
Implementing an Open-access, Data Science
Programming Environment for Learners

Austin Cory Bart, Javier Tibau, Eli Tilevich, Clifford A. Shaffer, Dennis Kafura
Computer Science

Virginia Tech
Blacksburg, Virginia, USA

acbart@vt.edu, jtibau@vt.edu, tilevich@vt.edu, shaffer@vt.edu, kafura@vt.edu

Abstract—A key retention issue when educating com-
puting novices is ensuring that the frustrations of mas-
tering programming fundamentals do not demotivate and
discourage students from studying the discipline. In par-
ticular, non-CS majors often struggle to find relevance
in traditional computing curricula that tend to either
emphasize abstract concepts, focus on non-practical en-
tertainment (e.g., game and animation design), or rely
on decontextualized settings. To address these issues, this
paper introduces BlockPy, a block-based environment
for Python (http://www.blockpy.com). BlockPy is a web-
based, open-access programming environment that sup-
ports introductory programming with an emphasis on
data science. It promotes long-term transfer by scaffolding
an introduction to textual programming (Python) through
a block-based programming view, ideal for beginners of
any background. By supporting the latest Learning Tools
Interoperability (LTI) standards, BlockPy is designed to
support both informal learners and formal class settings.
Specifically, it can be configured to provide guiding feed-
back for its interactive programming problems, so as to
support learners at their own pace. The results from a pilot
study of the initial deployment and utilization of BlockPy
indicate the potential of the environment to address many
of the problems faced by novice learners.

Keywords-Computer science education; Computer aided
instruction; Data analysis; Web services;

As computing becomes pervasive in our society
across fields, working professionals increasingly need to
acquire some expertise in computing in addition to their
core domain knowledge. General education computing
curricula at the university level (e.g., “Computational
Thinking” courses) are scaling, Massively Open Online
Courses are flourishing, and a large class of learners
are pursuing ad-hoc, non-formal learning experiences
on their own. Both these traditional and non-traditional
learners often have little experience with computing,
low self-efficacy, and are uncertain about the value of
computing towards their long-term career goals. Not
only do they need special scaffolding unique to their
ability and motivational level, but they also need fewer
barriers in the technology they access these materials
with. Our solution to serve this population is BlockPy:
an open-access, web-based Python environment for data

science that supports learners with guided instruction
and an accessible interface (http://www.blockpy.com).

Why Data Science? Modern approaches to contextu-
alizing introductory courses have focused on making the
experience “fun” and “interesting”, with an emphasis
on game design and media computation [1]. However,
student motivation is a complex, multi-faceted construct
dependent on more than just situational interest; in
particular, holistic models of motivation suggest that
students also need to feel that the material is inherently
useful to learn, and that long-term career goals are being
satisfied [2]. Despite an attempt at convincing students
otherwise, Media Computation is not perceived as an
authentically useful context for non-majors, based on a
study by Guzdial et al [3].

We suggest that Data Science is a motivating context
that can appeal in a different way to students, thanks
to the wide-spread need for data processing in other
majors. Students are often studying computing to learn
how to manage the dizzying quantities of data being
stored, used, and analyzed in a discipline or for a
specific self-derived project. By grounding the content
in this context, students can be more easily convinced
of the relevance of computing and understand how the
materials fit together more clearly. By aligning the con-
text with students’ long-term needs, students can also
learn skills more relevant to their needs. Finally, data
science as a context naturally lends itself to teaching
topics related to structured data, iteration, and other core
material, making it a pedagogically valuable context to
the CS instructor.

Why Python? Python has become one of the
most popular introductory programming languages [4],
thanks to its simple syntax but impressive power, includ-
ing strong support for data science thanks to popular
libraries like MatPlotLib. Python requires little code in
order to accomplish interesting things, so novices are
not bogged down with a tremendous amount of syn-
tactical details. Its wide-spread use in both introductory
classes and industry motivated our choice.

Why Blocks? However, any kind of programming is



still a challenge to beginners, due to the nature of coding
as the “most powerful, but least usable human-computer
interface ever invented.” [5] Block-based languages have
been shown to mitigate the start-up time for students
to start programming and accomplishing tasks [6], [7].
By providing structure and an immediate view into
the entire user interface of a language, blocks greatly
benefit introductory learners. Echoing a popular senti-
ment among CS educators, “At the novice programming
level, blocks-based languages are the most promising
direction today” [8].

Why Another Python Web Environment? There
are several environments available today that let stu-
dents and instructors write Python in the browser, in-
cluding CodeSkulptor [9], Pythy [10], and the Online
Python Tutor [11]. BlockPy stands on the shoulders of
giants, integrating features inspired by these environ-
ments and introducing novel ones. But none of these
existing Python environments scaffolds transitioning
students into textual programming languages.

BlockPy was designed to provide dual support for
both block-based and text-based code authoring. At any
time, the student can switch freely between a block-
based view of their code and a traditional text-based
view. This powerful feature is inspired by Pencil Code,
which uses its own Logo language [12], and similar im-
plementations have been successful as a fading scaffold
for students [13].

BlockPy extends Pythy’s [10] support for “assign-
ments”, which are problems that integrate presentation
with assessment. However, Pythy only supports tradi-
tional unit testing to provide students with feedback,
while BlockPy provides an API for code analysis and
free-form text guidance that instructors can configure to
give helpful suggestions to their students. Furthermore,
Pythy has limited support for data science, whereas
BlockPy has a rich library of data sources to draw on
and a MatPlotLib-based plotting API.

CodeSkulptor, Pythy, and BlockPy all use the same
internal engine for running Python code (“Skulpt”).
Although CodeSkulptor has an extensive API for cre-
ating user interfaces and games, it suffers from using
a non-standard library. Although suitable for beginners,
this library does not aid the transition to textual pro-
gramming languages. In BlockPy, the philosophy is
to maintain compatibility with existing systems when
possible. Instead of a custom plotting API, for instance,
we mimic the MatPlotLib interface.

Finally, OnlinePythonTutor has proven to be an in-
credibly useful tool for visualizing program state in
Python programs. However, we hypothesize that the
depth of detail that it gives can be overwhelming for
introductory students (e.g., the visualizations use termi-
nology such as Frames and Objects, which might be

foreign to students despite being proper terminology).
BlockPy’s state explorer does not attempt to match
Python Tutor’s thoroughness or accuracy, but instead
is targeted at providing as helpful as picture of program
state as possible within the constraint of simplicity. This
includes highlighting data types and console output as
part of the visualizers’ program state, as shown in Figure
1 on the right side. Additionally, we remove Python-
Tutor’s server-based python dependency by relying on
Skulpt, which works entirely in the students’ browser.

I. BLOCKPY

The primary design goals of BlockPy are as follows.
1) Reduce the barriers to learning programming.
2) Promote authenticity by empowering students to

complete real-world problems.
3) Promote maturity by faded scaffolds (e.g., transi-

tioning from blocks to text).
4) Minimize the need for help from human instruc-

tors, except where truly needed.

A. Open-source, Open-access

The fundamental vision of BlockPy is a highly ac-
cessible, web-based platform for anyone to learn how to
program. All of its code is completely open-source, and
it leverages a number of open-source libraries. There
is no registration barrier to start using the software.
Although there are a few features that benefit from
registration, such as managing classrooms, registration
is free. Guided learning materials developed in the
system are meant to be shared within the ecosystem
of educators who use BlockPy.

As an editor, BlockPy constantly stores user code as
it is developed. These logs are stored at the keystroke
level to aid future program analysis (described further
in section I-E). The latest version of the user’s code is
therefore available between sessions. When operating in
offline mode, the code is stored in the LocalStorage
browser object; when and if the connection is reestab-
lished, synchronization is performed. The system has
special logic to ensure that only the most recent version
of the author’s code is stored as the canonical reference;
this is crucial for situations where BlockPy is used in
formal classroom environments.

B. Python Execution

The BlockPy system is built to work offline first,
ideal for places where internet connectivity is neither
assured nor reliable. Python Code Execution is achieved
through a modified instance of the Skulpt JavaScript
library. Skulpt is a full Python parser and compiler,
supporting almost all of the language features by gen-
erating runnable JavaScript code. However, it only has
partial support for the complete Python standard library,



Figure 1. A complete screenshot of BlockPy in action

which includes a tremendous number of libraries. The
Skulpt execution environment resides entirely within the
users’ browser, so there is no reliance on an external
server except for the initial page-load. Libraries that
depend on external server data can operate in an offline-
mode, making use of cached data. The long-term goal
of this project is to support a set of rich libraries so
that sophisticated applications can be developed beyond
console-based problems.

C. Block-based Python

To support introductory learners as they grapple with
Python syntax, the initial interface in BlockPy is block-
based, using a modified version of the popular Blockly
JavaScript library. Language features (iteration, deci-
sion, variable assignment and access, etc.) are contained
in a toolbox on the left-side, from which users drag-
and-drop blocks onto a canvas. At any time, BlockPy’s
block interface can only generate syntactically valid
Python code, enforced by the “snapping” connectors of
the blocks (although it is possible to generate seman-
tically incorrect code – this is further discussed later).
Users are given visual refactoring tools to organize the
workspace and perform typical IDE commands (e.g.,
copy, paste, clear). An additional advantage of the
Block-based interface is that blocks can be manipulated
using touch interfaces, particular on mobile devices.
This block interface is also supported by a text interface;
the interaction of these two interfaces is described more
fully in section I-H.

An important question is how many language details
should be exposed, and at what rate. A rarely used

feature of for loops in Python is to contain an else
clause that is executed upon successful completion of
the loop (that is, when it is not prematurely escaped
using a break statement). This advanced language
feature is meant to draw special attention to connected
actions that must be performed after the iteration is
completed (similar to a finally statement with ex-
ceptions). However, if an else clause were made
available to beginners first trying to grapple with itera-
tion, it is likely they would confuse the concept with
the conditional else clause used in if statements.
Cognitive Load Theory can be a harsh mistress for
beginners, and the user interface needs to avoid expos-
ing unnecessary details where possible. While hiding
else bodies in a for loop is a clear case, there more
subtle examples. It can be very difficult to recognize
when the learner is ready to use parallel assignment
(which can be useful for splitting strings with a known
format, such as “month-year”), and therefore should be
able to specify multiple variables on the left side of
an assignment block. A block-based language forces
a teacher to make important decisions about how to
expose language features. As part of the future work of
BlockPy, we’re experimenting with exposing language
features at different rates, adjustable by the instructor or
adaptable to a learners’ rate. In theory, the system can
expose a more accurate language model, similar to what
happens in other environments such as Dr. Racket [14].

D. Adaptive Guided Practice

One of the most powerful features of BlockPy is
the interactive, guided feedback feature. A limitation of



programming environments like Snap! is that they are
not pedagogically interactive – students completing an
assignment in the system are not guided to success. It
is up to the learner to decide when they have completed
their program, and whether it is both correct and meets
the specification. For independent learners outside of
a formal learning experience, this makes progressing
extremely difficult and requires high levels of self-
regulation and metacognition. The adaptive elements
follow an Expert model; when students run their code,
it is checked against instructor-provided logic and con-
straints. If the student code fails for some reason, they
can be offered a suggestion or motivational remark.
Correct code gives a green checkmark through the
system – we have found that the motivating power of a
positive marker cannot be overestimated.

In the Instructor Mode (shown in Figure I-K), teach-
ers and developers can provide a problem instance.
First, a WYSIWYG rich text editor edits the problem
description, supporting images and any valid HTML
content. Second, the instructor can provide code in sev-
eral special canvases that affect the students experience.
Instructors write this code using the same text/block
interface that students use, and can quickly switch out of
Instructor Mode to test their creation. The first canvas is
the “default code”, shown to the student when they first
begin the problem so that they are not facing a blank
canvas. The second canvas defines a special on_run
function. This function is the interface for providing
feedback and consumes the students code, their final
output, and a complete trace of their programs state.
The function returns either a boolean indicating success,
or an HTML string that is rendered to the user as
feedback. The instructor is free to write whatever logic
they want, such as searching for a specific line of code,
testing the outputs on the console, or walking through
the programs state to satisfy certain invariants. An API
for common checks is evolving based on common use
cases, such as checking whether a student is iterating
over a non-empty list (a surprisingly common problem)
or parsing the program’s Abstract Syntax Tree to ensure
that they have properly used a specific language feature.
We are also exploring what kinds of interventions an
instructor can make beyond rendering textual feedback;
perhaps displaying a pop-up dialog with an embedded
instructional video, or alerting an instructor to provide
Just-In-Time instruction for a particular struggling case.

E. Program Analysis for Deeper Learning

We have recently started experimenting with simple
program analysis techniques to find both general mis-
takes that novices make, and problem-specific errors.
For example, our observation is that beginners often fail
to understand the true purpose of certain variables, and

Figure 2. Teacher Perspective for Managing BlockPy Assignments

include them in a mimicked style. By performing simple
variable liveness analyses, we can identify these vari-
ables and raise a serious warning. Most modern editors
feature this kind of analysis, but usually trust that the
user has a reason and behaves non-invasively; we can
make stronger statements about our users’ ability levels
in order to make stronger recommendations against such
cargo-cult programming.

As previously mentioned, we are also securely
recording the entire log of users’ programs and the
interaction log with the system. Our hope is that by
mining this repository of code, we can infer common
patterns that suggest undesirable learner behavior. For
example, users that frequently move the same blocks
without progressing in the problem objectives (“churn-
ing” the interface) might be indicative of taking longer
on the problem than other users. Alternatively, students
who pick a decision block to complete a problem
about iteration might commonly fail to complete a
problem. By proving or disproving such hypotheses,
we can improve the automatic feedback of the system
and provide more individualized support predicts future
student success based on current behavior.

F. LTI Support

A growing cause for alarm in the education commu-
nity is the ever-expanding array of third-party tools that
demand control over students data. The BlockPy project
is committed to supporting LTI technology to reduce
instructors dependency on BlockPy for course manage-
ment. LTI (Learning Technology Interoperability) is a
mechanism by which instructors can embed questions
in their existing course management software (e.g.,
Canvas, OpenEdX) and receive assignment outcomes
such as performance and participation data.

Currently, BlockPy has a dual-layer registration
model. A typical learner can register in the system



without ever being aware of the LTI technology. How-
ever, an instructor using the system can obtain a secret
key and configuration URL that is used within their
Learning Management System. After BlockPy executes
the LTI dance with the LMS, students on the course
website may use Blockpy without registering for an
account – the first time they log in through their LMS’
provided link, they are invisibly registered in the system
with a regular account supplemented with additional
information from canvas (unless an existing account can
be found for the LMS or for the unique information
provided by the system). As students complete work,
assignment progress is reported to the LMS so that they
can receive a grade (additional user profile and code
logs are stored on the BlockPy servers, although we will
offer support for instructors to turn this off as needed
for privacy purposes). Instructors can use a special
interactive menu for managing exercises associated with
a course, as demonstrated in figure 2. Currently, the
system supports LTI version 1.1, but as LTI version 2.0
rolls out in the coming years, we intend to support the
latest standard.

G. Data Science Blocks

BlockPy focuses on Data Science as its primary con-
text, and so we have specific blocks and APIs for work-
ing with data. We use an existing fork of Skulpt with
the popular MatPlotlib library, and extended it with our
own implementation of the CORGIS project [15]. The
MatPlotLib API, for example, provides a “plot(list)”
function to create simple line plots. By basing every-
thing around MatPlotLib, students can seamlessly shift
to a serious Python programming environment without
loss of code or productivity.

The CORGIS (Collection of Real-time, Giant, Inter-
esting, Situated datasets) Project seeks to make motivat-
ing datasets available to introductory students through
simple programming libraries [15]. For instance, up-
to-date temperature and humidity reports for American
cities are available through the Weather library, These
datasets are drawn from many disciplines, resulting in
material meant to be universally interesting and rele-
vant. These datasets are also equipped with scaffolding
that simplifies the process of working with what are
sometimes complicated data sources; for instance, real-
time data sources are cached during development so
that students are not reliant on a consistent internet
connection. Currently, BlockPy supports five different
CORGIS libraries: weather data, stock trading data,
earthquake data, United States crime reports, and a
small book dataset. The newest version of CORGIS is
being extended to export libraries that are directly usable
via BlockPy.

Figure 3. User perspective of block/text transition

Figure 4. Architectural perspective of the block/text transition

H. Mutual Language Translation

One of the technical contributions of this project is
the Mutual Language Translation between Blockly and
Python. Figure 4 gives an overview of the technical
architecture used to achieve this translation. Blockly
outputs valid python source code, which can be passed
into Skulpt in order to extract a JSON representation
of the Abstract Syntax Tree. Alternatively, the Python
source of the Skulpt program can be edited directly in
the Text view. Either way, this AST is parsed using our
Py2Block library to generate an XML representation
that Blockly can render in the Block View. Figure 3
demonstrates the users’ experience.

Blockly already supports compilation of its blocks
to Python, JavaScript, PHP, and Dart. However, this
multiple language support comes at a cost of reduced
isomorphism—each language has different syntax for
their common operations, and it is impossible to cre-
ate a fully-featured block language with a one-to-one
mapping between them. For example, JavaScript has
no support for parallel assignment, a commonly-used
feature in Python, while Python does not have a unary
increment operator. Blockly itself has syntax and vo-
cabulary descended from Logo.

Instead of trying to satisfy multiple languages, we
have dropped support for JavaScript and the rest in
favor of a more full-featured mapping to Python. This
requires minor changes that introduce Python-centric
syntax details: function blocks are labeled “define”,
assignment blocks have an “=” symbol, the “add item
to list” block is renamed to “append”. Blockly has also



Figure 5. A Python program can also be rendered in Natural
Language.

been extended with new language features, including
dictionary access and creation.

Eventually, the interface should offer a complete
isomorphic mapping to Python. However, there are a
number of complications to resolve before that can
occur. For instance, Python uses square brackets for
both list indexing and dictionary access. There is a
strong desire to differentiate between these types of
access, visible in the block view as two distinct kinds of
blocks (“get ith element of list” vs. “get key from dict”
blocks). However, depending on what features of python
are supported, it can be difficult or even impossible to
statically identify the usage of a given pair of brackets–
sophisticated program analysis techniques are needed.

I. Natural Language Code Explanation

Students can often struggle to interpret structured text
into human language, because they are not familiar with
the conventions implied by the unfamiliar syntax. A
new feature of BlockPy is to generate natural language
representations of programs using the same genera-
tive technology that exports Python representations of
blocks. This description, while just as regular as a
Python program, expands on complex code elements
to break down what they are doing at any step. Figure
5 demonstrates a potential natural language description
for a program that measures the length of a list. There
are a number of user interface optimizations that we
are exploring – using tooltips to explain an operation
in more detail, or juxtapositioning the natural language
with the original Python and drawing comparisons be-
tween the two.

J. Parson’s Problems

Parsons’ Problems are a special type of coding exer-
cise where all of the necessary code blocks are present,

Figure 6. The State Explorer displays information about the entire
state of the program, including output and loaded modules.

but disconnected and shuffled. These kinds of problems
scaffold beginners by giving them everything they need
to complete the problem up front, reducing many of
the barriers to getting started [16]. BlockPy supports
these types of problems with a special “Parsons Mode”
where top-level blocks are constantly shuffled in the
block-mode. When a student tries to convert code with
disconnected blocks, the generated Python code will
be filled in with triple underscores, as demonstrated
in Figure 3. These underscores (usually valid syntax
in Python) will trigger a runtime error, encouraging
students to think critically about their code.

K. State Explorer

A common debugging tool in many modern IDEs is a
Variable Explorer, used to trace the programs’ execution
over time. BlockPy expands this concept into a State
Explorer. The State Explorer displays more than just
information about variables - the dashboard also reveals
information about the programs’ state over time. Users
can step through the code’s execution, affecting what
is currently printed (including both console printing
and the creation of graphs), imported modules, and the
values and types of the variables. The relevant blocks
and text are also highlighted appropriately.

II. MODEL USE CASES

In this section, we consider some example scenarios
that describe our vision of typical BlockPy use cases.
Our intent is for BlockPy to be useful in both formal
and informal situations, with different features being
especially helpful.



Figure 7. Instructor Mode lets you edit questions and and define
special functions to give feedback.

A. Independent Learner

A learner independently logs into the BlockPy system
and selects an introductory problem on calculating aver-
ages using iteration: “Is the weather in Seattle above 60
degrees fahrenheight? Print Yes or No.” As a complete
novice, they are unsure what to do after reading the
problem description. If they decide to try and cheat
by checking the current weather in Seattle and printing
the literal value, the system intelligently notices that
they are missing any use of a relevant weather block,
and explains that they need to combine programmatic
decision logic with the appropriate data source. They
think to access the “Weather” block category, and grab
the get weather in city block, but are unsure
what to do next. When they run their program, the
system notices that they have not used any decision
constructrs (ie there is no if statement), and suggests
reading a linked chapter in an online textbook about how
to use it. If they continue to struggle with integrating
pieces, the system can provide increasingly detailed
hints until they succeed.

B. Classroom Lesson

Another common use case for the system would be
an instructor with a large classroom of students. The
instructor is using Canvas, an LTI-capable Learning
Management System of growing popularity in higher
education. They create a series of assignments for the
day’s classwork using the interface shown in figure 2.
Students log into Canvas and begin working on the
assignments. As they complete the assignments, their
grade is reported to Canvas. The instructor can monitor
progress for the class and check which students are
struggling to complete assignments. This information
can allow them to target under-performers earlier with
interventions. The more automatic feedback that instruc-

tors make available, the less they need to focus on
simple problems (“You were checking the temperature
for the wrong city.”) and the more they can focus on
students that are truly struggling (“What is iteration?”).

C. 1-1 Tutoring

On several occasions, we have found BlockPy to
be a useful tool for correcting individual students’
misconceptions. In particular, the block representation
of programs’ can help beginners grasp that code is not
a series of symbols but a structured representation of
an algorithm. Consider a student struggling to write
the necessary syntax for indexing a nested dictionary
(e.g., a crime report broken into multiple levels, with
the burglary rate for a city nested under a violent crime
categorization; this is an actual representation of how
crime data is stored in our example datasets). The
student may not have a clear image of how the layered
structure of data can translate into a chain of dictionary
accesses. By sitting with the student, the instructor could
build up an expression accessing the data by connecting
together dictionary access blocks to the data block,
showing the generated Python code at each step. The
learner can visually see how discrete chunks of the code
correlate to discrete blocks, helping them overcome the
beginner misconception of code as a random mishmash
of characters.

III. PILOT STUDY

BlockPy has been piloted in an introductory “Com-
putational Thinking” course with 35 students in Spring
2015. These students come from a diverse range of
majors, including liberal arts (57%), architecture (17%),
sciences (15%), and others (11%). There were 20 female
students (57%) and 15 male. The vast majority of
students reported no prior experience with programming
or Computer Science, with less than 17% having taken
the high school AP course. They were evenly distributed
across years, with slightly more senior (29%), equal
percentages of sophomore and juniors (26%), and fewer
freshmen (14%). Although small, the student demo-
graphics reflect a varied population.

The Computational Thinking course’s content is fo-
cused on teaching Abstraction and Algorithms. While
programming is not a primary learning objective, it is
an important topic in the course as a tool of concretely
talking about the higher level objectives. The first third
of the course, students work with NetLogo (although
they do not program in it, they only read code) and
participate in a number of explanatory kinesthetic activ-
ities. Then they are introduced to Python using BlockPy,
for which they spend roughly six classes on completing
guided practice problems in a mastery style (that is,
they are allowed an infinite number of retries). The



Figure 8. Do students want more time with NetLogo, BlockPy
(Blockly), or Spyder (Python).

next two classes are devoted to using a regular Python
environment (Spyder) to complete small programming
assignments (similar to the ones done with BlockPy).
Finally, students are given eight class periods to work
on their individual final project in Spyder.

A. Methodology

Every student interaction was logged by the system,
including changes to the students’ code. This data was
also correlated to two surveys, one given after the
BlockPy section and the other given at the end of the
course. The survey was composed of Likert questions
on a 4-point scale and open-ended qualitative questions.
This gives us a wealth of data to analyze, although
the small population size makes it difficult to derive
significant results.

B. Perceptions of BlockPy

The first survey question students were asked was
about whether they wanted more time with each of
the programming environments they used in the course:
NetLogo, BlockPy, or Spyder. The results of this ques-
tion are shown in Figure 8. Note that BlockPy was
referred to as “Blockly”, and the use of the Spy-
der environment was referred to as “Python”. These
results suggest that students valued their experiences
with BlockPy more than they did with NetLogo, but
mostly felt that they were not getting enough Python
experience. This is backed up by the qualitative data,
where some students say “More Blockly, Less Python”,
but others ask for “More Blockly and More Python”.

C. Usage of BlockPy

Over the six days spent using BlockPy, students were
tasked with 40 classwork questions and 19 homework
questions. Students ran their code an average of four
times per problem (standard deviation is 1.8 times).

Students were asked if they felt successful in the
transition from BlockPy to Spyder. 65% of the class
agreed or strongly agreed, suggesting that there was
still a sizeable population that still felt uncomfortable
during that transition. The original design of the Mutual
Language Translation featured the block and text view
simultaneously, side-by-side. However, analysis of the
logs reveals that most students did not take advantage

Figure 9. How helpful to students’ learning were these resources?

Figure 10. How useful to students’ long-term career goals was each
of the following experiences?

of the feature. Only 5 students (roughly 15%) had used
the conversion functionality at all, and fewer used it
consistently. It is possible that students were observing
the code as it changed, but they were not writing textual
code. It is difficult to say why exactly students did not
take advantage of it, and the qualitative data are not
helpful. Our current hypothesis is that students were
confused by the interface, which required manual con-
version to go from text to blocks. In our new version, the
conversion happens automatically, simply by switching
tabs, and we will provide intentional opportunities for
the students to switch.

Students were surveyed about what helped their learn-
ing the most, and the results are shown in Figure 9. Peer
learning and the instructors were about on par with the
automatic feedback given in BlockPy, suggesting the
strong value in using such a system. Despite the popular
response to the Data Explorer, relatively few students
took advantage of it (11 students, roughly 31%). Since
more than 50% of the class reported finding value in the
data explorer, it is possible that the students benefited
from instructor presentations of the tool, even if they
didn’t take advantage of it themselves.

D. Data Science Context

Students were surveyed about their perceptions of the
value of different course experiences with regards to
their long-term career goals (Figure 10) and their inter-
est in potential contexts for an introductory computing
course (Figure 11). Both surveys suggest that students
find data science to be compelling, but should be taken
with a grain of salt, since students have negligible
experience with alternative contexts, despite the care



Figure 11. Students preference for different potential introductory
contexts.

taken in wording the question. However, our preliminary
results are exciting since they suggest that this is an
approach worth exploring further.

IV. FUTURE WORK

BlockPy represents an ongoing research project and
evolving practioners’ tool. We have a number of features
planned to expand the support for Python, in particular
more blocks for data science explorations. We are also
planning on expanding support for the guided feedback
API for instructors and the support available through
the compiler, such as leveraging static/dynamic type
inference techniques to improve block rendering and
error reporting.

We also have a number of research questions posed
by the block-based nature of the interface. One of the
biggest values of a block-based environment is that it
can immediately expose the breadth of a rich API. This
greatly reduces students’ dependency on documentation.
Of course, exposing this breadth can also be a downside,
as students might be overwhelmed by the number of
features in the interface. It is an open research question
to decide what language features to expose and what
rate to expose them at.

One of the major advantages of game and animation
design as an introductory context is that they can make
abstract concepts concrete. Further analysis is needed
to determine the trade-offs of using different contexts.
BlockPy can support this by supporting these alternative
contexts, such as turtle graphics and media computation
libraries.

Despite the substantial data collected in our pilot
study, it is difficult to derive conclusive results due to
the small population size and the evolving nature of
BlockPy. At the time of submission for this publication,
we are just finishing up a second pilot study with
the latest version of the BlockPy interface; preliminary
results suggest that recent improvements have overcome
a number of limitations to the environment and user
feedback has dramatically improved. Soon, we are con-
ducting follow-up studies on the logged students’ code,
even as we collect more data on the newest iteration.
We are hopeful that BlockPy will increase its user

base, providing a larger sample of learners to conduct
research on, and provide more meaningful data. We
have concrete plans to host a larger study this Spring
2016.

A. Missing Language features

BlockPy is being developed in an on-demand fashion,
driven by immediate user-needs. Unfortunately, this
suggests a number of limitations. For example, the
block interface does not support a number of advanced
Python features, such as an interface for writing Object-
oriented Classes. A number of other features are omitted
too, at the time of writing: tuples, list comprehensions,
and while loops, for example. This does not mean
that students cannot write programs featuring classes
or these features. Python code using these features
will render in BlockPy as embedded text blocks, rather
than as regular blocks, and will execute using Skulpt
perfectly normally. There is no technical impediment to
supporting these features, the process is limited only by
time and community interest.

B. Missing Contexts

Environments aimed at younger learners often re-
volve around the creation of games and animations.
Motivationally speaking, they focus on fun and situ-
ationally interesting experiences rather than practical,
useful experiences. Although our primary vision is for
users to learn in the context of data science projects, we
believe that there is room for computational creativity.
The underlying Python execution environment, Skulpt,
has built-in support for turtle graphics (where an agent
is directed around a drawing canvas), the Processing
graphics library, and even HTML DOM manipulation.
Although we have not exposed these APIs through the
Block interface yet, we have a clear plan to do so. Ide-
ally, these tools can be used to supplement lessons using
data sets; students can create computational art based
real-world data, marrying the art and science. Consider,
for example, a program that draws a different scene
based on the weather outside. Simple improvements to
the “Sharing” system could allow students to interact
with the client HTML DOM to create a stand-alone
web application where users can choose a location and
see the weather there.

V. CONCLUSION

In this paper, we have introduced our block-based
environment for Python, named BlockPy. It is open-
source and available for use for free at http://www.
blockpy.com/. We believe that BlockPy represents a new
paradigm for introductory learners, blending interactive
support with a strong path to programming maturity.
By teaching in the context of data science, we can



provide authenticity even as we move students out of the
system towards a more serious environment. Research
with this environment will help answer crucial questions
about the value of data science and blocks. Our hope
is that BlockPy’s open-nature can encourage learners
from diverse fields to engage with computing in a way
that will lead to a computing-rich future for a larger
population.

ACKNOWLEDGMENT

This material is based upon work supported by a
grant from the National Science Foundation Graduate
Research Fellowship, Grant No. DGE 0822220

REFERENCES

[1] A. Vihavainen, J. Airaksinen, and C. Watson,
“A systematic review of approaches for teaching
introductory programming and their influence on
success,” in Proceedings of the Tenth Annual
Conference on International Computing Education
Research, ser. ICER ’14. New York, NY,
USA: ACM, 2014, pp. 19–26. [Online]. Available:
http://doi.acm.org/10.1145/2632320.2632349

[2] B. D. Jones, “Motivating students to engage in learning:
The MUSIC model of academic motivation,” Interna-
tional Journal of Teaching and Learning in Higher
Education, vol. 21, no. 2, pp. 272–285, 2009.

[3] M. Guzdial and A. E. Tew, “Imagineering inauthentic
legitimate peripheral participation: an instructional de-
sign approach for motivating computing education,” in
Proceedings of the second international workshop on
Computing education research. ACM, 2006, pp. 51–58.

[4] P. Guo, “Python is now the most popular introduc-
tory teaching language at top us universities,” BLOG@
CACM, July, 2014.

[5] A. Ko, “Programming languages are the least usable,
but most powerful human-computer interfaces
ever invented,” http://blogs.uw.edu/ajko/2014/03/25/
programming-languages”, 2014.

[6] T. W. Price and T. Barnes, “Comparing textual and
block interfaces in a novice programming environment,”
in Proceedings of the Eleventh Annual International
Conference on International Computing Education
Research, ser. ICER ’15. New York, NY, USA:
ACM, 2015, pp. 91–99. [Online]. Available: http:
//doi.acm.org/10.1145/2787622.2787712

[7] D. Weintrop and U. Wilensky, “Using commutative
assessments to compare conceptual understanding in
blocks-based and text-based programs,” in Proceedings
of the Eleventh Annual International Conference on
International Computing Education Research, ser. ICER
’15. New York, NY, USA: ACM, 2015, pp. 101–
110. [Online]. Available: http://doi.acm.org/10.1145/
2787622.2787721

[8] M. Guzdial, “Icer 2015 report: Blocks win -
programming language design = = ui design,”
https://computinged.wordpress.com/2015/08/17/icer-
2015-blocks-win-programming-language-design-ui-
design/, 2015.

[9] T. Tang, S. Rixner, and J. Warren, “An environment
for learning interactive programming,” in Proceedings
of the 45th ACM Technical Symposium on Computer
Science Education, ser. SIGCSE ’14. New York, NY,
USA: ACM, 2014, pp. 671–676. [Online]. Available:
http://doi.acm.org/10.1145/2538862.2538908

[10] S. H. Edwards, D. S. Tilden, and A. Allevato,
“Pythy: Improving the introductory python programming
experience,” in Proceedings of the 45th ACM Technical
Symposium on Computer Science Education, ser.
SIGCSE ’14. New York, NY, USA: ACM, 2014,
pp. 641–646. [Online]. Available: http://doi.acm.org/10.
1145/2538862.2538977

[11] P. J. Guo, “Online python tutor: Embeddable web-based
program visualization for cs education,” in Proceeding
of the 44th ACM Technical Symposium on Computer
Science Education, ser. SIGCSE ’13. New York, NY,
USA: ACM, 2013, pp. 579–584. [Online]. Available:
http://doi.acm.org/10.1145/2445196.2445368

[12] D. Bau, M. Dawson, and A. Bau, “Using pencil
code to bridge the gap between visual and text-
based coding (abstract only),” in Proceedings of
the 46th ACM Technical Symposium on Computer
Science Education, ser. SIGCSE ’15. New York, NY,
USA: ACM, 2015, pp. 706–706. [Online]. Available:
http://doi.acm.org/10.1145/2676723.2678293

[13] Y. Matsuzawa, T. Ohata, M. Sugiura, and
S. Sakai, “Language migration in non-cs introductory
programming through mutual language translation
environment,” in Proceedings of the 46th ACM
Technical Symposium on Computer Science Education,
ser. SIGCSE ’15. New York, NY, USA:
ACM, 2015, pp. 185–190. [Online]. Available:
http://doi.acm.org/10.1145/2676723.2677230

[14] M. Felleisen, R. B. Findler, M. Flatt, and S. Krishna-
murthi, “How to design programs,” 2001.

[15] A. C. Bart, “Situating computational thinking with
big data: Pedagogy and technology (abstract only),” in
Proceedings of the 46th ACM Technical Symposium on
Computer Science Education, ser. SIGCSE ’15. New
York, NY, USA: ACM, 2015, pp. 719–719. [Online].
Available: http://doi.acm.org/10.1145/2676723.2693616

[16] D. Parsons and P. Haden, “Parson’s programming puz-
zles: a fun and effective learning tool for first program-
ming courses,” in Proceedings of the 8th Australasian
Conference on Computing Education-Volume 52. Aus-
tralian Computer Society, Inc., 2006, pp. 157–163.


