are categorized as offloading either
computation or storage. The energy cost and bandwidth
needed for both types are investigated. The paper finds
that clones offloading computation use more energy and
bandwidth for synchronization compared to clones offloading
storage. Compared to our study, that investigation was carried
out from the perspective of the mobile device itself rather that
of the underlying application. This study did not look at type
of computation/functionality offloaded to the cloud.

Kumar et al. [14] present a mathematical model to com-
pare the energy usage in local vs. offloaded computations.
The limitation of the paper is that it only provides a model
for computing energy usage, which is just one of the factor
to judge “app performance”. Net computation time, memory
and data consumption are the other factors. There is a tradeoff
between these factors. Example: Net computation time can be
reduced if we have a higher processing power which would
in turn consume more energy.

In another part, Kumar et.al [13] provide a mathematical
model for deciding when offloading computation improves
performance. The model takes into account the size of compu-
tation, processing power of mobile device, processing power
of server, the size of data to be transmitted over the network

and network bandwidth. This paper also presents a survey of
previous research work done on computation offloading.

Zhang et al. [23] automatically refactor Java code for
offloading. Remotely executable classes are identified and
then repackaged as a .jar and run on a remote server in the
cloud. The main limitation of their approach lies in their
movable class identification policy. They identify immovable
classes as those which either extend/implement/uses Android
system classes or those which have the “native” keyword
in method names. Thus, their strategy is heavily coupled
with the Android OS and must evolve alongside it. Also,
whether offloading the classes is actually beneficial or not is
not explored.

Kwon and Tilevich [15] present an approach that improves
the energy efficiency of mobile applications by enhancing
the code with dynamic adaptation capabilities. The decision
of whether to offload to the cloud and which part of the
application’s functionality is determined at runtime taking
into account both the mobile device at hand and the current
execution environment.

Ray Smith [19] describes the architecture of the Tesseract
OCR engine, used as the representative case in our study. The
paper describes in detail how Tesseract finds and recognizes
letters, words, and lines; how it classifies these findings; and
how the training corpus is used to build the classifier.

Nikzad et al. [18] argue that writing energy efficient
code is difficult and obscures business logic code. They
develop a middleware and an annotation-framework on top
of it called Annotated Programming for Energy Efficiency.
Using this framework, developers annotate code they want
to make energy-efficient, which are then preprocessed by
the middleware to generate actual energy efficient code.
Compared to us, they consider only energy efficiency and do
not offload any computation to the cloud.

Xu et al. [20] through low level optimization techniques
propose improvements to the energy efficiency of the Gmail
Android app, which continuously interacts with the cloud.
The investigation finds that Gmail’s major energy consump-
tion occurred when it used 3G connection for syncing with
the cloud. They wrote firmware to optimize usage of 3G con-
nection. Their finding of 3G connection consuming greater
energy matches the observations from our experiments as
well.

Mtibaa et al. [17] present app performance benefits in the
same way as we do, i.e., primarily in terms of net computation
time and energy consumption. Other than that their work
was not much related to our study. They study effects of
mobile computation offloading to a cloud of mobile like or
low capacity devices which they refer to as a “Mobile Device
Cloud”.

There is some work done in the field of image complexity
and spatial information by Yu et al. [21]. It is useful for
qualitatively representing image complexity in terms of ease
of compression. This is in coherence with our hypothesis that



input complexity must relate to the algorithm or computation
to be performed as we suggested in the future work section.
We did not find existing research work in relation to image
complexity in context of OCR.

7. Conclusions
This research explored which factors improved app perfor-
mance when computation is offloaded to the cloud, the nature
of these factors, and how variations in these affect app per-
formance for local and offloaded computations. OCR is an
ideal use case for investigating these research questions. We
refactored OCR apps on iOS and Android to offload the OCR
computations to the cloud, and investigated app performance
across a variety of inputs and network conditions. We found
that under fast network conditions, app performance always
improved when computation was offloaded. We also found
that compressing images improved app performance for of-
floaded computations.

Acknowledgments
We thank Harshit Gupta of IIT BHU, Varanasi for providing
support with refactoring of Android applications.

This research is supported in part by the National Science
Foundation through Grants CCF-1116565 and CCF-1439957.

References
[1] Digital Ocean. https://www.digitalocean.com/. Ac-

cessed: 2014-12-10.

[2] DTrace. https://wiki.freebsd.org/DTrace. Accessed:
2014-11-11.

[3] Instruments. https://developer.apple.com. Accessed:
2014-11-11.

[4] Simple Android OCR application. https://github.com/

GautamGupta/Simple-Android-OCR. Accessed: 2014-11-11.

[5] Study’s raw data. https://www.dropbox.com/sh/

a6nt58u2mutwelc/AACF7eSHsnbMCYCzOj8gH1Mia?dl=0.

[6] Tesseract OCR engine. https://code.google.com/p/

tesseract-ocr. Accessed: 2014-11-11.

[7] Tesseract OCR iOS application. https://github.com/

gali8/Tesseract-OCR-iOS. Accessed: 2014-11-22.

[8] Test images. https://www.dropbox.com/sh/

knhtx8llquww5lr/AADh58CNfzNmzSFaQktpXI4Fa?dl=0.

[9] Web OCR backend. https://github.com/pramttl/

ocrbackend.

[10] Xcode. https://developer.apple.com/xcode. Ac-
cessed: 2014-11-11.

[11] A. Banerjee, L. Kee, C. Sudipta, and C. Abhik. Detecting
Energy Bugs and Hotspots in Mobile Apps. 3, 2012.

[12] M. V. Barbera, S. Kosta, A. Mei, and J. Stefa. To offload
or not to offload? the bandwidth and energy costs of mobile
cloud computing. In INFOCOM, 2013 Proceedings IEEE, pages
1285–1293. IEEE, 2013.

[13] K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava. A survey of
computation offloading for mobile systems. Mobile Networks
and Applications, 18(1):129–140, 2013.

[14] K. Kumar and Y.-H. Lu. Cloud computing for mobile users:
Can offloading computation save energy? Computer, 43(4):51–
56, 2010.

[15] Y.-W. Kwon and E. Tilevich. Reducing the energy consumption
of mobile applications behind the scenes. In Software
Maintenance (ICSM), 2013 29th IEEE International Conference
on, pages 170–179. IEEE, 2013.

[16] Y. Liu, C. Xu, and S.-C. Cheung. Characterizing and detecting
performance bugs for smartphone applications. In ICSE, pages
1013–1024, 2014.

[17] A. Mtibaa, K. Harras, and A. Fahim. Towards computational
offloading in mobile device clouds. In Cloud Computing Tech-
nology and Science (CloudCom), 2013 IEEE 5th International
Conference on, volume 1, pages 331–338, Dec 2013.

[18] N. Nikzad, O. Chipara, and W. G. Griswold. Ape: An
annotation language and middleware for energy-efficient mobile
application development. In Proceedings of the 36th International
Conference on Software Engineering, ICSE 2014, pages 515–526,
New York, NY, USA, 2014. ACM.

[19] R. Smith. An overview of the tesseract ocr engine. In ICDAR,
volume 7, pages 629–633, 2007.

[20] F. Xu, Y. Liu, T. Moscibroda, R. Chandra, L. Jin, Y. Zhang,
and Q. Li. Optimizing background email sync on smartphones.
In Proceeding of the 11th Annual International Conference on
Mobile Systems, Applications, and Services, MobiSys ’13, pages
55–68, New York, NY, USA, 2013. ACM.

[21] H. Yu and S. Winkler. Image complexity and spatial
information. In Quality of Multimedia Experience (QoMEX),
2013 Fifth International Workshop on, pages 12–17, July 2013.

[22] L. Zhang, B. Tiwana, R. Dick, Z. Qian, Z. Mao, Z. Wang,
and L. Yang. Accurate online power estimation and automatic
battery behavior based power model generation for smart-
phones. In Hardware/Software Codesign and System Synthesis
(CODES+ISSS), 2010 IEEE/ACM/IFIP International Conference
on, pages 105–114, Oct 2010.

[23] Y. Zhang, G. Huang, X. Liu, W. Zhang, H. Mei, and S. Yang.
Refactoring android java code for on-demand computation
offloading. In ACM SIGPLAN Notices, volume 47, pages 233–
248. ACM, 2012.


