
Code Generation on Steroids: Enhancing COTS Code Generators via 
Generative Aspects 

 
 

Cody Henthorne 
Computer Science Dept.  

Virginia Tech 
codyh@cs.vt.edu 

Eli Tilevich 
Computer Science Dept. 

 Virginia Tech 
tilevich@cs.vt.edu 

 
 

Abstract 
 

Commercial of-the-shelf (COTS) code generators 
have become an integral part of modern commercial 
software development. Programmers use code 
generators to facilitate many tedious and error-prone 
software development tasks including language 
processing, XML data binding, graphical component 
creation, and middleware deployment. Despite the 
convenience offered by code generators, the generated 
code is not always adequate for the task at hand. This 
position paper proposes an approach to address this 
problem. We utilize the power of Aspect Oriented 
Programming (AOP) to enhance the functionality of 
generated code. Furthermore, our approach enables 
the programmer to specify these enhancements through 
an intuitive graphical interface. Our proof-of-concept 
software tool provides event-handling AspectJ aspects 
that enhance the functionality of the XML processing 
classes automatically generated by a commercial of- 
the-shelf code generator, Castor. 
 
1. Introduction 
 

One of the most effective approaches to automating 
menial programming tasks is automatic code 
generation. A code generator takes a high level 
description as input and generates lower level code. 
That is, the input specification for generators is simpler 
and shorter than the generated code. Hence, code 
generation not only saves time and effort, but also 
avoids many programming errors and increases 
programmer productivity [1, 2].  

It is not surprising that software generators 
constitute an important domain of COTS software that 
in the future will only become more important. As the 
complexity of computing systems continues to grow, 
software generators have the potential to provide 

elegant solutions that tame the complexity, enabling the 
design at a higher level of abstraction and the use of 
declarative approaches [2]. 

Alas the benefits of automatic code generation can 
diminish rapidly if the generated code does not fully 
satisfy the requirements for the task at hand. Examples 
of generated code deficiencies include not adhering to 
the in-house coding convention, missing important 
features, and having incorrect concurrency properties 
(e.g., not thread-safe). 

Of course, automatically generated code can always 
be further refined by hand to meet the requirements, 
but this is not a viable solution. Every time a code 
generator is re-run (in response to changed input or as 
part of a build process), all the hand-written changes 
will be lost and re-applying the changes would be a 
waste of programming effort. 

Another approach to customizing the functionality 
of a code generator is to change the source code of the 
generator itself. Nevertheless, this is impossible for 
those COTS code generators that are proprietary. Even 
the ones that are open-source are often large and 
intricate. Reverse engineering such a code generator 
thoroughly enough to be able to change its functionality 
in a meaningful way could be a prohibitively difficult 
and time-consuming undertaking. In fact, this process 
could be on par with the time it would take to develop a 
custom in-house code generator, completely negating 
the time-saving benefit of using COTS code generators.  

This paper presents a novel approach that provides 
the programmer with a capability to enhance the 
functionality of the generated code, without any of the 
shortcomings of the two approaches outlined above. 
Specifically, we enable changing the functionality of 
the generated code externally to the code itself and to 
the COTS code generator. At the core of the approach 
is a visual tool that presents generated code to the 
programmer, who can then use the tool’s GUI to 
express the needed enhancements. The visual tool then 

Second International Workshop on Incorporating 
COTS Software into Software Systems: Tools and Techniques (IWICSS'07)
0-7695-2966-6/07 $20.00  © 2007



encodes the enhancements by generating aspect 
oriented programs. Finally, an aspects compiler, such 
as AspectJ [3], weaves these automatically-generated 
aspects with the generated code, thereby customizing 
and enhancing the code with the required functionality 
[4]. 

The rest of this paper is structured as follows. 
Section 2 provides concrete examples of inadequacies 
in generated code. Section 3 summarizes AOP and 
outlines our approach to enhancing COTS code 
generators through generative aspects. Section 4 
explains our proof-of-concept tool that we used to 
enhance generated code in an unrelated software 
project. Section 5 describes related work, and Section 6 
contains our future directions and conclusions. 
 
2. Issues with Generated Code 
 

The biggest challenge of using code generators in 
general, and of COTS ones in particular, is that it is 
difficult to make the generated code have all the 
properties required by a given software development 
scenario. In fact,  it is this difficulty that makes general 
purpose code generators infeasible—instead, code 
generators proved practical only when applied in a 
domain-specific fashion [2]. In the introduction, we 
have outlined three issues that can make generated 
code inadequate for immediate use, and next we 
explain each of them in greater detail. 

Large software organizations commonly follow 
established coding conventions (e.g., Java Code 
Conventions [5]). A coding convention is a policy for 
naming programming language constructs such as 
classes, methods, fields, and variables. For example, it 
might be required to start all the member fields of a 
class with the underscore character (e.g., _field). 

A COTS code generator might not provide the 
means to customize the naming conventions used for 
automatically generated code. This can be a serious 
issue—even if it does not stop a programmer from 
using the generated code, it can cause annoying 
inconsistencies with the accepted conventions. 

Generated code might not completely provide all the 
desired functionality. To make a code generator useful, 
it must be general enough to satisfy multiple 
programming scenarios. Furthermore, customizing 
code generators for all possible special cases is 
impossible, and some required functionality cannot be 
automatically generated. For example, it might be 
necessary to serialize an object of a generated class to 
permanent storage [6]. However, the serialization 
functionality might not be automatically generated. 

Generated code might not be equipped for 
concurrent execution. Concurrency has entered the 
world of desktop and enterprise applications and is no 
longer reserved just for high-performance servers and 
operating systems [7]. Nevertheless, generated code 
might not be thread-safe, and thus not suitable for safe 
concurrent execution.  

These are just three simple examples that 
demonstrate issues with generated code that can make 
it inadequate for immediate use. One could imagine 
many other cases when automatically generated code 
misses the mark one way or another. Next we present 
our approach that can solve this problem. 
 
3. Enhancing Generated Code 
 

One of the new and exciting approaches to the 
challenge of providing clean and intuitive mechanisms 
for separating concerns is called Aspect Oriented 
Programming (AOP) [4]. Specifically, AspectJ is a 
popular Java language extension that enables 
programmers to express cross-cutting concerns [3]. For 
example, the following code snippet demonstrates how 
the programmer can express a simple logging aspect 
and apply it to method foo1. 

 
void foo(int x, int y) { 

System.out.println(x + y); 
} 
before():call(* foo(..)) { 

System.out.println(“Log call: “ + 
thisJoinPoint); 

} 
 

The AspectJ compiler then seamlessly weaves this 
aspect to a given application. In other words, the 
functionality of method foo above is enhanced without 
modifying its source code. Even if the body of the 
method should change in the future, it will not affect 
the functionality added through the logging aspect. Our 
approach leverages this power of AspectJ to enhance 
the functionality of generated code. It is applicable in 
the cases in which automatically generated code does 
not meet the requirements and changing the behavior of 
the code generator itself is not feasible.  

Figure 1 depicts the main steps of our approach 
schematically. As the figure shows, our approach starts 
with the COTS code generator running at will—either 
in response to changes to the input of the code 
generator or as part of a build process. In either case 
the code is re-generated from scratch every time. 
(Hence, manual changes to the generated code are 

                                                           
1 thisJoinPoint is a language construct of AspectJ similar to 
this; it captures info about the currently advised method. 

Second International Workshop on Incorporating 
COTS Software into Software Systems: Tools and Techniques (IWICSS'07)
0-7695-2966-6/07 $20.00  © 2007



futile: all of them will be lost during the very next code 
regeneration.) Thus, the base code generator executes 
normally and produces a collection of source files. We 
call these source files base generated code because it 
does not meet the application requirements in some 
way.  

Then a static code analyzer extracts basic structural 
info from the generated code such as classes, methods, 
and fields and saves the results for future use. This 
allows us to compare the results of running the COTS 
code generator under different inputs and to keep our 
enhancements up-to-date. The programmer can then 
resolve the inconsistencies instead of having to 
complete all the subsequent steps of our approach from 
scratch. 

To make the analysis results useful to the 
programmer, our Visual Enhancement Tool (VET) 
displays them in a graphical environment. The analysis 
considers only classes, methods, and fields rather than 
method bodies, which facilitates the use of predefined 
scenarios in VET for expressing the desired 
enhancements. We call these scenarios enhancement 
patterns. Consider, for example, the case if generated 
code is not thread safe. The Make Thread Safe 
enhancement pattern can be applied to the selected 
individual methods, method groups, or entire classes to 
make them thread-safe. Implementation-wise, it would 
mean adding some locking capabilities that can be done 
externally to the base generated code. Furthermore, the 
locking would be added to the base code through 
automatically generated aspects. 

Since it might not be feasible to generate aspects 
entirely on visual input, the programmer might add 
some small code snippets to express the additional 
functionality that would have to be interposed against 
the base code. Based on both the VET output and the 
programmer’s supplied code snippets, the aspect 

generator can produce all the required aspects to 
enhance the functionality of the base generated code.  

 The last step uses standard functionality of an 
aspect compiler such as AspectJ. It can effectively 
weave together all the automatically generated aspects 
with the base generated code. For deployment 
purposes, only the runtime libraries of the aspect 
compiler would have to be provided. 

To summarize, our approach completely avoids 
having to modify either the code generator itself or the 
generated code by hand. Instead, we effect the 
modification externally by employing generative 
aspects. That is, we automatically generate aspects to 
enhance base code using input from our visual tool and 
code analysis. 
 
4. Proof-of-Concept 
 

Our idea for the aforementioned approach to 
enhancing generated code arose as a practical solution 
to a real problem that we encountered while working 
on an unrelated research project. The goal of that 
project is to create a graphical Integrated Development 
Environment (IDE) for designing and creating parallel 
applications. As is often the case, our project is very 
experimental in nature, and we find ourselves 
discovering new requirements and needs almost daily. 

As it is common for modern GUIs, we implement 
the Observer pattern, a type of Model-View-Controller 
(MVC) architecture [8]. As its names suggests, this 
architecture provides a clean separation of concerns 
between the model, managing the data;  view, 
providing the graphical representation of the model; 
and the controller, coordinating the interaction of the 
two.  

Because XML is a de-facto standard for 
representing, storing, and transporting data, we decided 

Figure 1: Our Approach-Tools and Control Flow 

Second International Workshop on Incorporating 
COTS Software into Software Systems: Tools and Techniques (IWICSS'07)
0-7695-2966-6/07 $20.00  © 2007



to persist our model to an XML file. However, this 
model has to be represented as regular Java classes as 
well. The transformations between XML files and their 
corresponding Java representations, called XML data 
binding, can be a substantial programming task if done 
by hand. Fortunately, XML grammar presents an 
excellent opportunity for automating data binding 
through code generation. 

For this task, we have used a popular commercial 
code generation suite called Castor [9]. Castor takes a 
XSD XML schema file as input, and generates code for 
representing XML content via Java classes and 
generates a marshalling framework. A marshalling 
framework provides the ability transform the model 
from XML to Java and back. Using a COTS code 
generator such as Castor takes away the necessity of 
processing XML by hand. The following example 
presents a Castor input XSD file that generates a class 
SampleObject with getter and setter methods for a 
string field named objectname: 

 
<xs:element name="SampleObject"> 
  <xs:complexType> 
    <xs:sequence> 
      <xs:element name="objectname" 

type=”xs:string”/> 
    </xs:sequence> 

</xs:complexType> 
</xs:element> 
 

Having automated this programming task proved to 
be a boon for our research project. Since our model 
changes frequently, we only need to change the Castor 
XML schema file to re-generate all the XML 
processing code. It is these kinds of scenarios for which 
code generation is indispensable. 

The careful reader might have noticed that our 
discussion so far has completely omitted the 
description of how our model interacts with the 
controller. In the classical Observer pattern, the 
Observable (model) must have the capability to notify 
all Observers (views) every time data within the 
Observable changes. To accomplish this requires 
adding some notification-specific logic to the generated 
model code.  

Let us consider the functionality which needs to be 
added to the Castor generated XML data binding code 
to make it possible to use this code as Observable. The 
original version of the automatically generated code 
simply represents XML data and allows accessing and 
modifying this data through accessor and mutator 
methods. For example, consider this mutator method 
that would be generated from the above schema: 

 
void setObjectname (String objectname) { 
 this.objectname = objectname; 
} 

To implement the desired controller interactions, it 
is necessary to interpose some logic every time a 
mutator method is called. To effect the required 
controller interaction, we would modify this mutator 
method as follows: 

 
void setObjectname (String objectname) { 
 this.objectname = objectname; 
 for (Listener l : listeners) { 
  l.notify(obj); 
 } 
} 
 

Notice that method setObjectname is automatically 
generated. Therefore, every time code re-generation 
takes place, this method will be created anew and any 
hand-made changes will be completely lost. This will 
quickly become a burdensome and time-consuming 
development task, besides being a huge source of 
frustration. 

Castor, being a commercial quality code generator, 
has several advanced code generation options that a 
programmer may specify. One of these options, the 
org.exolab.castor.builder.boundproperties flag, 
provides an ability to generate all class fields as bound 
properties. That is, every field of every class will send 
a java.beans.PropertyChangeEvent to all the 
registered java.beans.PropertyChangeListeners 
when a field in a generated class is modified. 

Nevertheless, this approach is too coarse-grained 
and does not provide enough flexibility to be able to 
express the advanced requirements of modern MVC 
interactions. For one, the bounding functionality is 
provided at a global level. That is, it is impossible to 
specify that only certain fields raise 
PropertyChangeEvents when modified. In addition, 
raising such events for all field mutations will generate 
extra overhead that can be detrimental not only to 
performance but to comprehensibility of the generated 
code. In fact, not all of the XML data might be 
associated with visual representations, and thus would 
not require any coordination with views. 

The automatically generated notification logic is not 
only too coarse-grained, but it also does not support 
more complex controller interaction logic that can be 
required in a modern GUI application. A simple 
example of such complex logic is to be able to register 
model objects as Observers in addition to their 
standard roles as Observables. 

In addition to supplying the controller interaction 
code to the model by hand and using the coarse-grained 
notification logic, another possible way is to change the 
COTS code generator itself. Indeed, Castor follows the 
Open Source development model and makes all of its 
~250,000 lines of Java source code available. Clearly 

Second International Workshop on Incorporating 
COTS Software into Software Systems: Tools and Techniques (IWICSS'07)
0-7695-2966-6/07 $20.00  © 2007



being able to understand such a large code base well 
enough to be able to introduce changes would require a 
serious investment of time and effort. Furthermore, 
even if such intimate understanding has been obtained, 
customized versions of Castor would need to be 
created for different application scenarios. 

With the exception of the inability to easily 
interpose controller related logic into the generated 
code, Castor is a high quality COTS code generator for 
handling XML processing. Nevertheless, the generated 
code while well-suited for the task intended was 
insufficient to satisfy the requirements of our 
application. Thus, we needed an approach that would 
allow enhancing the Castor generated code with 
additional controller-related functionality without 
changing the base generated code by hand. 

Our solution in this case involved using AspectJ 
aspects and advice to weave the controller related 
functionality into the Castor generated code. The 
following code example shows an aspect that adds the 
controller functionality right before the control flow 
leaves the setObjectname method. 

 
private List<Listener> SampleObject.listeners; 
after(String name) returning :  
  call (* SampleObject.setObjectname(..)) && 
  args(name) { 

for (Listener l : listeners) { 
  l.notify(name); 
 } 
} 
 

To summarize, we successfully utilized aspects to 
express the functionality for adding, removing, and 
notifying of listeners to all the required Castor 
generated classes. In this case, however, we had to 
write the AspectJ code by hand, yet we saw this as a 
convincing proof-of-concept for a useful development 
tool. From our implementation experience, we 
observed that the hand-written AspectJ code was 
straightforward in structure and repetitive in nature. It 
is these properties of the AspectJ code that lend it to be 
a suitable candidate for automatic code generation. 
Furthermore, following the MVC pattern made the 
AOP code easier to understand and evolve. Even 
programmers, who are not familiar with AOP and 
AspectJ but familiar with MVC, should be able to 
follow our enhancement code. It also occurred to us 
that other enhancement patterns could be used in a 
similar capacity. Applying this approach to an 
unrelated real software development scenario 
demonstrated to us that a general tool for enhancing the 
output of COTS code generators will be useful for any 
software developer who uses such generators. 

 

5. Related Work and Discussion 
 

This work contributes to a large body of research on 
enhancing software systems with additional 
functionality through Aspect Oriented Programming 
[4]. Our approach presents a compelling case for the 
utility of using AOP, due to the fact that our approach 
modifies generated code externally. It would be hard to 
describe all the extensive body of related works; 
therefore, we will focus only on closely related 
research. 

In our approach the programmer never has to 
interact with a lower level transformation tool directly, 
expressing enhancements through a GUI to have them 
automatically translated into specific instructions for a 
lower-level transformation tool. Even though we could 
use different tools for lower-level transformations, we 
prefer AspectJ because of its widespread popularity 
and mature linguistic support for expressing 
transformations. Nevertheless, one feature that we 
would find useful is the ability to replace or remove 
portions of base code. This is not part of AOP, whose 
raison d’être is weaving in cross-cutting concerns 
rather than replacing existing code. 

GOTECH has proposed the idea of generative 
aspects to enhance centralized Java programs with 
distributed functionality as captured by the J2EE 
standard [10, 11]. Later, MAJ expanded on the 
GOTECH work and introduced an approach to 
generating syntactically correct AspectJ programs [12]. 
It is possible to use MAJ for generating AspectJ code 
in our enhancement infrastructure. A related but more 
domain-specific approach proposes using generative 
aspects and a visual tool for dynamic UML modeling 
of C++ programs [13]. 

Our code enhancement approach is closely related 
to pattern-based design and development. Design 
Patterns and Architectural Patterns, however, focus on 
building software systems from scratch [14]. In 
contrast, our approach starts with an existing code base 
and then uses patterns to modify it. 

In our approach, we take advantage of several 
known static analysis techniques for discovering 
various facts about the generated code such as the 
existing associations between different objects [15]. 
Also our visual tool will use state-of-the-art software 
visualization techniques to present the analysis 
information to the programmer [16].  
 
6. Future Directions and Conclusions 
 

The presented approach and the tool infrastructure 
is a work in progress. So far we have succeeded in 

Second International Workshop on Incorporating 
COTS Software into Software Systems: Tools and Techniques (IWICSS'07)
0-7695-2966-6/07 $20.00  © 2007



determining the general architecture and the control 
flow between different tools. Nevertheless, many of the 
implementation specifics have yet to be properly 
designed and implemented. While some parts of our 
approach present a purely engineering challenge, 
creating some other components will require resolving 
serious conceptual issues. 

In our estimation, the hardest and most important 
component of our approach and the one which will 
determine the overall success of this research is our 
Visual Enhancement Tool (VET). While representing 
the results of static analysis of the base generated code 
can be reduced to the problem of visualizing large data 
sets [16], elegantly and intuitively mapping the 
enhancement patterns to the analysis results will 
require a truly innovative solution.  

We plan to focus on supporting only a handful of 
enhancement patterns, rather than supporting as many 
of them as possible. This will serve to flatten the 
learning curve for our tools and will provide us with 
more time to concentrate on improving their usability. 
Nevertheless, we are determined to make our tools 
extensible, so that other developers would be able to 
express and apply their own enhancement patterns 
using our tools.  

To that end, we plan to take advantage of the 
capabilities of the Eclipse Rich Client Platform (RCP) 
and expose our tools as plug-ins [17]. Thus, any 
developer who uses Eclipse will be able to benefit from 
using our tools. Furthermore, Eclipse RCP has 
excellent facilities for enabling third-party developers 
to extend existing plug-ins in a flexible fashion. We do 
intend to use these facilities to allow developers to 
supply their own enhancement patterns. 

We intend to test the feasibility of our approach on 
multiple domains that use COTS code generators. 
While XML data binding is an important domain for 
code generators, it would be interesting to explore how 
much practical benefit can be derived from enhancing 
base generated code in other domains. 

Finally, we believe that the concept of Enhancement 
Patterns has a promise and deserves a careful 
exploration. Using this concept to modify generated 
code is only one particular application. The ability to 
represent higher level enhancements as well known 
patterns, not easily expressible through the 
transformations offered by existing AOP tools, may be 
useful in other application scenarios. 

As code generation has entered the mainstream of 
industrial software development, code generators have 
become popular third-party commercial products for 
in-house use. We believe that finding a good approach 
to enhancing COTS code generators is an important 

endeavor, and it will make code generation even more 
successful and widely-used. 

 
7. References 
 
[1] Y. Smaragdakis, S. S. Huang, and D. Zook, 
"Program Generators and the Tools to Make Them," in 
SIGPLAN symposium on Partial evaluation and semantics-
based program manipulation: ACM Press, 2004. 
[2] Y. Smaragdakis and D. Batory, "Application 
generators," Encyclopedia of Electrical and Electronics 
Engineering, 2000. 
[3] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. 
Palm, and W. G. Griswold, "An Overview of AspectJ," in 
ECOOP, 2001. 
[4] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, 
C. Lopes, J. M. Loingtier, and J. Irwing, "Aspect-Oriented 
Programming," in ECOOP: Springer-Verlag, 1997. 
[5] Sun Microsystems Inc, "Java Code Conventions," 
http://java.sun.com/docs/codeconv/CodeConventions.pdf. 
[6] Sun Microsystems Inc, "Object Serilization," 
http://java.sun.com/j2se/1.5.0/docs/guide/serialization/index.
html, 2004. 
[7] H. Sutter, "A Fundamental Turn Toward 
Concurrency in Software," Dr. Dobb's Journal, vol. 30, pp. 
16-20, 2005. 
[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, 
Design patterns: elements of reusable object-oriented 
software: Addison-Wesley Longman Publishing Co., Inc., 
1995. 
[9] ExoLab Group, "The Castor Project," 
http://www.castor.org/index.html. 
[10] E. Tilevich, S. Urbanski, Y. Smaragdakis, and M. 
Fleury, "Aspectizing Server-Side Distribution," in ASE, 
2003. 
[11] Sun Microsystems Inc, "Java EE at a Glance," 
http://java.sun.com/j2ee/. 
[12] D. Zook, S. S. Huang, and Y. Smaragdakis, 
"Generating AspectJ Programs with Meta-AspectJ," 
Generative Programming and Component Engineering 
Conference, 2004. 
[13] B. A. Malloy and J. F. Power, "Exploiting UML 
dynamic object modeling for the visualization of C++ 
programs," in SoftVis, 2005. 
[14] F. Buschmann, R. Meunier, H. Rohnert, P. 
Sommerlad, and M. Stal, Pattern-oriented software 
architecture: a system of patterns: John Wiley & Sons, Inc. 
New York, NY, USA, 1996. 
[15] D. Jackson and A. Waingold, "Lightweight 
extraction of object models from bytecode," IEEE Software 
Engineering, vol. 27, pp. 156-169, 2001. 
[16] J. Stasko, Software visualization: MIT Press 
Cambridge, Mass, 1998. 
[17] Eclipse Foundation, "Eclipse.org," 
http://www.eclipse.org. 
 
 

Second International Workshop on Incorporating 
COTS Software into Software Systems: Tools and Techniques (IWICSS'07)
0-7695-2966-6/07 $20.00  © 2007


