
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE

Concurrency Computat.: Pract. Exper.

Dynamic Software Updates

for Parallel High

Performance Applications

Dong Kwan Kim, Eli Tilevich∗,†, and Calvin J.
Ribbens

Center for High-End Computing Systems (CHECS)
Dept. of Computer Science, Virginia Tech
Blacksburg, VA 24061

SUMMARY

Despite using multiple concurrent processors, a typical high performance parallel
application is long-running, taking hours, even days to arrive at a solution. To modify
a running high performance parallel application, the programmer has to stop the
computation, change the code, redeploy, and enqueue the updated version to be
scheduled to run, thus wasting not only the programmer’s time, but also expensive
computing resources. To address these inefficiencies, this article describes how dynamic
software updates can be used to modify a parallel application on the fly, thus saving the
programmer’s time and using expensive computing resources more productively. The
net effect of updating parallel applications dynamically can reduce the total time that
elapses between posing a problem and arriving at a solution, otherwise known as time-to-
discovery. To explore the benefits of dynamic updates for high performance applications,
this article takes a two-pronged approach. First, we describe our experiences of building
and evaluating a system for dynamically updating applications running on a parallel
cluster. We then review a large body of literature describing the existing state of the
art in dynamic software updates and point out how this research can be applied to
high performance applications. Our experimental results indicate that dynamic software
updates have the potential to become a powerful tool in reducing time-to-discovery for
high performance parallel applications.

key words: dynamic software updates; high performance applications; binary rewriting; HotSwap

∗Correspondence to: Eli Tilevich, Dept. of Computer Science, Virginia Tech, Blacksburg, VA 24061
†E-mail: tilevich@cs.vt.edu

2 KIM, TILEVICH, RIBBENS

1. INTRODUCTION

Among the most challenging computing application domains is parallel programming for
distributed memory multiprocessors. Such systems range from compute clusters to ad-hoc
grids, but fundamentally they coordinate a collection of distributed computing resources to
solve a computationally-intensive problem in parallel. Distributed memory multiprocessors
help solve important computational problems in science and engineering, in domains including
scientific simulation, image processing, and bioinformatics.

Writing software for distributed memory multiprocessors has been notoriously difficult due
to a variety of factors. Parallel programming models over distributed memory abstractions
are difficult to utilize effectively to achieve good performance. Distributed coordination
is challenging and error-prone. The runtime behavior of a parallel program is difficult to
predict from looking at its source code. Finally, applications in this domain are often written
by domain experts—scientists and engineers—who are extremely knowledgeable in their
respective domains but may lack a deep understanding of computing or experience with modern
developments in software engineering.

The raison d’être of parallel high performance computing is to reduce time-to-discovery, the
total time it takes from posing a problem to arriving at a solution. This metric is the sum
of the time it takes to run an application and the time it takes to develop and fine-tune it.
While high performance computing researchers have traditionally focused on reducing the time
to run applications, another avenue for reducing time-to-discovery is to apply solid software
engineering principles, novel techniques, and advanced tools [48, 8, 26]. That is, the software
engineering approaches traditionally used to improve the construction and maintenance of
traditional software can also benefit high performance software.

In particular, this article explores how dynamic software updates (DSU)—an advanced
software engineering approach for updating software while it runs—can be applied to high
performance applications, which has the potential to reduce their time-to-discovery. The idea
behind dynamic software updates is simple. While a program is running, the programmer
changes the program’s source code, compiles the program into a binary representation,
and then uses a dynamic update system to replace the running binary representation with
the updated one. Implementing a safe and efficient dynamic update system is strewn with
challenges, including the need to replace a binary representation of a program while preserving
its runtime state as well as dealing with various features of the underlying programming
language and the runtime environment.

Dynamically updating parallel high performance applications presents its own set of
challenges. A typical parallel application includes multiple concurrent tasks executed on
different processors, each running at its own pace and only periodically communicating with
other tasks. These concurrent tasks must be updated consistently, which is non trivial. In
particular, maintaining consistency during a dynamic update of multiple concurrent processes
requires a distributed coordination protocol. This protocol must not only ensure some runtime
invariant (e.g., no two divergent versions of a task are running simultaneously) but also do so
without imposing an undue performance overhead on the parallel program.

Concurrency Computat.: Pract. Exper.

DYNAMIC SOFTWARE UPDATES FOR HPC APPLICATIONS 3

Despite these challenges of applying dynamic software updates to a parallel high performance
application, we foresee that this advanced software engineering approach is capable of
drastically improving how we build and fine-tune applications in this important domain.
High performance applications running on large numbers of processors are difficult to develop
incrementally, as they are often time-consuming to deploy; the typical try-change-try again
development cycle does not fit well for applications in this domain. In particular, any code
change involves stopping the execution, changing the program, re-deploying the changed
program, and re-starting the computation anew. In a traditional high-performance computing
(HPC) environment, all these actions can be quite time-consuming and disruptive. Besides, this
development model may not utilize expensive computing resources most effectively, wasting
valuable processing time.

Furthermore, two important trends in HPC applications exacerbate the cost of starting
and restarting a computation: grid computing and real-time simulation. In the case of grid
computing, restarting a computation from scratch requires repeating several steps, all of which
are expensive and some of which may be impossible (i.e., resource discovery and reservation,
resource allocation, data staging, data streaming, and job launching). In the case of real-time
simulation, “system-level” simulations, which use HPC resources, often have hard-to-anticipate
requirements and real-time constraints, thus necessitating dynamic code updates to avoid
stop/restart cycles. Examples of such computations include hurricane modeling, infrastructure
and environment monitoring, epidemic modeling, and personalized medicine.

Dynamic software updates can offer a pragmatic approach to these challenges, saving both
human time and computing resources. Having studied a large body of research on various
aspects of DSU, we find that this advanced software engineering technique can provide the
following benefits for HPC applications:

• Satisfying new or changed user requirements on the fly

If the initial requirements change while a high performance application is executing, the
computation must be interrupted, so that the code can be changed to reflect the new
requirements. By contrast, dynamic software updates do not require interrupting the
computation by enabling code changes on the fly.

• Reducing software downtime

Off-line software updates result in software downtime—an application provides no
services during updates. In HPC, such downtime is undesirable, as HPC resources are
quite expensive to operate, with large electricity and cooling costs. Dynamic software
updates can reduce software downtime, thereby avoiding the loss of intermediate data
and using computing resources more productively.

• Avoiding the re-deployment hassle

Deploying HPC applications often requires interacting with a scheduler, a software
module that allocates the required computational resources and schedules the execution.
In heterogeneous grid environments, effective scheduling can become particularly
onerous. In any case, re-deploying an HPC application imposes an additional burden on
the user. Dynamic software updates can eliminate the need to re-deploy the application
by applying the required changes on the fly.

Concurrency Computat.: Pract. Exper.

4 KIM, TILEVICH, RIBBENS

This article leverages and expands on our previous research on enabling flexible and efficient
dynamic updates for high performance grid applications deployed on the Java Virtual Machine
(JVM) [33, 32, 31]. Grounded in this work, this article further investigates the benefits of
applying dynamic software updates to high performance parallel applications.

Roadmap

In Section 2, we start by detailing our approach to enhancing parallel high performance
applications in-vivo. Our approach targets virtualized execution environments, which are
starting to make inroads into HPC. In particular, we leverage the Java Virtual Machine (JVM),
one of the most advanced virtual execution environments ported to a multitude of different
platforms.

In our initial discussion, we deliberately focus on the challenges of dynamically updating
programs on a single node. To that end, we use a Master Worker application as our example,
which can be updated in situ without having to coordinate the updates across multiple
concurrent nodes.

To be able to support the dynamic updates of those parallel applications that are not
based on the Master Worker model, one must ensure that multiple concurrent processes are
updated consistently. To that end, in Section 3, we present our synchronization algorithm for
consistently updating multiple concurrent processes. We also describe and evaluate its reference
implementation.

Dynamic software updates is a mature research area, and various aspects of the technology
have been described in the literature. To identify the opportunities for applying this existing
state of the art to HPC applications, in Section 4, we present a thorough overview of the main
thrusts in DSU and discuss their relevance to HPC.

After detailing our experiences and insights, in Section 5, we outline future work directions
and present concluding remarks.

2. IN-VIVO ENHANCEMENT OF PARALLEL HIGH-PERFORMANCE JVM

APPLICATIONS

In recent years, Java technology has made significant inroads into the domain of distributed
parallel computation. A large body of research has focused on optimizing the execution of the
JVM, which has become an advanced virtual execution environment available on multiple
hardware and software platforms. The adaptive optimization capabilities of Just-In-Time
(JIT) compilers make the JVM suitable for executing programs written in languages designed
specifically for scientific computation. For example, X10 [14], the new high productivity
language from IBM, compiles to execute on the standard JVM. Other emerging high
productivity languages such as Fortress are likely to compile to execute on the JVM as well.
Also, computational grids, for which heterogeneity is an important consideration, are often
Java-based [2]. All in all, either using the Java language or compiling to run on the JVM,
several emerging computation-intensive platforms can be classified as Java- or JVM-based.

Concurrency Computat.: Pract. Exper.

DYNAMIC SOFTWARE UPDATES FOR HPC APPLICATIONS 5

2.1. The JVM HotSwap Facility

The JVM features a built-in facility—JVM HotSwap—that provides a standardized API
for replacing classes in a running JVM. Originally designed as a facility to better support
complex debugging scenarios, the initial version of HotSwap only worked when the JVM
was interpreting bytecode and the Just-in-Time compiler was disabled. In terms of execution
efficiency, the difference between interpreting bytecode and executing its compiled version can
be several orders of magnitude. Therefore, in a later release, HotSwap was made applicable
to compiled bytecode, so that a dynamically updated program could execute at full speed.
Because HotSwap is integrated with the JVM, it can handle all the hurdles of replacing classes
in a running JVM much more easily. Specifically, if a class replace request to HotSwap is
submitted while a method in a replaced class is being executed, the actual replacement can
be postponed until the method finishes its execution. Overall, HotSwap is a powerful facility
whose utility extends far beyond its original design intent as a debugging aid.

As it turns out, unfortunately, HotSwap imposes serious constraints on what kinds of
changes can be made to the swapped classes, thus significantly limiting the applicability of
this facility for updating applications dynamically. To be able to dynamically update parallel
high performance applications flexibly and efficiently, we have developed an approach, based
on the binary rewriting of Java classes, that overcomes the limitations imposed by the design
of JVM HotSwap. We present the main insights of our approach next.

2.2. HotSwap Constraints

The JVM HotSwap disallows any changes to the signature of a class: a swapped class has to
contain the same set of methods and fields as the currently deployed version, and only method
bodies can be changed. Whenever the programmer tries to perform any of the updates listed
in the second column of Table I using the JVM HotSwap, the JVM throws an exception.

Because in Java, one cannot assume one-to-one correspondence between source files and
their classes in bytecode, complying with HotSwap restrictions can be nontrivial. For example,
a Java inner class is commonly translated by adding synthetic access methods to its enclosing
classes, so that the inner class could access their non-public members. This translation strategy
is likely to leave the programmer unaware that a change to one class caused the compiler to
add methods to other classes, thus violating the HotSwap constraint on adding new methods
and rendering the enclosing classes unswappable.

2.3. Binary Refactoring for Proxy Indirection

Binary refactoring applies structural semantics-preserving transformations to a program’s
binary representation, with the goal of enabling its functional enhancement. One of the most
common binary refactorings in existence is changing direct references into proxy references.
Our approach uses this refactoring to address the limitations of HotSwap described in Section
2.2. A common implementation of indirect referencing is a binary refactoring that we call

Concurrency Computat.: Pract. Exper.

6 KIM, TILEVICH, RIBBENS

+bar() : int

+getI() : int

+setI(in i : int) : void

Proxy_A

+bar() : int

+getI() : int

+setI(in i : int) : void

Super_A

-i : int

(Proxy Class)

(Virtual Superclass)

+bar() : int

A

-i : int

Bytecode

Transformation

Figure 1. Virtual superclass binary refactoring.

Virtual Interface†. Virtual Interface refactors the bytecode of a class into proxy, interface, and
implementation classes. The bytecode rewriter makes the client part of the target version refer
to the proxy class in the refactored version. This indirection style can incur between 8% and
44% performance overhead, which is prohibitively high for performance-sensitive applications.

As an alternative, we have created a novel technique for introducing indirect referencing
that we call Virtual Superclass, which incurs only minuscule performance overhead on the
refactored programs. Our approach applies Virtual Superclass to all application classes loaded
into the JVM; Figure 1 depicts the Virtual Superclass refactoring transformations. Every class
A is changed to extend a virtual superclass Super A, with the virtual superclass being inserted
into the class’s inheritance hierarchy.‡ Thus, the original class A becomes a proxy for the virtual
superclass, which contains all the original method bodies and fields.

Another advantage of Virtual Superclass is its generality. The existing state of the art in
enabling proxy indirection [18] creates subclass-based proxies, which have limitations for final
classes and methods. By contrast, Virtual Superclass works for any class or method, as the
final modifier does not constrain the creation of superclasses.

The performance efficiency of Virtual Superclass is explained by the sophisticated
optimization capabilities of modern JVMs, which can inline delegating method calls, if the
delegation does not involve dynamic dispatch. In Figure 1, the call to super.bar can be
effectively inlined by modern JVMs, thus completely eliminating any indirection overhead

†The adjective virtual emphasizes the fact that the introduced interface is not seen by the client program and
is only used as an implementation artifact. The client code never accesses the introduced “virtual” interface
directly.
‡The virtual superclass is inserted for each class in the inheritance hierarchy. Thus, A ext B ⇒ A ext Super A
ext B ext Super B.

Concurrency Computat.: Pract. Exper.

DYNAMIC SOFTWARE UPDATES FOR HPC APPLICATIONS 7

Class A

Superclass

of A

Proxy of A

JVM

New

Superclass

of A

Helper

Classes

New

Superclass

of A

Proxy of A

JVM

Helper

Classes

New

Version of

Class A

Phase II : Replacement of Class A at runtime

(solid lines)

Phase I : Deployment of Class A

(dashed lines)

Class Difference

Finder

Virtual

Superclass

Generator

Proxy Class

Generator

Helper Class

Generator

HotSwapping

Figure 2. Supporting a full range of dynamic updates using HotSwap.

in most cases. The call is translated into the invokespecial bytecode instruction, reserved
for invoking constructors and methods in superclasses. The delegating call in Virtual Interface
uses the invokeinterface instruction, which implements a form of dynamic method dispatch,
and as such cannot be safely inlined, though its performance has been improved significantly
in modern JVMs [6]. Thus, Virtual Superclass leverages the low-level differences of bytecode
instructions to attain its performance advantages.

2.4. Flexible In-Vivo Enhancement with HotSwap

To be able to use the standard HotSwap to replace classes in a running JVM, our approach
rewrites all the classes at the bytecode level before deployment. It is these rewrites that
make it possible to change the signatures of replaced classes, without violating the HotSwap
constraints.

The first phase, illustrated in Figure 2, refactors all the loaded classes at the bytecode level
and generates their corresponding virtual superclasses. The virtual superclasses have actual
methods implementing application-specific logic and are swapped by the updating system.
Thus, the original code is rewritten into updateable software, structurally different from the
original version, before being deployed on a virtual machine. When the initial program is
changed, the programmer inputs the changed classes to the updating system, which refactors
them into virtual superclasses and special helper classes. HotSwap can then replace older class
versions of virtual superclasses with newer versions, as they have the same schema. Helper
classes make the updates conform to the HotSwap API when new methods or fields are added.

Concurrency Computat.: Pract. Exper.

8 KIM, TILEVICH, RIBBENS

Version 1 of A Version 2 of A

of original classes

A

void foo(){}

A

void foo(){super.foo();}

Object invoke(
String name,

Class[] argTypes,

Object[] args){}

Super_A

void foo(){}

Object getHelperClass(){}

void foo(){}

void bar(int i){}

A

HelperClass

void bar(int i){}

Super_A

void foo(){}

Object getHelperClass(){}

A

void foo(){super.foo();}

Object invoke(
String name,

Class[] argTypes,

Object[] args){}

bar() added

of enhanced classes

HelperClass

added

Figure 3. Adding a new method using a helper class.

The new members are added to helper classes, so that the signatures of virtual superclasses
remain the same.

In addition to transforming classes at load time with the Javassist library [17], our system
includes a class differencing module and code generators for proxy, virtual superclass, and
helper classes. The differencing algorithm operates at the bytecode level, and its output
parameterizes the code generators and the bytecode rewriter. The rewriter translates newly-
added methods, constructors, and fields to helper classes as follows.

2.4.1. New methods/constructors

The rewriter adds a special invokemethod to all the instrumented classes as a facility to invoke
newly-added methods without changing the updated class’s signature. Each new method is
translated into a method in a helper class, whose invocation logic is added to the body of the
invoke method. Each call site of a newly added method becomes a call to invoke, with the
added method name as the first argument.

Figure 3 shows an example of adding a new method; the newer version of A has a new method
bar. The first and second columns in Figure 3 illustrate class diagrams representing classes
and their relationships at the source code and the corresponding bytecode, respectively. The
special helper class HelperClass contains the new method bar and each proxy class contains
the invoke method. Each invocation of bar is translated to call invoke instead.

Each new constructor is translated into an invocation of a “do-nothing” constructor and a
special initialization method that contains the added constructor’s logic.

Concurrency Computat.: Pract. Exper.

DYNAMIC SOFTWARE UPDATES FOR HPC APPLICATIONS 9

2.4.2. New fields

New fields are translated according to two approaches, one optimized for performance, while
the other for space. The first approach uses a separate helper class for the new fields whenever
a class is replaced with a newer version. The second approach uses a single class that contains
a mapping data structure that represents all the added fields for all classes. For performance-
sensitive applications, we envision that the first approach will be preferable. Few HPC parallel
applications run in memory-constrained environments that require the programmer to be
space-aware. Modern JVMs can load new helper classes on demand quite efficiently.

2.4.3. Object state update

One complication of using HotSwap for updating running applications is that it can only
update classes—HotSwap has no facilities for upgrading objects created from an older version
of a class to a newer version. In dynamic update systems, this operation is called Object State
Update. Our approach also can efficiently transfer state between old and new objects, enabling
instances of different versions of a class to coexist in the running application. Our system
updates the state between old and new helper objects for new fields, based on their respective
version numbers. In particular, the update system checks if the version of a helper object is
older than the latest version. If so, a special helper object is instantiated for the newly added
state (i.e., extra fields). The values of the fields in the older helper object are then copied to
the corresponding fields in the newer helper object.

2.5. Updating Smith-Waterman Parallelization Dynamically

To motivate the need for flexible dynamic software updates in in-vivo enhancement of parallel
high performance applications, we describe how the well-known Smith-Waterman algorithm
could be parallelized and developed incrementally to run in distributed multiprocessors. The
sequential version of this algorithm [3] calculates a similarity score between two sequences. A
parallelization of this algorithm will align an unknown sequence against an entire database
of known sequences, with the database partitioned among different computational nodes.
The resulting computation will follow a simple Master Worker model, with the Master node
assigning tasks to the Worker nodes as well as collecting and filtering the results. Specifically,
the Master accepts an unknown sequence as input and sends it to individual Worker nodes.
Each worker node aligns the unknown sequence against its portion of the partitioned database.
The sequences having the highest similarity scores (e.g., above a given threshold) are then sent
back to the Master. The Master collects the results, sorts them, and reports the top-ranked
results to the user.

Thus, after creating an initial parallelization of the Smith-Waterman algorithm described
above, the programmer could deploy and test it in its intended deployment environment.
One common difference between sequential applications and their parallelizations is that the
parallel version produces much more output data. It is quite likely, for example, that while
in the sequential version of Smith-Waterman algorithm, all the results could comfortably fit
on the same output window, in the parallel version, the results would be more numerous.

Concurrency Computat.: Pract. Exper.

10 KIM, TILEVICH, RIBBENS

Cases Requirements

of updates

Field Method
Class

Method
body

Sig.
change

Replaced
classes

Case1:
Console ð File

Saving alignment results as a

file
1 1 1 1 2

Case2:
float ð double

Displaying alignment results

in a double precision
5 11 6 4 9

Case3:
SW ð SWG

A need of more practical

alignment algorithm
0 4 1 1 2

Figure 4. Changes to Smith-Waterman program using extended HotSwap. SW:Smith-Waterman
algorithm [49], SWG:Smith-Waterman-Gotoh algorithm [21].

As a result, it is possible that the output data in the parallel version could only be properly
examined, if they were saved to a disk file. Thus, the programmer may wish to change the
piece of functionality that simply dumps the results to standard output to write them to a
disk file instead.

It also may turn out that certain assumption made during the design phase would no longer
hold true. For example, the programmer may have assumed that the float precision would
be sufficient for representing similarity scores, while after seeing the initial results realize that
the double precision is needed.

Finally, it may turn out that the implementation of the alignment algorithm does not satisfy
the expected performance or accuracy requirements. A slight variation of the algorithm could
satisfy these requirements to a greater extent.

As it turns out, all of these three updates involve structural changes to the bytecode,
rendering the standard HotSwap facilities unsuitable for the task. Specifically, changing the
display from the console to a disk file requires replacing classes AlignCommentLine and
FileOutput, as well as adding a new method writeToFile, thereby changing the signature of
class FileOutput. Such a seemingly trivial change as using double rather that float precision
for the similarity scores requires modifications of 5 fields, 11 methods, and 9 classes! Because
the similarly score is computed through the interaction of multiple methods in different
classes, changing its type (i.e., from float to double) requires changing the signatures of
all of the involved methods. Finally, modifying the alignment algorithm requires modifying
the signatures of 4 methods in 2 different classes. Because the base algorithms use different
parameter sets, the methods’ signatures, invoked when the algorithm is executed, have to be
changed accordingly. Figure 4 presents the exact statistics of the changes involved.

For this case study, we used the Ibis [2] grid infrastructure. To allow grid nodes communicate
with each other, Ibis features MPJ Express [7], a middleware library that provides Java
bindings to the majority of the Message Passing Interface [5] calls. We have also included
our binary rewriting infrastructure into the standard class loading process. All the dynamic
updates are initiated from the Master node, which has remote debugging connections to each

Concurrency Computat.: Pract. Exper.

DYNAMIC SOFTWARE UPDATES FOR HPC APPLICATIONS 11

0

50

100

150

200

250

300

350

400

450

500

Original App.

Refactored App.

0.15%

0.11%

0.09%

0.14%

DB Size (KB) # of seq.

alu.a 221 1,962

yeast.aa 3,321 6,312

drosoph.aa 8,300 14,331

pdbaa 22,169 37,882

Seconds

Figure 5. Refactoring overhead on the worker portion of Smith-Waterman parallelization. x-axis: the
databases names in FASTA format, y-axis: the total execution time.

Worker node.§ The programmer interacts with an upgrade script that takes the classes of a
new program version, compares this version with the current version, computes the necessary
updates, and applies them dynamically through the remote debugging connection to the remote
nodes. Figure 5 shows the indirection overhead on the rewritten Worker code. Because the
cost of indirection is incurred only when invoking methods, and the Worker process does
most of the computation within a single method, the overall overhead is negligible. Thus, our
novel binary rewriting approach made it possible to use the standard HotSwap to update
a running distributed application, without either having to modify the JVM or having to
degrade the performance. Furthermore, the updates were applied without having to stop the
parallel execution and wasting valuable HPC resources. These results indicate that in-vivo
enhancement can become a valuable tool for delivering parallel solutions under tight deadlines.

§Starting from JDK 1.4, remote debugging connections do not impose performance overhead, allowing programs
to run at full speed.

Concurrency Computat.: Pract. Exper.

12 KIM, TILEVICH, RIBBENS

3. CONSISTENT DYNAMIC UPGRADES FOR COMPUTE CLUSTERS

Having pointed out some of the benefits of upgrading HPC applications dynamically, we can
now focus on a more comprehensive challenge of upgrading cluster-based HPC systems that
involve multiple concurrent processes. We chose compute clusters as our target platform
because their cost efficiency places them among the most widely-used high performance
computing environments.

A typical compute cluster features a large number of homogeneous processors connected to
each other with a high performance interconnect. To submit a computational task to a cluster,
users interface with a scheduler that queues up the submitted tasks for their turn to be run.
To coordinate the execution between different processors, compute cluster applications use the
Message Passing Interface (MPI) [5] middleware library, which has a standardized interface
and is almost universally available.

In the following, we describe our dynamic software update system that targets compute
clusters and uses MPI for coordination. We start by outlining the key design considerations of
our system, then detail our implementation, and finally evaluate our system’s performance.

3.1. Design Considerations

Compared to applications run on a single machine, cluster applications coordinate the
execution of multiple concurrent processes running on multiple compute nodes. Therefore,
a dynamic update system targeting cluster applications must provide certain functionality
and correctness guarantees.

The updated binary representation of a program must be timely shipped to each compute
node. Since the nodes on a cluster typically run a shared file system, copying a new version of
the binary will immediately make it available to all the nodes.

Multiple concurrent processes must be updated consistently, which means that some
distributed runtime invariant be maintained. The type of the required invariant is defined
by the computational patterns of the updated application. For embarrassingly parallel
applications, such as the Smith-Waterman parallelization presented in Section 2, the required
consistency guarantees are quite relaxed. Because the Master communicates exclusively with
Workers but Workers never communicate with each other, updating each Worker code
independently will still preserve the distributed computation’s correctness.

Compared to a typical Master-Worker application, however, other types of applications may
have more stringent update consistency requirements. A common invariant to be maintained is
that no two divergent versions of a program are run simultaneously. Since to ensure maximum
parallelism, concurrent processors should be synchronized sparingly, maintaining this invariant
efficiently is challenging.

We address this challenge through a distributed synchronization algorithm that implements
a consistency scheme using standard MPI calls. We have also created a bytecode enhancement
scheme for injecting functionality that applies our algorithm to extant parallel applications.
We describe each part of our solution in turn next.

Concurrency Computat.: Pract. Exper.

DYNAMIC SOFTWARE UPDATES FOR HPC APPLICATIONS 13

OUTPUT: Update information which will be used for updating on all nodes.
1 updateInfoQueue ⇐ φ
2 create a communication channel chp with a port number p
3
4 REPEAT
5 await the update data ud from the user
6 IF ∃ ud THEN
7 chp receives ud through the port number p
8 add ud to the update queue updateInfoQueue
9 ENDIF

10 UNTIL the application is running

Figure 6. Waiting for update information from the user.

1 updateInfoQueue ⇐ φ
2 N ⇐ a set of the nodes involved in the computation
3
4 /∗ The root node (rank0) creates a thread which will wait for update information. ∗/
5 IF nodeRank ≡ 0 THEN
6 create a update thread udThread
7 ENDIF
8 ...
9

10 /∗ Broadcast the update information from the root node to all nodes. ∗/
11 IF nodeRank ≡ 0 THEN
12 get updateInfoQueue from the update thread udThread
13 broadcast updateInfoQueue to all nodes N
14 ENDIF
15
16 IF updateInfoQueue 6= φ THEN
17 /∗ Each worker node updates its application on the fly . ∗/
18 update the application appj on nj based on updateInfoQueue
19 /∗ A worker node waits until the others finish their updates. ∗/
20 WAIT UNTIL the updates on the remaining N − nj have been completed
21 ENDIF

Figure 7. Synchronizing concurrent dynamic updates on multiple nodes.

3.2. Synchronization Algorithm

Updating multiple concurrent tasks consistently entails receiving the update information from
the user and applying the update consistently to all the running nodes. Each of these activities
requires a distributed consistency algorithm, which we now describe.

Dynamic updates are initiated by the user who interacts with an update front end. The
purpose of the front end is to accept from the user a new version of the running program.
Then the front end may choose to calculate the delta between the running and new versions of

Concurrency Computat.: Pract. Exper.

14 KIM, TILEVICH, RIBBENS

the program to reduce the amount of code that would have to be replaced. Finally, the front
end instructs the running nodes to update themselves to the new version.

The step of this procedure that requires distributed coordination is for the nodes to receive
the update request from the front end. Figure 6 shows the algorithm, according to which the
root node of the distributed computation receives update requests. To that end, the root
node spawns a new update thread that waits for an incoming socket connection request.
An asynchronous IO facility can be used to avoid busy waiting. When a connection from
the front end is received, the update thread creates a user communication channel (line 2),
receives update data from the user (line 5), and enqueues it (line 8). The thread can repeat
the above procedure continuously until the application is running, thus possibly enqueuing
multiple update requests.

The code on each running node is patched with update management code, which constitutes
a short sequence of method calls and conditional statements. The exact code location at which
dynamic updates should take place depends on the semantics of the updated application.
For some applications, update management can be seamlessly added to the beginning of the
main compute loop; however, this particular location may turn to be unsuitable for other
applications. Figure 7 displays the algorithm implemented by the update management code.
To synchronize updates, the root node (i.e., the process with rank zero) broadcasts update
information to all nodes. Upon receiving the update information, all the nodes, including the
root node, update themselves dynamically using whatever local DSU infrastructure is in place,
and synchronize on a barrier.

3.3. Example Implementation

To enable efficient and safe dynamic software updates for parallel high performance
applications, our approach taps into their development cycle and also adds some runtime
functionality. Figure 8 describes the process by which an unaware parallel high performance
application is enhanced to be dynamically updateable. The enhancement process starts after
the application has been implemented, thus following the principle of separating concerns. The
programmer focuses on implementing the application logic, while a special post-compilation
step adds the required functionality to enable dynamic updates. Furthermore, our approach
does not assume that the application is built with dynamic updates in mind.

One of the key issues of dynamic software updates is safety. That is, updating a running
application must not put it in an unsafe state that may affect the application’s correctness
and stability. Thus, it becomes important to identify a point in the execution of a parallel task
at which its software can be safely updated dynamically. Upon reaching this point, the task
should check whether the update is available, perform the requisite synchronization with the
other tasks, and then update itself if so instructed.

Identifying a specific program execution point at which it is safe to perform a dynamic
update requires a thorough understanding of the semantics of the parallel application. While
identifying such safe update points automatically can be an immensely complex task, the
programmer can easily specify them by hand. To that end, our approach allows the programmer
to specify update information through a simple configuration file that contains the Java class,
method, and the statement number, before which the synchronization code should be added.

Concurrency Computat.: Pract. Exper.

DYNAMIC SOFTWARE UPDATES FOR HPC APPLICATIONS 15

…

foo();

bar();

…

Update

Management

Code

…

foo();

Update
Management

Code

bar();

…

Original HPC applications

Updateable HPC applications

Updating

Points

J
JVM

Execute

Figure 8. Making HPC applications updateable.

The code is added directly at the bytecode level, a common software practice for Java
applications with multiple bytecode engineering toolkits readily available [17, 1, 11]. The
relatively high level of Java bytecode makes it easier to add functionality to classes at the
bytecode level.

Another alternative would be to require the programmer to edit the source files by hand to
add the synchronization code. We strongly prefer our approach despite the introduction of an
external dependency in the form of a configuration file. Using external tools and additional
source code dependencies is in line with other Java technologies for introducing crosscutting
concerns, such as Aspect Oriented Programming [30]. When porting our implementation to
other HPC platforms, however, one should use platform appropriate programming tools (e.g.,
C preprocessor macros).

Figure 9 shows that the synchronization code is quite straightforward. The process with rank
zero creates a thread to receive update requests from the user. To ensure that the thread does
not waste computing resources, all the communication takes place through Java asynchronous
IO, which wakes up the thread only when a new update request is ready to be processed.
The rank zero process then broadcasts the update information to the remaining processes.
In the case when the user initiated a dynamic update, then each process updates itself and
synchronizes on a barrier. If no update is needed, then the only additional cost is the broadcast
(line 5).

Figure 10 illustrates our runtime support for dynamic updates. Our approach leverages
the capacities of the standard JVM HotSwap facility. Upon receiving an update request,
the running JVM sends itself a HotSwap request, relying on the HotSwap machinery to
safely interrupt the execution, reload the updated version of the specified classes, and restart
the computation. Upon restarting the computation, the first executed method is a barrier

Concurrency Computat.: Pract. Exper.

16 KIM, TILEVICH, RIBBENS

1 if (MPI.COMM WORLD.Rank() == 0) {
2 classNames = SelectSockets.INSTANCE.getClassNames();
3 }
4
5 MPI.COMM WORLD.Bcast(classNames, 0, classNames.length, MPI.OBJECT, 0);
6
7 if (!classNames.isEmpty()){
8 ExecutionManager.update(classNames);
9

10 MPI.COMM WORLD.Barrier();
11
12 }

Figure 9. An example of the synchronization code.

synchronization that ensures that all the concurrently-running copies of the computation have
been updated consistently.

3.4. Evaluation

As our evaluation environment, we have used System G—a state-of-the-art research
supercomputer recently constructed at Virginia Tech. System G features top-of-the-line
components, typically found in a modern compute cluster: each compute node runs two Intel
Xenon processors with 4 cores each (a total of 8 cores), 8GB RAM, and Fedora Core 10. The
nodes are connected by InfiniBand (10Gbit+). For all the experiments, we used JDK 1.6.0 0.

The goal of our evaluation was to ensure that the injected update management code,
discussed above, imposes a negligible performance overhead. If the goal of dynamic software
updates is to reduce time-to-discovery, then high costs of executing the update management
code would offset—if not eliminate altogether—the desired overall performance improvements.
Since our update management code implements a distributed synchronization algorithm, its
performance is thus dependent on the number of nodes. The higher the number of nodes that
have to be updated consistently, the higher will be the cost of synchronizing them.

As our benchmark application, we have used a parallel Molecular Dynamics Simulation
(MDS) application, which was originally part the Java Grande Forum Benchmark Suite
[13]. Because this benchmark is now distributed with MPJ Express [7], individual nodes
communicate with each other through MPI calls expressed in Java using MPJ Express bindings.
Therefore, our findings should be representative of a typical compute cluster application, and
our setup does not unfairly benefit our approach.

MDS applications [47, 35] model the structure, motions, and interactions of molecular
systems, including proteins, cell membranes, and DNA, at an atomic level of detail through a
parallel computer simulation. The primary method of an MDS application includes the main
execution loop, which simulates the movement of particles by running code on multiple nodes
in parallel and synchronizing their execution through MPJ calls. Specifically, the main loop
includes the routines that move particles, calculate the force on particles, and average the

Concurrency Computat.: Pract. Exper.

DYNAMIC SOFTWARE UPDATES FOR HPC APPLICATIONS 17

J
JVM

Initiate

J
JVM

Hot

Swap

Initiate

Update

J
JVM

Hot

Swap

Initiate

Update

Broadcast

Update Info.

J
JVM

Hot

SwapUpdate

Updateable

HPC App.

Updateable

HPC App.

Updateable

HPC App.

Rank 0

Asynchronous

Socket communication UpdateInfo

Thread

(Thread)

UpdateInfo

Client

Figure 10. Updating parallel HPC at runtime.

velocity of all particles. The size of the simulation is controlled by adjusting the number of
times the particles are moved, nstep. We ran the simulation for nstep = 200 and 500. The
update management code was inserted in the beginning of the main execution loop. Thus, the
update management code was executed once per iteration step. We also randomly performed
20 dynamic updates. To capture the overhead of managing the updates, we have swapped the
running class versions with the same classes. Thus, even though classes were swapped, the
changes did not have any effect on the execution of the application.¶

Figures 11 and 12 show the performance overhead imposed by our update management code
for 200 and 500 simulation steps. We compared the total execution time of the original and
enhanced dynamic updates versions of the MDS application for setups ranging between 16

¶See Section 2 for the description of realistic updates that can reduce the time-to-discovery in parallel high
performance applications.

Concurrency Computat.: Pract. Exper.

18 KIM, TILEVICH, RIBBENS

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

16 32 48 64 80 96 128

1.25 %

1.46 %
1.69 %

1.76 % 1.71 %
1.85 %

2.10 %

E
xe
cu
ti
o
n
 T
im

e
 (
m
in
.)

of Cluster Nodes

Original MDS Updateable MDS with 20 updates

Figure 11. Performance overhead on the update management code. Bcast and Barrier have been
executed 200 and 20 times, respectively.

and 128 nodes. The overhead is incurred mainly by the MPI Bcast and Barrier calls: while
Bcast is executed on each iteration of the main execution loop, Barrier is called only if a
dynamic update has taken place (i.e., Barrier is called 20 times). As expected, the performance
overhead tends to increase with the number of nodes. Nevertheless, the total overhead never
exceeds 2%. Furthermore, as the number of iterations increases, the total overhead of executing
our update management code decreases.

Note that the total execution time of each simulation can be as high as 8 hours depending
on the configuration. If the running code needs to be changed during these 8 hours, the ability
to update the code dynamically, in our view, will be well worth the overhead of the update
management code, which adds up to less than 10 minutes ‖.

‖2% of 8 hours is 480 mins ∗ .02 ≈ 10 mins.

Concurrency Computat.: Pract. Exper.

DYNAMIC SOFTWARE UPDATES FOR HPC APPLICATIONS 19

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

Original MDS Updateable MDS with 20 updates

E
x
e
cu
ti
o
n
 T
im

e
 (
h
rs
)

of Cluster Nodes

32 64 12816

0.81 %

0.43 %

0.59 %

0.16 %

Figure 12. Performance overhead on the update management code. Bcast and Barrier have been
executed 500 and 20 times, respectively.

4. RELATED WORK

Research on dynamic software updates hails back to the early 1980’s. Many researchers have
focused on the challenge of changing a running application without stopping its execution.
Each shift in the design of programming languages and models has brought about a new wave
of research on dynamic software updates.

The following discussion, inspired by a similar overview included in Michael Hicks’ doctoral
dissertation [24], presents key properties of dynamic software update systems and demonstrates
how representative systems support the presented properties.

4.1. Range of updates

The range of updates property refers to supporting arbitrary updates without significantly
constraining which programming language features can be used in the updated applications.
Ideally, DSU systems should have no limitations on the update unit such as classes, procedures,
and processes.

DYMOS [36] is an integrated environment which consists of a command interpreter, source
code manager, editor, compiler, and run-time support system. DYMOS permits changes to

Concurrency Computat.: Pract. Exper.

20 KIM, TILEVICH, RIBBENS

module definitions, data definitions, and infinite loop bodies. Ginseng [41] supports changes
to function types and the type of global variables by tracking concrete uses of functions and
global variables. Since the updating facility of PROSE [43, 42] is based on the HotSwap in the
Sun JDK implementation, PROSE only supports updates to method bodies. Unlike PROSE,
Jvolve [50] can flexibly support schema changes such as additions and replacements of fields
and methods because it uses a modified virtual machine. To support various kinds of updates,
Bialek’s approach [9] automatically partitions Java applications into a set of classes or Java
packages.

4.2. Robustness

The robustness property represents safety, well-timedness, and the ability to rollback DSU
systems. Whenever a robust DSU system updates an application dynamically, the risk of the
updated application crashing has to be minimized.

The DYMOS system mentioned above ensures resiliency to crash or system failure of the
updated applications by enforcing type checking. A new version of a procedure is compiled
within the environment used by the old version. To improve safety further, DYMOS uses
update pre-conditions provided by the programmer and enforced by the system to ensure that
the updated system does not become unstable as a result of an update. Argus [12] provides
crash recovery facilities that interact with the Argus’ process abstractions called guardians. A
portion of a guardian’s running state is stored in permanent storage. If the program crashes, a
replacing guardian can be restarted using the persistent old state. Guarded Software Updating
(GSU) [51] can update extremely long-running applications (e.g., satellite software running for
a decade). GSU allows different versions of a program to be deployed simultaneously, so that the
new version could be tested under the current runtime conditions. If the testing establishes
confidence, then the system can be transitioned to the new version, using the old one as a
backup accomplished through message logging, checkpointing, and rollback recovery.

Jvolve verifies the updated bytecode for type safety and checks the running thread’s
activation stack to reach a safe update point, delaying the updates if necessary. POLUS [15]
can rollback committed updates to the original versions of the code and data, which are stored
in memory. While using extra memory, this approach provides fast and easy rollbacks.

4.3. Performance overhead

The performance overhead property refers to the total amount of extra time it takes to enable
dynamic updates. To be applicable for high performance applications, DSU systems should
impose a negligible performance overhead.

POLUS, a DSU system for C applications, uses binary rewriting to redirect function
calls between versions. The introduced function redirection may impose some performance
overhead. However, Chen et al. claim that such overhead is minimal and less than 1% for most
applications [15]. PROSE updates Java applications dynamically with a negligible run-time
performance overhead, thanks to the aggressive inlining of the existing method calls in the
replaced method bodies. Jvolve uses a custom virtual machine, providing a highly efficient
DSU service with virtually no performance penalty.

Concurrency Computat.: Pract. Exper.

DYNAMIC SOFTWARE UPDATES FOR HPC APPLICATIONS 21

4.4. Ease of use

The ease of use property refers to the simplicity with which a DSU system can be used to apply
dynamic updates. Ideally, the update processes should be transparent to the programmer, with
most of the functionality completely automated. That is, programmers should not have to write
any dynamic update code, and the development process should be separated from the dynamic
update process. Segal and Frieder have observed that the degree to which a particular DSU
system is used is directly proportional to its transparency [46].

To minimize user involvement, Bialek’s system automatically adds dynamic update
functionality to the applications. POLUS also needs only minimal update information from
programmers and automatically generates update patches. Furthermore, to provide good
usability, POLUS enables patch processes to be visible to programmers. Ginseng features a
compiler and tool suite for constructing updateable C applications from programs written
without dynamic updates in mind—it produces updateable programs dynamically and
generates dynamic patches automatically.

4.5. Portability

The portability property refers to the ability to perform dynamic updates on multiple platforms.
Some dynamic updating systems only work on specific operating and/or middleware systems.

Dynamic C++’s approach [25] requires no special preprocessor or compiler support. Its
lightweight proxy classes can be compiled by any standard C++ compiler.

On the other hand, some DSU systems need comprehensive infrastructure support such as
a custom operating or middleware system. Hauptmann et al.’s approach [23] leverages certain
properties of the Chorus operating system, including dynamic process loading, port migration,
and thread scheduling. The Eternal system [39] dynamically updates CORBA-based systems,
thus being portable across CORBA-enabled platforms.

Kang et al. [29, 28] adapt HPC programs, in Fortran, C, and C++, for new requirements.
Their approach leverages the function interception capabilities of a framework that operations
at the assembly language level, thus ensuring programming language independence.

Some Java DSU systems, including JDrums [4], Jvolve, and Dynamic Virtual Machine
(DVM) [38], use custom JVMs. The portability of these approaches is thus constrained by the
necessity to provide a customized JVM for every supported platform.

4.6. Multi-threading support

The multi-threading support property refers to the ability to safely update a program that has
multiple concurrent execution threads.

DYMOS can update multi-threaded applications due to its design, which uses the multi-
thread variant of the Modula language called StarMod; this particular dialect makes it easier
to synchronize those DYMOS function calls that access global structures. The design of
Argus naturally supports the replacement of guardians, which are groups of distributed, multi-
threaded processes.

Concurrency Computat.: Pract. Exper.

22 KIM, TILEVICH, RIBBENS

To update multi-threaded C programs efficiently, Ginseng improves on barrier-style
synchronization. Its extension, Stump [40], further facilitates safe and timely updates of multi-
threaded programs by enabling the programming to easily reason about the safety of updates.
To that end, Stump takes programmer’s input in the form of safe program update locations
and calculates an extended set of such locations. It then relaxes the built-in properties of
synchronization constructs to ensure that threads not be blocked at these update locations.

Jvolve can safely update multi-threaded programs by ensuring that all the threads have
reached a safe state, in which updated methods are no longer allocated on the runtime stack.
If a safe state cannot be reached, the updates are postponed until a later time.

4.7. Distribution support

The distributed support property refers to the ability to update distributed applications, whose
execution spans multiple address spaces, possibly separated by a network.

Some systems dynamically update distributed applications by using custom middleware.
PolyLith [27] runs C programs on top of a special reconfiguration-enabled runtime system.

The Conic [34] distributed programming system coordinates multiple distributed processes.
The provided entry points, called channels, are used for inter-process communication, and a
configuration manager can redirect the channels on the fly.

JDrums provides a special communication layer that enables accessing a remote JVM
through JINI using RPC. The JD reconfiguration tool coordinates distributed components
using a JINI communication protocol.

To adapt HPC applications without degrading their performance, Kang et al.’s approach
injects adaptive code at the existing global synchronization points (e.g., where MPI Bcast and
MPI Barrier are invoked).

4.8. Language constructs support

The language constructs support property refers to accommodating various programming
language constructs during dynamic updates. Of interest to this discussions are various
language constructs found in mainstream programming languages such as C, C++, and Java.

It is worth noting that some languages have built-in facilities for dynamic updates.
For example, Erlang [52], a dynamically typed, concurrent, purely functional programming
language, was designed for building and hot-patching long-running telecommunications
systems. Although extant HPC systems, written in mainstream languages, cannot take
advantage of these properties of Erlang, it is worth exploring Erlang as an HPC platform.

PODUS, PolyLith, On-line Software Version Change (OSVC) [22], and Ginseng are
specifically designed for dynamically updating programs written in C. Dynamic C++, Eternal,
and Chorus aim at dynamic updates of C++ applications. Argus, Conic, Dynamic ML [20],
and DYMOS work with custom versions of various languages that facilitate dynamic updates.

The rapid, widespread adoption of Java technology has served as an impetus for creating
many DSU systems for updating Java applications on the fly. Orso et al.’s technique [44]
refactors bytecode to enable dynamic updates. Bialek et al.’s system also rewrites the
updated software at the source or bytecode levels to enable its dynamic updates. Several

Concurrency Computat.: Pract. Exper.

DYNAMIC SOFTWARE UPDATES FOR HPC APPLICATIONS 23

approaches [45, 38, 19] have introduced custom virtual machines to support dynamic updates
of Java applications. Some approaches [37, 16, 53, 10] introduce new languages features,
middleware systems, or require that software developers abide by specific component models
or programming rules. Bierman et al.’s UpgradeJ [10] is a Java-like language for type-safe
upgrading classes dynamically.

5. FUTURE WORK AND CONCLUSIONS

As our experimental platform is the JVM, it would be interesting to explore how our approach
works for new high-productivity languages that target the JVM. The new language features
of these languages are likely to pose new challenges for dynamic updates. Furthermore,
we would like to further improve the usability of our approach, making it accessible to
non-expert programmers. It remains to be seen whether the complex functionality enabled
by our infrastructure can be exposed through an intuitive GUI. The usability of our
infrastructure can greatly affect its adoption rate. Finally, our approach to dynamic updates of
parallel applications could benefit next-generation software systems including large scale grid
applications, conscientious systems, and autonomic computing.

In this article, we have considered the value of using dynamic software updates to reduce
the total time that elapses between posing a problem and arriving at a solution, otherwise
known as time-to-discovery. We have reported on our own work on dynamically updating high
performance parallel applications and presented an extensive overview of the state of the art
in dynamic software updates. We demonstrated the benefits of dynamic software updates for
the HPC domain and introduced several novel techniques. Our binary rewriting technique
overcomes constraints of the HotSwap API to support a wider range of dynamic changes. Our
algorithm ensures consistency of dynamically updating multiple concurrent parallel tasks. To
demonstrate the efficiency of the algorithm, we benchmarked a parallel molecular dynamics
simulation, comparing the performance of the original version and the one enhanced with our
distributed synchronization functionality The results show that the negligible overhead of our
approach can be justified by the added ability to update parallel applications on the fly.

HPC researchers and practitioners alike are starting to realize the potential of reducing the
development and fine-tuning component of the time to discovery in parallel high performance
applications. This research has demonstrated the benefits of applying dynamic software
updates to parallel high performance applications, an approach that can improve many aspects
of engineering software in this domain.

REFERENCES

1. Byte Code Engineering Library (BCEL), http://jakarta.apache.org/bcel/.
2. Ibis: Grids as Promised, http://www.cs.vu.nl/ibis/.
3. JAligner, http://jaligner.sourceforge.net/.
4. JDrums, http://www.ida.liu.se/~jengu/jdrums/.
5. Message Passing Interface, http://www.mcs.anl.gov/mpi.

Concurrency Computat.: Pract. Exper.

24 KIM, TILEVICH, RIBBENS

6. B. Alpern, A. Cocchi, S. Fink, and D. Grove. Efficient implementation of Java interfaces: Invokeinterface
considered harmless. In OOPSLA ’01: Proceedings of the 16th ACM SIGPLAN conference on Object
oriented programming, systems, languages, and applications, pages 108–124, 2001.

7. M. Baker, B. Carpenter, and A. Shaft. MPJ Express: Towards thread safe Java HPC. Cluster Computing,
IEEE International Conference on, 0:1–10, 2006.

8. V. R. Basili, J. C. Carver, D. Cruzes, L. M. Hochstein, J. K. Hollingsworth, F. Shull, and M. V. Zelkowitz.
Understanding the high-performance-computing community: A software engineer’s perspective. IEEE
Software, 25(4):29–36, 2008.

9. R. P. Bialek. Dynamic updates of existing Java applications. Ph.D. Thesis, the University of Copenhagen,
pages 1–216, June 2006.

10. G. Bierman, M. Parkinson, and J. Nob. UpgradeJ: Incremental typechecking for class upgrades. In
European Conference on Object-Oriented Programming (ECOOP), July 2008.

11. W. Binder, J. Hulaas, and P. Moret. Advanced Java bytecode instrumentation. In PPPJ ’07: Proceedings
of the 5th international symposium on Principles and practice of programming in Java, pages 135–144,
New York, NY, USA, 2007. ACM.

12. T. Bloom and M. Day. Reconfiguration and module replacement in argus: theory and practice. Software
Engineering Journal, 8(2):102–108, 1993.

13. J. Bull, L. Smith, M. Westhead, D. Henty, and R. Davey. A benchmark suite for high performance Java.
Concurrency Practice and Experience, 12(6):375–388, 2000.

14. P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C. von Praun, and V. Sarkar.
X10: an object-oriented approach to non-uniform cluster computing. SIGPLAN Not., 40(10):519–538,
2005.

15. H. Chen, J. Yu, R. Chen, B. Zang, and P.-C. Yew. Polus: A powerful live updating system. In ICSE ’07:
Proceedings of the 29th international conference on Software Engineering, pages 271–281, Washington,
DC, USA, 2007. IEEE Computer Society.

16. X. Chen. Extending RMI to support dynamic reconfiguration of distributed systems. Proceedings of the
22 nd International Conference on Distributed Computing Systems (ICDCS’02), pages 401–408, 2002.

17. S. Chiba and M. Nishizawa. An easy-to-use toolkit for efficient Java bytecode translators. Proc. of 2nd
Int’l Conf. on Generative Programming and Component Engineering (GPCE’03), pages 364–376, 2003.

18. P. Eugster. Uniform proxies for Java. In OOPSLA ’06: Proceedings of the 21st annual ACM SIGPLAN
conference on Object-oriented programming systems, languages, and applications, pages 139–152, 2006.

19. B. Gharaibeh, D. Dig, T. N. Nguyen, and J. M. Chang. dReAM: Dynamic refactoring-aware automated
migration of Java online applications. Technical Report, Iowa State University, August 2007.

20. S. Gilmore, D. Kirli, and C. Walton. Dynamic ML without dynamic types. Technical Report, The
University of Edinburgh, December 1997.

21. O. Gotoh. An improved algorithm for matching biological sequences. J. Mol. Biol., 162:705–708, 1982.
22. D. Gupta, P. Jalote, and G. Barua. A formal framework for on-line software version change. IEEE Trans.

Softw. Eng., 22(2):120–131, 1996.
23. S. Hauptmann and J. Wasel. On-line maintenance with on-the-fly software replacement. In ICCDS

’96: Proceedings of the 3rd International Conference on Configurable Distributed Systems, page 70,
Washington, DC, USA, 1996. IEEE Computer Society.

24. M. Hicks. Dynamic Software Updating. PhD thesis, Department of Computer and Information Science,
University of Pennsylvania, August 2001.

25. G. Hjálmtýsson and R. Gray. Dynamic C++ classes: a lightweight mechanism to update code in a running
program. In ATEC ’98: Proceedings of the annual conference on USENIX Annual Technical Conference,
pages 6–6, Berkeley, CA, USA, 1998. USENIX Association.

26. L. Hochstein, J. Carver, F. Shull, S. Asgari, and V. Basili. Parallel programmer productivity: A case
study of novice parallel programmers. In SC ’05: Proceedings of the 2005 ACM/IEEE conference on
Supercomputing, page 35, Washington, DC, USA, 2005. IEEE Computer Society.

27. C. Hofmeister. Dynamic reconfiguration. Ph.D. Thesis, University of Maryland, 1993.
28. P. Kang, Y. Cao, N. Ramakrishnan, C. J. Ribbens, and S. Varadarajan. Modular implementation of

adaptive decisions in stochastic simulations. In SAC ’09: Proceedings of the 2009 ACM symposium on
Applied Computing, pages 995–1001, New York, NY, USA, 2009. ACM.

29. P. Kang, N. K. C. Selvarasu, N. Ramakrishnan, C. J. Ribbens, D. K. Tafti, and S. Varadarajan. Modular,
fine-grained adaptation of parallel programs. In ICCS, pages 269–279, 2009.

30. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. An overview of AspectJ.
In Proceedings of the 15th European Conference on Object-Oriented Programming (ECOOP), pages 327–
353, London, UK, 2001. Springer-Verlag.

Concurrency Computat.: Pract. Exper.

DYNAMIC SOFTWARE UPDATES FOR HPC APPLICATIONS 25

31. D. K. Kim, Y. Jiao, and E. Tilevich. Flexible and efficient in-vivo enhancement for grid applications. In
9th IEEE International Symposium on Cluster Computing and the Grid (CCGrid 2009). IEEE, 2009.

32. D. K. Kim, M. Song, E. Tilevich, C. J. Ribbens, and S. A. Bohner. Dynamic software updates for
accelerating scientific discovery. In The International Conference on Computational Science 2009 (ICCS
2009), 2009.

33. D. K. Kim and E. Tilevich. Overcoming JVM HotSwap constraints via binary rewriting. In First ACM
Workshop on Hot Topics in Software Upgrades (HotSWUp 2008). ACM, 2008.

34. J. Kramer and J. Magee. Dynamic configuration for distributed systems. IEEE Trans. Softw. Eng.,
11(4):424–436, 1985.

35. A. Kumar. Molecular Dynamics Simulations. http://www.personal.psu.edu/auk183/MolDynamics/
Molecular%20Dynamics%20Simulations.html.

36. I. Lee. DYMOS: A Dynamic Modification System. Ph.D. Thesis, University of Wisconsin, Madison,
April 1983.

37. Y.-F. Lee and R.-C. Chang. Java-based component framework for dynamic reconfiguration. IEE
Proceedings - Software, 152(3):110–118, June 2005.

38. S. Malabarba, R. Pandey, J. Gragg, E. Barr, and J. F. Barnes. Runtime support for type-safe dynamic Java
classes. Proceedings of the 14th European Conference on Object-Oriented Programming, 1850:337–361,
June 2000.

39. P. Narasimhan, L. E. Moser, and P. M. Melliar-Smith. Exploiting the internet inter-ORB protocol interface
to provide CORBA with fault tolerance. In COOTS’97: Proceedings of the 3rd conference on USENIX
Conference on Object-Oriented Technologies (COOTS), pages 6–6, Berkeley, CA, USA, 1997. USENIX
Association.

40. I. Neamtiu and M. Hicks. Safe and timely dynamic updates for multi-threaded programs. In Proceedings
of the ACM Conference on Programming Language Design and Implementation (PLDI), June 2009.

41. I. G. Neamtiu. Practical dynamic software updating. Ph.D. Thesis, University of Maryland, pages 1–212,
August 2008.

42. A. Nicoara and G. Alonso. Dynamic AOP with PROSE. In Conference on Advanced Information Systems
Engineering (CAiSE), pages 125–138, 2005.

43. A. Nicoara, G. Alonso, and T. Roscoe. Controlled, systematic, and efficient code replacement for running
Java programs. In Eurosys ’08: Proceedings of the 3rd ACM SIGOPS/EuroSys European Conference on
Computer Systems 2008, pages 233–246, New York, NY, USA, 2008. ACM.

44. A. Orso, A. Rao, and M. J. Harrold. A technique for dynamic updating of Java software. Proceedings of
the International Conference on Software Maintenance (ICSM’02), October 2002.

45. T. Ritzau and J. Andersson. Dynamic deployment of Java applications. In Java for Embedded Systems
Workshop, London, May 2000.

46. M. E. Segal and O. Frieder. On-the-fly program modification: Systems for dynamic updating. IEEE
Software, 10(2):53–65, 1993.

47. D. E. Shaw, M. M. Deneroff, R. O. Dror, J. S. Kuskin, R. H. Larson, J. K. Salmon, C. Young, B. Batson,
K. J. Bowers, J. C. Chao, M. P. Eastwood, J. Gagliardo, J. P. Grossman, C. R. Ho, D. J. Ierardi,
I. Kolossváry, J. L. Klepeis, T. Layman, C. McLeavey, M. A. Moraes, R. Mueller, E. C. Priest, Y. Shan,
J. Spengler, M. Theobald, B. Towles, and S. C. Wang. Anton, a special-purpose machine for molecular
dynamics simulation. Commun. ACM, 51(7):91–97, 2008.

48. F. Shull, J. Carver, L. Hochstein, and V. Basili. Empirical study design in the area of high-performance
computing (hpc). Empirical Software Engineering, International Symposium on, 0:10 pp., 2005.

49. T. Smith and M. Waterman. Identification of common molecular subsequences. J. Mol. Biol., 147:195–
197, 1981.

50. S. Subramanian, M. Hicks, and K. S. McKinley. Dynamic software updates for Java: A VM-centric
approach. In Proceedings of the ACM Conference on Programming Language Design and Implementation
(PLDI), June 2009.

51. A. T. Tai, K. S. Tso, L. Alkalai, S. N. Chau, and W. H. Sanders. On low-cost error containment
and recovery methods for guarded software upgrading. In ICDCS ’00: Proceedings of the The 20th
International Conference on Distributed Computing Systems (ICDCS 2000), page 548, Washington, DC,
USA, 2000. IEEE Computer Society.

52. R. Virding, C. Wikström, and M. Williams. Concurrent programming in ERLANG (2nd ed.). Prentice
Hall International (UK) Ltd., Hertfordshire, UK, 1996.

53. A. Warth, M. Stanojević, and T. Millstein. Statically scoped object adaptation with Expanders. In
OOPSLA ’06: Proceedings of the 21st annual ACM SIGPLAN conference on Object-oriented programming
systems, languages, and applications, pages 37–56, 2006.

Concurrency Computat.: Pract. Exper.

26 KIM, TILEVICH, RIBBENS

Table I. HotSwap Constraints (the addressed ones are shaded)

Targets Changes
Method Adding a new method

Removing an existing method
Adding formal arguments of a method
Removing formal arguments of a method
Changing the return type of a method
Changing method modifiers

Field Adding a new field
Removing an existing field
Changing the type of a field
Changing field modifier

Concurrency Computat.: Pract. Exper.

