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Abstract—Modern mobile devices feature ever increasing com-
putational, sensory, and network resources, which can be shared
to execute tasks on behalf of nearby devices. Mobile device clouds
(MDCs) facilitate such distributed execution by exposing the col-
lective resources of a set of nearby mobile devices through a uni-
fied programming interface. However, the true potential of MDCs
remains untapped, as they fail to provide practical programming
support for developers to execute distributed functionalities.
To address this problem, we introduce a microservice-based
Programmable MDC architecture (PMDC), highly customized for
the unique features of MDC environments. PMDC conveniently
provisions functionalities as microservices, which are deployed on
MDC devices on demand. PMDC features a novel domain specific
language that provides abstractions for concisely expressing fine-
grained control over the procedures of device capability sharing
and microservice execution. Furthermore, PMDC introduces a
new system component—the microservice gateway, which recon-
ciles the supply of available device capabilities and the demand
for microservice execution to distribute microservices within an
MDC. Our evaluation shows that MDCs, expressed by developers
through the PMDC declarative programming interface, exhibit
low energy consumption and high performance.

I. INTRODUCTION

Mobile device users are continuously increasing their expec-
tations on the functionality and quality of service of mobile ap-
plications. Meeting these expectations requires making use of
sensory data, multimedia, and artificial intelligence algorithms.
Unfortunately, applications that incorporate these features tend
to require inordinate amounts of computational power, stor-
age, battery budgets, high network throughput capacities, and
extensive utilization of sensory resources. We observe that a
typical modern mobile device is almost always operated in
the vicinity of other mobile devices, many of which belong to
groups of trusted or semi-trusted users, such as households and
project teams. Mutual sharing of resources across co-located
devices offers opportunities to create novel mobile apps and
improve the quality of services of existing apps.

Leveraging the resource capabilities (computation, storage,
sensing, network, etc.) of such co-located mobile devices at
the edge of the network to execute tasks is generally referred
to as Mobile Device Computing (MDC) [1]. MDC has been
widely adopted in multiple usage scenarios: 1) using the
computational resources to perform tasks, including speech,
image recognition [2], [3], [4], [5], [6], [1], [7], [8], [9],
[10]; 2) using the sensors, including GPS, motion sensor,
microphone, and camera to collect sensory data for mobile
sensing, localization, and video/audio generation [11], [12],

[13], [14]; 3) using the network to optimize latency and
throughput (one well-recognized use case is video streaming)
[15], [16], [17]; 4) other use cases (e.g., using the storage for
searching [18], using the phone speaker to tell a story [19],
and using the touch screen for interactive gaming [20]).

However, lacking a coherent programming framework pre-
vents developers from effectively leveraging MDC. Distribut-
ing and deploying the required functionalities to MDC for
execution remains an unsolved problem. In traditional clouds,
functionalities are expressed as pre-deployed cloud-based ser-
vices, with centralized registry-based lookup strategies[21].
However, MDCs operate across a collection of nearby devices,
an environment that changes constantly due to device mobility.
Hence, finding a suitable device to execute a given function-
ality and delivering the functionality’s executable code to the
found device stand on the way of practical MDC applications.

Several prior works present strategies for implementing
MDC applications (e.g., Serendipity[5], Mobile Fog[22],
CoCam[11], ColPhone[19], and FemtoCloud[23]). Regarding
the problem of finding the most suitable device to execute
a functionality, these prior approaches either disregard the
differences in device resource capabilities, or require low-
level code to implement the communication logic for co-
located mobile devices. Regarding the problem of deploying
the required functionality on the found device, the prior
approaches either transfer executable code across devices or
require that the task executable files be pre-deployed.

In this paper, we introduce a novel system architecture,
based on microservices. Although known for their applications
in cloud-based scenarios [24], [25], microservices also fit nat-
urally for the MDC environments. Microservice architectures
express application functionality as a collection of interacting
micro functionalities, each represented and managed as an
external service. Similarly, our architecture represents and
manages remote functionalities as microservices, which can
be invoked on demand. Further, our architecture delivers
the executable packages to the available MDC devices by
downloading them from a trustworthy microservice market.

In particular, our software architecture facilitates the process
of finding the most suitable device to execute a microservice.
Programming support is provided via a domain-specific lan-
guage that makes it straightforward to express: 1) capabili-
ties offered by the available MDC devices, 2) microservice
demands and their non-functional requirements (NFRs) (e.g.,
latency, reliability, cost, or any other microservice-specific



aspects). We also notice that it would be impossible to directly
translate device capabilities into NFR satisfiability, without
the domain-specific knowledge possessed by microservice
developers. Hence, the architecture features a novel network
component, the microservice gateway, responsible for collect-
ing device capabilities in order to estimate how they satisfy
the NFRs.

The major contribution of this work is three-fold:
• A microservice-based software architecture that lowers

the barrier for mobile app developers to use MDCs.
• A domain-specific language and its distributed runtime

for expressing and matching the application’s functional-
ity demand and the MDC resource supply.

• A realistic use case implementation and performance
evaluation of the aforementioned architecture.

In the rest of the paper, we start by analyzing the pro-
gramming requirements and obstacles of MDC in Section II.
Then, we present our system architecture design in Section III.
Section IV introduces the domain specific language in details
and Section V demonstrates the device selection procedure on
the local gateway. Section VI describes our implementation
and evaluation results. Section VII compares our approach
with existing research and Section VIII concludes this paper.

II. REQUIREMENT ANALYSIS & SOLUTION OVERVIEW

The research literature motivates MDC with several typical
use cases. We first analyze these cases to identify common
obstacles in leveraging MDCs. Then, we briefly introduce our
approach that removes these obstacles.

A. Programming Requirement

One typical MDC application scenario is facial
recognition[23], depicted in Fig.1. A smartphone application
needs to search for a given face from all photos in an album.
Facial recognition is known to be both computationally
intensive and energy consuming. Surrounding mobile devices
can form an ad-hoc MDC to perform this functionality,
splitting the work between the participating devices. The
following discussion will continue referring to this scenario
to explain our solution.

Another typical scenario is capturing and sharing images of
a live concert from different view points [11]. While individual
concert goers view the performance from a particular vantage
point, they can enrich their experience by viewing the perfor-
mance from a variety of different points, provided by other
concert goers at various vantage points. This scenario requires
reciprocity—a set of concert goers must agree to capture and
share their respective views of the performance.

The last typical scenario is forming a device-to-device
(D2D) network to accelerate data transmission [15]. Uploading
a high-quality video can be time consuming, as the upload
speed of a cellular network is typically lower than the down-
load speed. An app needing to upload a media file fast can
split it into pieces, so each piece can be uploaded by a nearby
mobile device, thus multiplying the overall upload speed.

B. Analysis & Technical Obstacles

We analyze system design requirements from the devel-
oper’s perspective. When a mobile application needs to request
a nearby MDC to execute a task, the MDC has to allocate
one or more devices for the execution. Cloud-based setups
with fixed resource locations can consult centralized registries.
However, this approach may not be suitable for MDC applica-
tions, in the presence of device mobility. Maintaining an MDC
registry requires a localization procedure that is known to incur
high energy consumption, as all participating devices need to
periodically update their locations [11]. Another known strat-
egy is having the MDC devices periodically announce their
available functionalities via a D2D broadcast[26]. However,
there is a great number and diversity of functionalities pos-
sessed and shareable by MDC devices. It would be inefficient
to D2D broadcast all the available functionalities for a non-
trivial number of devices.

Besides, when allocating MDC devices for a task, one
must also consider the task’s NFRs. Different mobile apps
may require the same functionality, but with different NFRs.
Consider the functionality of image capturing. This use case as
presented in [11] requires the selected device to capture photo
from a certain angel, while a surveillance app may require that
the selected device persist the captured images to be retrieved
at some point in the future. Notice that one cannot directly
infer the NFRs from a device’s available capabilities. For
example, in the aforementioned image capturing and sharing
use case, the viewpoints of MDC devices have to be calculated
from their locations. Hence, MDC device allocation must
consider both the device capabilities and the app’s NFRs.

Finally, MDC devices should be able to provide the required
functionality without introducing security vulnerabilities. For
example, in real use cases, one cannot assume that the required

Search a face In

In

using

using

using

using

Search a face

Figure 1: Usage Scenario 1: Face Recognition



execution package of a functionality be pre-deployed on MDC
devices. When an MDC device is selected to perform facial
recognition, the execution package containing facial recog-
nition needs to be deployed on the device at runtime. The
existing methods that transfer executable code between devices
is vulnerable to attacks.

C. Solution Overview

Our software architecture solves the technical obstacles
described above. The architecture structures applications as
a collection of microservices—self-contained execution units,
accessible by external clients through standard interfaces. The
functionality demands are expressed as microservice requests,
and carried out by microservice invocations.

III. SYSTEM ARCHITECTURE

Our software architecture is supported by the system run-
time, which comprises four parts (see Fig.2): 1) a client device
that requests a functionality from MDC; 2) a local device
that serves as gateway by maintaining an up-to-date mappings
between the available MDC devices and their capacities; 3) a
microservice market (MSM for short), a cloud-based reposi-
tory that delivers the executable code of a given microservice;
4) a set of MDC devices that share their capabilities, as
detailed next.

A. MicroService Market (MSM)

MSM[27] combines features of application markets and
service repositories. Following the application market model
enables devices to automatically download and execute the
required microservices, while following the service repository
model enables application developers of the client apps to
implement the required functionalities as microservice invo-
cations, to be executed by MDC devices.

A microservice represents a certain functionality (e.g., get-
ting temperature sensor readings, performing facial recognition
algorithm on a given image). The microservice developers
submit microservices to MSM, containing a unique identifier
for service invocation, an NFR estimation package to be run by
the gateway, and execution packages for key mobile platforms.
To leverage such functionality, an application developer only
needs to browse through the catalogs of microservices and in-
voke the microservice that provides the required functionality.

In the original design of MSM [27], a mobile device must
download the microservices before it can be allocated to
provide them. The devices are responsible for estimating their
fitness to satisfy the NFRs of a given task and report the
results to the gateway. By contrast, our new design enables
the gateway to estimate how well the available devices can
satisfy a tasks’ NFRs, prior to deploying any microservices.

B. Local Gateways

A typical cloud-based microservice architecture features a
centralized service registry, a collection of registered device-
to-microservice mappings, with a remote interface through
which clients can bind themselves to the microservices they

want to invoke. Notice that MDC applications need to invoke
microservices on the devices reachable via short-range com-
munication methods (e.g., WiFi, Bluetooth), rendering cloud-
based registries inapplicable.

Hence, our system architecture features a novel system
component: a local gateway that replaces the standard cloud-
based service registries. Each mobile device cloud should
have a local gateway that could be either a stationary device,
connected to a permanent power supply, or a battery-operated
mobile device. Unlike its cloud-based counterparts, local gate-
ways maintain a registry of available device capacities of the
MDC, instead of the microservices provided by the devices.

C. Runtime Support on Devices

The runtime runs as a regular mobile app on the server and
client devices. In general, the runtime accepts an MCL script
to execute, either from the application via inter component
communication (ICC), or from other devices via socket-based
HTTP requests. On an MDC device, the programmer can
specify the capability to share by interacting with the device’s
runtime using an MCL script. On a functionality demanding
device, an app can first find the MDC device by querying
the local gateway using an MCL script, and then invoke the
microservice on the MDC device by passing it an MCL script
with execution parameters.

D. Execution Flow

Fig.2 also introduces our system architecture’s execution
flow. The mobile devices periodically register their shared
capabilities to the connected gateway (step 0). When a mobile
app requires to execute a microservice on MDC, it first sends
MCL scripts to the runtime on the client (step 1). The runtime
then interacts with the reachable gateway in its vicinity, to
query the most suitable device for microservice execution (step
2). The gateway downloads the NFR estimation algorithm
of the required microservice from MSM (step 3), applies it
to select the most suitable MDC device(s), and sends the
connectivity information of the selected devices back to the
client. Then, the client connects to the selected device to
initialize the microservice execution (step 4). The selected
device downloads the execution package from MSM, and
sends the execution results back to the client (step 5).

IV. MCL DEFINITION AND USE CASE

In this section, we first introduce the grammar of MCL,
and explain its semantics for expressing the supply of device
capabilities and the demand for microservices.

A. Functional Requirement

We first summarize what functions MCL provides:
1) Specify device capability to share: The MDC devices

need to specify what capabilities to share.
2) Find device for executing a microservice: The function-

ality demanding device needs to obtain one or more
MDC devices, whose capabilities 1) fulfill the general
execution requirements of a microservice (e.g., in use
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Figure 2: System Architecture Overview.
<MCL Script> ::= <Action> <Target> <Parameters>
<Action> ::= "reg"|"stop"|"query"|"exec"
<Target> ::= {<Resource> ","}+ | <Microservice>
<Resource> ::= "network"|"compute"|"sensor/"<Sensor>
<Sensor> ::= "GPS"|"Cam"|"Mic"|"Motion"|"Light"|String

<Microservice> ::= String
<Parameters> ::= <Lease>|<Device Selection>|<Execution Param>
<Lease> ::= "-t=" Numeric "-c=" Numeric
<Device Selection> ::= ["-n=" Numeric]["-h="String]["-l="String]
<Execution Param> ::= [String "=" String|Numeric]+

Figure 3: MCL EBNF Definition.

case 2, taking picture requires the device to share
camera), and 2) best satisfy the NFRs (e.g., in use case
1, the app prefers an MDC device that can finish facial
recognition most quickly).

3) Execute a microservice on a device: The functionality
demanding device can start microservice execution on a
selected MDC device.

B. Grammar Definition

An MCL script comprises three parts: Action, Target,
and Parameters. Action stands for the method, which
includes (1) register device capabilities, and remove the regis-
tered information (reg/stop), (2) query microservice provi-
sioning (query), and (3) execute microservice (exec). The
Target can be either Resources (for reg and Stop), or
Microservice (for query and Exec). The Resources
includes network, computing and sensors (including GPS,
camera, microphone, motion sensors, light sensors, and etc.).
Microservice is a string representing a unique ID of the
related microservice function (e.g., “faceReco”).
Parameters describes the action. When registering de-

vice capabilities, MCL enables specifying the leasing time
(-t, for how long the capabilities will still be available), the
incentive multiplier (-c, to be used to calculate the overall
incentive for invoking microservice), and the device’s status
(e.g., CPU power, memory, CPU usage status, accuracy of sen-
sors). When querying the device for microservice invocation,

Parameters can be used to describe how many devices are
requested (-n), as well as the NFRs(-h=feature indicates
to select device with the highest value of feature,-l for
the lowest). When executing a microservice, Parameters
can be used to specify the runtime parameters to be bound to
the microservice’s execution.

C. Use Cases

Register/Stop Resources: An MDC device can register its
device capability as available for remote execution, as well
as stop such sharing. By leveraging such function, the pro-
grammers can decide what capabilities to share, based on the
device owner’s permission and the device’s real-time status.
The example program given in Fig. 4 shows two procedures:
1) reading the user’s permission, and get all available device
capabilities for remote execution (line 1-3); 2) specifying that
when some computational intensive applications are running
and the CPU load is high, stop sharing the compute capability
for remote execution (line 4-5).

initialize registry
read user’s permission and get available resource
reg.run("reg compute, sensor/Cam -t=1800")
if CPU.usage>50

reg.run("stop compute")

Figure 4: MCL Example for Claiming Shared Capability.



Query and Execute Microservice: The functionality de-
manding devices can query for the most suitable MDC devices
to execute a microservice, and request to execute the microser-
vice on the selected device. The example program given in Fig.
5 shows how the motivating example 1 can be implemented
in MCL. It also comprises two procedures: 1) query and get
three devices for executing microservice “faceReco”, with the
highest estimation of the execution speed (line 4); 2) split all
photos into three equal shares for the three devices, execute
“facoReco” microservices for each photo (line 6).

initialize registry
read images: imgs = readDirectory("...");
separate into 3 shares: imgs_0, imgs_1, imgs_2
devices = reg.run("query faceReco -l=time -n=3");
for (IMAGE img : imgs_0) {
devices.get(0).run("execute facoReco -img="+img);}

Figure 5: MCL Example for Executing Facial Recognition.

V. DEVICE SELECTION MECHANISM

When processing a microservice request, the local gateway
first selects a device most suitable to service the request
through the device selection procedure. The procedure matches
between the requirements of executing a given microservice
and the capabilities of the available devices.

Revisiting the facial recognition example: a gateway col-
lects information about the available devices, including their
CPU frequencies, memory sizes, and current workloads. Upon
receiving a request to recognize a face in an image, the
gateway consults the collected information to predict how well
each device would satisfy the NFRs of the face recognition
microservice (in this case, total execution time). However,
predicting how fast a device can execute the facial recognition
microservice is non-trivial: not only must the gateway be aware
of the device’s status, but it must also be able to determine
how each aspect of that status would affect the total execution
time, which is domain-specific knowledge possessed only by
the developers of the face recognition microservice.

In our system design, it is the microservice developers
who are expected to provide this domain-specific knowledge
alongside the microservice itself. Specifically, microservices
include an NFR estimation component. Local gateways down-
load microservice packages from the MSM and execute their
NFR estimators to select the most suitable device for the
corresponding microservices. Next, we describe the device
selection procedure in detail.

A. Web Interface on Local Gateways

The local gateway provides two web interfaces, for MDC
devices to register their capabilities, and for microservice
demanding devices to query for suitable server devices.

Fig. 6 demonstrates the interface for registering device
capabilities. The device status currently includes CPU
frequency, remaining energy status, memory usage, network
speed, and sensor accuracy.

Interface 1: resourceRegistry
Parameters: resource = String

t = numeric
c = String

{device status = numeric} +
Return: [Registration Success|Fail]

Figure 6: Capability Registration Interface

Interface 2: deviceSelection
Parameters: Microservice = String

n = numeric
h = String
l = String

Return: [Connection info of Devices|null]

Figure 7: Microservice Selection Interface

Fig. 7 demonstrates the interface for querying for suitable
server devices. The client needs to provide a microservice ID,
how many devices to select(n), and the NFRs (h/l for the
highest/lowest estimated value).

B. Estimating NFR Satisfaction

Upon receiving a device selection request from a client,
the gateway downloads the NFR estimation component of
the required microservice from the MSM, and starts match-
ing the device capability and execution requirements. Fig.
8 demonstrates an example of the NFR estimation package
for microservice faceReco. Method isCapable checks
whether a device is capable of executing a given microservice,
and methods energy and time estimate how a device would
satisfy these two NFRs, respectively.

class FaceRecoEstimator(val d: Device)
extends Estimator {

override def isCapable(): Boolean =
{ d.compute().available() }

def energy(): Int = 100 - d.battery.toInt

def time(): Int = {
var ret: Int = d.CPU * (1 - d.CPUusage)
if (d.memory > 2000) ret *= 2
ret

}}

Figure 8: Estimating NFR Satisfaction (in Scala)

Revisit the device selection request expressed in MCL
script, as shown in Fig.5. Upon receiving the request, the
gateway first finds a set of nearby devices, whose isCapable
methods return true. Then, it executes the time method on
each device, selects the three devices with the lowest expected
execution times, and returns the information to the requester
about how to connect to these three devices.

VI. REFERENCE IMPLEMENTATION AND EVALUATION

In this section, we report on 1) the reference implementation
of the described architecture; 2) the performance of the im-
plementation; 3) the comparison between our device selection



procedure and that of key other designs. We implement the
local gateway on a off-the-shelf WiFi router, a generally
available infrastructure component, thus indicating the wide
applicability of our system design.

A. Implementation Specifics

WiFi Router as 
Local Gateway

Power Monitor

MDC 
Devices

Figure 9: Hardware for the Implementation and Evaluation.
Fig.9 shows our evaluation’s hardware components, which

include two Nexus 6 phones, two Huawei Honor 5x, one LG
Volt Phone, a Monsoon power monitor, and a TP-LINK TL-
WDR3600 router. To make the WDR3600 router serve as the
local gateway, we flush openWRT system image to replace the
system image provided by the vendor. openWRT system is a
Linux distribution for embedded devices. We further install
PHP, MySQL and nginx to provide web services, and develop
the corresponding PHP script files for the interfaces defined
in Section V.

For evaluating MCL, we develop a distributed app, whose
client and server parts run on microservice invoking devices
and the MDC devices, respectively. For MDC devices, their
user decides whether to start or stop sharing device capabilities
via a simple button click, which sends the corresponding MCL
script to the local gateway. For the microservice invoking
devices, their users generate different request combinations of
microservices and NFRs. We implement and evaluate three
microservice packages: file download, face recognition, and
get GPS. To simplify the device selection requests, we define
the same NFRs for all these three microservices, namely QoS,
cost, and efficiency (QoS/cost).

Fig.10 shows the runtime procedure of executing the mi-
croservice of face detection. The cost of performing face
detection is determined by the remaining battery level: a lower
battery level leads to a higher cost. The QoS of the service
execution is determined by the frequency of the CPU: a higher
CPU frequency leads to faster execution, and thus higher QoS.
One Nexus 6 serves as the client device, and the other four
devices serve as available devices. After receiving the service
request, the client device first queries the connected router,
and obtains the IP address of the assigned server device. It
then connects to the assigned device via a socket and sends

(a) Client Device (b) Server Device

Task Input

Start 
Registration

Assigned 
Server 

Devices

Execution 
Results

Received Task

Figure 10: Execution UI.

the package’s and function’s names, the input parameters, and
the image files to process to the server device. After execution,
the results are passed back to the client device.

B. Performance Evaluation

a) Device Selection: For each microservice, we test
different NFRs, to simulate the dissimilar requirements that
can be imposed on the device selection criteria (e.g., some
may want the service to be executed as fast as possible, while
others may want to incur the smallest costs). When the criteria
is QoS optimal, the Nexus 6 is selected, because it has the
highest CPU frequency. When the criteria is Cost optimal,
the LG Volt is selected, because it is connected to an external
power supply.

b) Execution Time: We repeat the experimental execution
10 times, and calculate the average time taken by each
procedure on the client device. We observe that, the time
consumption for microservice execution device selection is
low (0.15s), compared with the time cost of establishing
a connection to the selected device(0.61s), and executing
the microservice(1.26s). For the MDC device, the average
time consumed to register its capabilities is 0.87s, because
it needs to obtain the device’s real-time status. Although the
registration time is close to one second, this latency should
not affect the perceived system performance; while the device
information is being updated, the old device information can
still be used simultaneously.

c) Energy Consumption: We record the energy consump-
tion of the LG Volt device in the idle state for 30 seconds,
and record the energy consumed by querying the microservice
execution device/registering device capability once per second
for 30 seconds. To protect the result from being distorted by
the caching strategy of the Android Volley library, we add a
random parameter to each request.

Our experiment shows that, the energy consumption for the
client device to parse the MCL request and obtain the assigned
MDC device from the WiFi router is 0.009 mAh; the energy
consumed by the MDC device to register with the WiFi router
is 0.023mAh. If an MDC device registers with the gateway



Number of Devices 1 10 20 50 100
Server Device Query (ms) 14 90 171 377 531
Capability Registration (ms) 18 110 192 461 563

Table I: Gateway’s Average Response Time.

once per minute for one day, the overall energy consumed
would be 33mAh, and this energy expense should not affect
the experience of mobile users, given that the battery capacity
of a typical modern smartphone is at least 2000mAh.

d) Performance of the Gateway: We use ab to benchmark
the performance of the HTTP services, including registering
device capability and querying for microservice execution
devices, provided by the WiFi router. We run this test on a
notebook that connects to the router via WiFi. We simulate
1, 10, 20, 50, 100 devices connecting to the router simultane-
ously, and Table I shows the average execution time. As the
bulk of the processing load takes place in the WiFi router, the
obtained results show high scalability even when stress testing
the system with an unrealistic number of requests to the router.

C. Device Selection Procedure

We also experiment with comparing our device selection
procedure with that of other state-of-the-art systems. Table II
gives the description of three key competing designs with 3)
being our system.

Device Discovery Energy Latency Programmability
BLE Broadcast Low 1.26s Low
UDP Broadcast Middle 0.38s Low
Router as Gateway Middle 0.2s High

Table II: Properties of Device Selection Mechanisms.

1) BLE Broadcast Based [26]: The functionality demanding
devices use the BLE broadcast to announce their requirements.
When the MDC devices receive the broadcast, they connect
to the broadcasting device, and transfer their device capability
to it. For the broadcasting device, if multiple MDC devices
can provide the required functionality, it needs to wait for all
MDC devices to respond, and then select one device that best
fits the NFRs, and establish a BLE connection with that device
for executing functionality remotely.

2) UDP Broadcast Based [28], [29]: MDC devices are all
connected to a local network. The functionality demanding
device sends out a UDP broadcast, with the required func-
tionality, the NFRs, and the IP address of the device included
in the broadcast message. When an MDC device receives
the broadcast and determines that it fits the requirements, it
sends its information back to the broadcasting device. The
broadcasting device waits for all nearby devices to respond,
and then starts a socket connection with the device that best
fits the NFRs.

Here we compare the performances and applicability of all
the considered device selection strategies:

1. Energy. Table II shows the comparison of the amount
of energy consumed by each strategy over time. BLE is the
most energy-efficient, while the other two methods consume
slightly more energy.

Execution Time 2h 4h 6h 8h
Stand By 93 % 87 % 79 % 71 %
BTLE D2D Broadcast 93% 86% 78% 70%
Node in WiFi Cluster 92% 84% 76% 68%

Table III: Remaining Battery Percentage Over Time.

ULOC Register & Stop Device Selection
Router-based 33 5
BLE Broadcast 86 231
UDP Broadcast 57 208

Table IV: ULOC for Each Function.

2. Latency. Table III shows the latency result of our
experimental implementation, with an MDC comprising three
devices. We conclude that 1) The latency of BLE is the
highest, because all MDC devices need to connect to the
resource requesting device, and pass their capacity to the
device via BLE communication, which is rather slow. 2) the
UDP broadcast strategy also incurs higher latency than the
gateway-based ones. We further increase the number of the
MDC devices to 5, and observe that the latency of both UDP
and BLE broadcasts increase accordingly.

3. Programmability. We evaluate the programmability of
these strategies, in terms of uncommented lines of code it
takes to implement each functionality. When registering device
capabilities, our strategy takes 33 ULOC, with the majority
of the code written to obtain the device’s status. The two
broadcast based strategies take 57 and 86 ULOC, respectively,
due to them needing to manage the D2D communication.
When selecting devices, our strategy takes only 5 lines of code,
with the broadcast based strategies taking over 200 ULOC.

Based on this evaluation, one can conclude that our
gateway-based system architecture enables mobile apps to
leverage MDCs with low latency and high energy efficiency. In
addition, our architecture’s device selection procedure requires
fewer lines of programmer-written code as compared to the
broadcast-based alternatives.

VII. RELATED WORK

Much of recent work has focused on leveraging the resource
capability (computation, sensing, and network) of the collo-
cated mobile devices[1], [2], [3], [4], [5], [6], [7], [8], [9],
[10], [30], [11], [12], [13], [14], [15], [16], [17], [18].

Existing solutions for discovering collocated devices can be
divided into two categories: 1) the device requiring the services
should monitor the devices within its communication range in
a p2p manner [3], [5]; 2) a device is selected as the cluster
head, and handles the device discovery procedure instead [31],
[9]. AllJoyn [32], a framework included in Windows 10 for
enabling device-to-device communication, implements both
solutions. However, the first solution suffers from poor scala-
bility incurring high performance overhead on both the client
and server devices. The second solution requires purchasing
additional devices and complex setup procedure. The second
solution requires writing a lot of low level codes to manage the
communication among mobile devices. Another recent closely
related work also implements a system architecture that uses



generally available, off-the-shelf WiFi routers as a gateway for
device discovery [33]. However, that solution fails to select
device according to requirements on execution features.

VIII. CONCLUSION

In this paper, we have presented a novel system archi-
tecture for mobile device clouds (MDCs). The architecture
adapts the microservice pattern to MDC environments, and
offers an intuitive programming model for MDC applications.
Developers interact with the architecture via a high-level
programming abstraction in the form of a domain-specific
language. The language concisely expresses the start and stop
of device capability sharing as well as the selection of the most
suitable devices to execute a given functionality. The results
of evaluating our architecture’s reference implementation show
how its efficiency and programmability can make it a viable
solution for leveraging MDCs.
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[4] E. Miluzzo, R. Cáceres, and Y.-F. Chen, “Vision: mclouds-computing
on clouds of mobile devices,” in MCS’12. ACM, 2012, pp. 9–14.

[5] C. Shi, V. Lakafosis, M. H. Ammar, and E. W. Zegura, “Serendipity:
enabling remote computing among intermittently connected mobile
devices,” in MobiHoc’12. ACM, 2012, pp. 145–154.

[6] A. Fahim, A. Mtibaa, and K. A. Harras, “Making the case for compu-
tational offloading in mobile device clouds,” in MobiCom’13. ACM,
2013, pp. 203–205.

[7] U. Drolia, R. Martins, J. Tan, A. Chheda, M. Sanghavi, R. Gandhi,
and P. Narasimhan, “The case for mobile edge-clouds,” in UIC/ATC’13.
IEEE, 2013, pp. 209–215.

[8] K. Bhardwaj, S. Sreepathy, A. Gavrilovska, and K. Schwan, “Ecc: Edge
cloud composites,” in MobileCloud’14. IEEE, 2014, pp. 38–47.

[9] R. Loomba, R. de Frein, and B. Jennings, “Selecting energy efficient
cluster-head trajectories for collaborative mobile sensing,” in GLOBE-
COM’15. IEEE, 2015, pp. 1–7.

[10] X. Chen, “Decentralized computation offloading game for mobile cloud
computing,” IEEE TPDS, vol. 26, no. 4, pp. 974–983, 2015.

[11] E. Toledano, D. Sawada, A. Lippman, H. Holtzman, and F. Casalegno,
“Cocam: A collaborative content sharing framework based on oppor-
tunistic p2p networking,” in CCNC’13. IEEE, 2013, pp. 158–163.

[12] S. Sur, T. Wei, and X. Zhang, “Autodirective audio capturing through
a synchronized smartphone array,” in Proceedings of the 12th annual
international conference on Mobile systems, applications, and services.
ACM, 2014, pp. 28–41.

[13] A. Amiri Sani, K. Boos, M. H. Yun, and L. Zhong, “Rio: a system
solution for sharing i/o between mobile systems,” in MobiSys’14. ACM,
2014, pp. 259–272.

[14] H. Liang, H. S. Kim, H.-P. Tan, and W.-L. Yeow, “Where am i?
characterizing and improving the localization performance of off-the-
shelf mobile devices through cooperation,” in NOMS’16. IEEE, 2016,
pp. 375–382.

[15] J.-W. Yoo and K. H. Park, “A cooperative clustering protocol for energy
saving of mobile devices with wlan and bluetooth interfaces,” TMC,
vol. 10, no. 4, pp. 491–504, 2011.

[16] X. Bao, Y. Lin, U. Lee, I. Rimac, and R. R. Choudhury, “Dataspotting:
Exploiting naturally clustered mobile devices to offload cellular traffic,”
in INFOCOM’13. IEEE, 2013, pp. 420–424.

[17] B. Jones, K. Dillman, R. Tang, A. Tang, E. Sharlin, L. Oehlberg,
C. Neustaedter, and S. Bateman, “Elevating communication, collabora-
tion, and shared experiences in mobile video through drones,” in DIS’16.
ACM, 2016, pp. 1123–1135.

[18] E. Koukoumidis, D. Lymberopoulos, K. Strauss, J. Liu, and D. Burger,
“Pocket cloudlets,” in SIGPLAN, vol. 46, no. 3. ACM, 2011.

[19] A. Salem and T. Nadeem, “Colphone: A smartphone is just a piece of
the puzzle,” in UbiComp’14. ACM, 2014, pp. 263–266.

[20] A. Lucero, J. Clawson, K. Lyons, J. E. Fischer, D. Ashbrook, and
S. Robinson, “Mobile collocated interactions: From smartphones to
wearables,” in CHI’15. ACM, 2015, pp. 2437–2440.

[21] H. J. La and S. D. Kim, “A conceptual framework for provisioning
context-aware mobile cloud services,” in IEEE CLOUD. IEEE, 2010,
pp. 466–473.

[22] K. Hong, D. Lillethun, U. Ramachandran, B. Ottenwälder, and B. Kold-
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