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Abstract. In modern distributed object systems, reference parameters
are passed to a remote method based on their runtime type. We argue
that such type-based parameter passing is limiting with respect to ex-
pressiveness, readability, and maintainability, and that parameter pass-
ing semantics should be decoupled from parameter types. We present
declarative parameter passing, an approach that fully decouples parame-
ter passing semantics from parameter types in distributed object systems.
In addition, we describe DeXteR, an extensible framework for transform-
ing a type-based remote parameter passing model to a declaration-based
model transparently. Our framework leverages aspect-oriented and gen-
erative programming techniques to enable adding new remote parameter
passing semantics, without requiring detailed understanding of the un-
derlying middleware implementation. Our approach is applicable to both
application and library code and incurs negligible performance overhead.
We validate the expressive power of our framework by adding several
non-trivial remote parameter passing semantics (i.e., copy-restore, lazy,
streaming) to Java RMI.

Key words: Extensible Middleware, Metadata, Parameter Passing, As-
pect Oriented Programming, Declarative Programming

1 Introduction

Organizations have hundreds of workstations connected into local area networks
(LANs) that stay unused for hours at a time. Consider leveraging these idle com-
puting resources for distributed scientific computation. Specifically, we would like
to set up an ad-hoc grid that will use the idle workstations to solve bioinformatics
problems. The ad-hoc grid will coordinate the constituent workstations to align,
mutate, and cross DNA sequences, thereby solving a computationally intensive
problem in parallel.

Each workstation has a standard Java Virtual Machine (JVM) installed, and
the LAN environment makes Java RMI a viable distribution middleware choice.
As a distributed object model for Java, RMI simplifies distributed program-
ming by exposing remote method invocations through a convenient program-
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ming model. In addition, the synchronous communication model of Java RMI
aligns well with the reliable networking environment of a LAN.

The bioinformatics application follows a simple Master-Worker architecture,
with classes Sequence, SequenceDB, and Worker representing a DNA sequence,
a collection of sequences, and a worker process, respectively. Class Worker im-
plements three computatinally-intensive methods: align, cross, and mutate.

interface WorkerInterface {

void align(SequenceDB allSeqs, SequenceDB candidates, Sequence toMatch);

Sequence cross(Sequence s1, Sequence s2);

void mutate(SequenceDB seqs);

}

class Worker implements WorkerInterface { ... }

The align method iterates over a collection of candidate sequences (candid-
ates), adding to the global collection (allSeqs) those sequences that satisfy a
minimum alignment threshold. The cross method simulates the crossing over
of two sequences (e.g., during mating) and returns the offspring sequence. Fi-
nally, the mutate method simulates the effect of a gene therapy treatment on a
collection of sequences, thereby mutating the contents of every sequence in the
collection.

Consider using Java RMI to distribute this application on an ad-hoc grid,
so that multiple workers could solve the problem in parallel. To ensure good
performance, we need to select the most appropriate semantics for passing pa-
rameters to remote methods. However, as we argue next, despite its Java-like
programming model, RMI uses a different remote parameter passing model that
is type-based. That is, the runtime type of a reference parameter determines the
semantics by which RMI passes it to remote methods. We argue that this pa-
rameter passing model has serious shortcomings, with negative consequences for
the development, understanding, and maintenance of distributed applications.

Method align takes two parameters of type SequenceDB: allseqs and ca-

ndidates. allseqs is an extremely large global collection that is being up-
dated by multiple workers. We, therefore, need to pass it by remote-reference.
candidates, on the other hand, is a much smaller collection that is being used
only by a single worker. We, therefore, need to pass it by copy, so that its con-
tents can be examined and compared efficiently. To pass parameters by remote-

reference and by copy, the RMI programmer has to create subclasses implement-
ing marker interfaces Remote and Serializable, respectively. As a consequence,
method align’s signature must be changed as well. Passing allSeqs by remote-

reference requires the type of allSeqs to become a remote interface. Finally,
examining the declaration of the remote method align would give no indica-
tion about how its parameters are passed, forcing the programmer to examine
the declaration of each parameter’s type. In addition, in the absence of detailed
source code comments, the programmer has no choice but to examine the logic
of the entire slice [3] of a distributed application that can affect the runtime type
of a remote parameter.
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Method mutate mutates the contents of every sequence in its seqs param-
eter. Since the client needs to use the mutated sequences, the changes have
to be reflected in the client’s JVM. The situation at hand renders passing by
remote-reference ineffective, since the large number of remote callbacks is likely
to incur a significant performance overhead. One approach is to pass seqs by
copy-restore, a semantics which efficiently approximates remote-reference under
certain assumptions [23].

Because Java RMI does not natively support copy-restore, one could use a
custom implementation provided either by a third-party vendor or an in-house
expert programmer. Mainstream middleware, however, does not provide pro-
gramming facilities for such extensions. Thus, adding a new semantics would
not only require a detailed understanding of the RMI implementation, but also
sufficient privileges to modify the Java installation on each available idle work-
station.

Finally, consider the task of maintaining the resulting ad-hoc grid distributed
application. Assume that SequenceDB is a remote type in one version of the ap-
plication, such that RMI will pass all instances SequenceDB by remote-reference.
However, if a maintenance task necessitates passing some instance of SequenceDB
using different semantics, the SequenceDB type would have to be changed. Nev-
ertheless, if SequenceDB is part of a third-party library, it may not be subject
to modification by the maintenance programmer.

To overcome the limitations of a type-based remote parameter passing model,
we present an alternative, declarative model. We argue that remote parameter
passing should resemble that of local parameter passing in mainstream pro-
gramming languages. Following this paradigm, a passing mechanism for each
parameter is specified at the declaration of each remote method. By decoupling
parameter passing from parameter types, our approach increases expressiveness,
improves readability, and eases maintainability.

Unsurprisingly, mainstream programming languages such as C, C++, and
C# express the choice of parameter passing mechanisms through method decla-
rations with special tokens instead of types. For example, by default objects in
C++ are passed by value, but inserting the & token after the type of a parameter
signals the by reference mechanism. We argue that distributed object systems
should adhere to a similar declarative paradigm for remote method calls, but
properly designed for distributed communication.

While Java always uses the by value semantics for local calls, we argue that
distributed communication requires a richer set of semantics to ensure good
performance and to increase flexibility. We also argue that IDL-based distributed
object systems such as CORBA [14] and DCOM [1] with their in, out, and inout

parameter modes stop short of a fully declarative parameter model and are not
extensible.

Recognizing that many existing distributed applications are built upon a
type-based model, we present a technique for transforming a type-based remote
parameter passing model to use a declaration-based one. Our technique trans-
forms parameter passing functionality transparently, without any changes to the
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underlying distributed object system implementation, ensuring cross-platform
compatibility and ease of adoption. With Java RMI as our example domain,
we combine aspect-oriented and generative techniques to retrofit its parameter
passing functionality. Our approach is equally applicable to application classes,
system classes, and third-party libraries.

In addition, we argue that a declarative model to remote parameter pass-
ing simplifies adding new semantics to an existing distributed object model.
Specifically, we present an extensible plug-in-based framework, through which
third-party vendors or in-house expert programmers can seamlessly extend a na-
tive set of remote parameter passing semantics with additional semantics. Our
framework allows such extension in the application space, without modifying the
JVM or its runtime classes. As a validation, we used our framework to extend
the set of available parameter passing semantics of RMI with several non-trivial
state-of-the-art semantics, introduced earlier in the literature both by us [23]
and others [7, 25, 4].

One of the new semantics we implemented using our framework is an opti-
mization of our own algorithm for copy-restore [23]. In the original implemen-
tation, the server sends back a complete copy of the parameter to the restore
stage of the algorithm on the client, which is inefficient in high-latency, low-
bandwidth networking environments. The implemented optimized version of the
copy-restore algorithm, which we call copy-restore with delta, efficiently identi-
fies and encodes the changes made by the server to the parameter, sending to
the client only the resulting delta. Because the original copy-restore algorithm
performs better in high-bandwidth networks, our extensible framework makes
it possible to use different versions of the copy-restore algorithm for different
remote calls in the same application.

We believe that the technical material presented in this paper makes the
following novel contributions:

– A clear exposition of the shortcomings of type-based parameter passing mod-
els in modern distributed object systems such as CORBA, Java RMI, and
.NET Remoting.

– An alternative declarative parameter passing approach that offers multiple
design and implementation advantages.

– An extensible framework for retrofitting standard RMI applications to take
advantage of our declaration based model and for extending the RMI native
set of parameter passing semantics.

– An enhanced copy-restore mode of remote parameter passing, offering per-
formance advantages for low bandwidth, high latency networks.

The rest of this paper is structured as follows. Section 2 presents DeXteR,
our extensible framework. Section 3 describes how we used DeXteR to add sev-
eral non-trivial parameter passing semantics to RMI. Section 4 discusses the
advantages and constraints of our approach. Section 5 discusses related work.
Finally, Section 6 outlines future work directions and conclusions.
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2 The DeXter Framework

This section discusses the design and implementation of DeXteR (Declarative
Extensible Remote Parameter Passing), a framework for declarative remote
parameter passing.

Extension-
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Generators

Extension-
specifc Code 
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Annotations 

Processor
Framework-specifc 

Code Generator

Transformed Application

Aspectj Weaver

Plug-ins

Plugin-specifc 

Code Generators

Config.xml

Plugin Developer

Annotated Application

Generated Code Generated Code

Rank-and-file Programmer

Fig. 1. Development and Deployment Process

2.1 Framework Overview

DeXteR implements declaration-based parameter passing semantics on top of
standard Java RMI, without modifying its implementation. DeXteR uses a plug-
in based architecture and treats remote parameter passing as a distributed cross-
cutting concern. Each parameter passing style is an independent plugin compo-
nent.

DeXteR uses the Interceptor Pattern [18] to expose the invocation context
explicitly on the client and the server sites. While Interceptors have been used in
several prior systems [8] to introduce orthogonal cross-cutting concerns such as
logging and security, the novelty of our approach lies in employing Interceptors
to transform and enhance the core functionality of a distributed object system,
its remote parameter passing semantics.

Figure 1 depicts the overall translation strategy employed by DeXteR. The
rank-and-file (i.e., application) programmer annotates an RMI application with
the desired remote parameter passing semantics. The annotations processor takes
the application source code as input, and extracts the programmer’s intent. The
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extracted information parameterizes the source code generator, which encom-
passes the framework-specific code generator and the extension-specific code
generators. The framework-specific code generator synthesizes the code for the
client and the server interceptors using aspects. The extension-specific code gen-
erators synthesize the code pertaining to the translation strategy for supporting
a specific parameter passing semantics. DeXteR compiles the generated code
into bytecode, and the resulting application uses standard Java RMI, only with
a small AspectJ runtime library as an extra dependency. The generated aspects
are weaved into the respective classes at load-time, thereby redirecting the in-
vocation to the framework interceptors at both the local and the remote sites.

2.2 Framework API

DeXteR provides interception points for parameter passing plugins in the form of
the InterceptionPoint interface. Developing a new plugin involves implement-
ing this interface and identifying the interception points of interest, providing
the functionality at these interception points, and registering the plugin with
the framework.

interface InterceptionPoint {

// Interception points on client-side

Object [] argsBeforeClientCall(Object target, Object [] args);

Object [] customArgsBeforeClientCall(Object target);

Object retAfterClientCall(Object target, Object ret);

void customRetAfterClientCall(Object target, Object [] customRets);

// Interception points on server-side

Object [] argsBeforeServerCall(Object target, Object [] args);

void customArgsBeforeServerCall(Object target, Object [] customArgs);

Object retAfterServerCall(Object target, Object ret);

Object[] customRetAfterServerCall(Object target);

// Plugin-specific code generator

void generate(AnnotationInfo info);

}

The above interface exposes the invocation context of a remote call at differ-
ent points of its control-flow on both the client and server sites. DeXteR exposes
to a plugin only the invocation context pertaining to the corresponding param-
eter passing annotation. For example, plugin X obtains access only to those
remote parameters annotated with annotation X. DeXteR enables plugins to
modify the original invocation arguments as well as to send custom information
between the client- and the server-side extensions. The custom information is
simply piggy-backed to the original invocation context.

2.3 Implementation Details

The interception is implemented by combining aspect-oriented and generative
programming techniques. Specifically, DeXteR uses AspectJ to add extra meth-
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ods to RMI remote interface, stub, and server implementation classes for each
remote method. These methods follow the Proxy pattern to interpose the logic
required to support various remote parameter passing strategies. Specifically,
the flow of a remote call is intercepted to invoke the plugins with the annotated
parameters, and the modified set of parameters is obtained. The intercepted
invocation on the client site is then redirected to the added extra method on
the server. The added server method reverses the process, invoking the param-
eter passing style plugins with the modified set of parameters provided by their
client-side peers. The resulting parameters are used to make the invocation on
the actual server method. A similar process occurs when the call returns, in
order to support different passing styles for return types.

For each remote method, DeXteR injects a wrapper method into the remote
interface and the server implementation using inter-type declarations, and point-
cuts on the execution of that method in the stub (i.e., implemented as a dynamic
proxy) to provide a wrapper in the form of an around advice. All the AspectJ
code that provides the interception functionality is automatically generated at
compile time, based on the remote method’s signature.

2.4 Bioinformatics Example Revisited

DeXteR enables the programmer to express remote parameter passing semantics
exclusively by annotating remote method declarations with the intended passing
semantics. A distributed version of the bioinformatics application from section
1 can be expressed using DeXteR as follows. The different parameter passing se-
mantics are introduced without affecting the semantics of the centralized version
of the application.

public interface WorkerInterface extends Remote

{

void align(@RemoteRef SequenceDB matchingSeqs,

@Copy SequenceDB candidates,

@Copy Sequence toMatch) throws RemoteException;

@Copy Sequence cross(@Copy Sequence s1, @Copy Sequence s2)

throws RemoteException;

void mutate(@CopyRestore SequenceDB seqs)

throws RemoteException;

}

Since remote parameter passing annotations are part of a remote method’s
signature, they must appear in both the method declaration in the remote inter-
face and the method definitions in all remote classes implementing the interface.
This requirement ensures that the client is informed about how remote param-
eters will be passed, and it also allows for safe polymorphism (i.e., the same
remote interface may have multiple remote classes implementing it). We argue,
however, that this requirement should not impose any additional burden on the
programmer. A modern IDE such as Eclipse, NetBeans, or Visual Studio should
be able to reproduce the annotations when providing method stub implementa-
tions for remote interfaces.
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3 Supporting Parameter Passing Semantics

This section describes the strategies for implementing several non-trivial param-
eter passing semantics previously proposed in the research literature [23, 7, 25, 4]
as DeXteR plugins. We restrict our description to parameters, as the strategies
for handling return types are identical.

To demonstrate the power and expressiveness of our approach, we chose the
semantics that have very different implementation requirements. While the lazy
semantics requires flexible proxying on-demand, copy-restore requires passing
extra information between the client and the server. Despite the contrasting
nature of these semantics, we were able to encapsulate all their implementation
logic inside their respective plugins and easily deploy them using DeXteR.

3.1 Lazy Semantics

Lazy parameter passing [7], also known as lazy pass-by-value, provides a useful
semantics for asynchronous distributed environments, specifically in P2P appli-
cations. It works by passing the object initially by reference and then transferring
it by value either upon first use (implicitly lazy) or at a point dictated by the
application (explicitly lazy). More precisely, lazy parameter passing defines if

and when exactly an object is to be passed by value.

A Reference (A) As

Copy (A) Ac

Lazy Semantics

 Plugin (Client)

Lazy Semantics 

Plugin (Server)

Server

Application

foo()

download()

foo()

1

2

3

4

5

Fig. 2. Lazy Semantics Plugin Interaction Diagram
(A: Serializable Object; As: Stub of A; Ac: Copy of A; (1) A is passed from client
to server; (2) Server invokes foo() on stub As; (3) Server plugin calls download() on
client plugin; (4) Client plugin sends a copy of A, Ac; (5) Server plugin calls foo() on
Ac.)
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The translation strategy for passing reference objects by lazy semantics in-
volves using the plugin-specific code generator. As our aim is to decouple param-
eter types from the semantics by which they are passed, to pass a parameter of
type A by lazy semantics does not require defining any special interface nor A im-
plementing one. Instead, the plugin-specific code generator generates a Remote

interface, declaring all the accessible methods of A. To make our approach ap-
plicable for passing both application and system classes, we deliberately avoid
making any changes to the bytecode of a parameter’s class A. Instead, we use
a delegating dynamic proxy (e.g., A DynamicProxy) for the generated Remote

interface (e.g., AIface) and generate a corresponding server-side proxy (e.g.,
A ServerProxy) that is type-compatible with the parameter’s class A. As is com-
mon with proxy replacements for remote communication [6], all the direct field
accesses of the remote-reference parameter on the server are replaced with ac-
cessor and mutator methods.1

In order to enable obtaining a copy of the remote parameter (at some point in
execution), the plugin inserts an additional method download() in the generated
remote interface AIface, the client proxy A DynamicProxy and the server proxy
A ServerProxy.

class A {

public void foo() {...}

}

// Generated remote interface

interface AIface extends Remote {

public void foo() throws RemoteException;

public A download() throws RemoteException;

}

// Generated client proxy

class A_DynamicProxy implements AIface {

private A remoteParameter;

public A download() {

// serialize remoteParameter

}

public void foo() throws RemoteException { ... }

}

// Generated server proxy

class A_ServerProxy extends A {

private A a;

private AIface stub;

1 Replacing direct fields accesses with methods has become such a common transfor-
mation that AspectJ [10] provides special fields access pointcuts (i.e., set, get) to
support it.
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public A_ServerProxy(AIface stub) {

this.stub = stub;

}

synchronized void download() {

// Obtain a copy of the remote parameter

a = stub.download();

}

public void foo() {

// Dereference the stub

stub.download();

// Invoke the method on the copy

a.foo();

}

}

Any invocation made on the parameter (i.e., server proxy) by the server
results in a call to its synchronized download() method, if a local copy of
the parameter is not yet available. The download() method of the server proxy
relays the call to the download() method of the enclosed client proxy with the
aim of obtaining a copy of the remote parameter.

The client proxy needs to serialize a copy of the parameter. However, passing
a remote object (i.e., one that implements a Remote interface) by copy presents
a unique challenge, as type-based parameter passing mechanisms are deeply
entangled with Java RMI. The RMI runtime replaces the object with its stub,
effectively forcing pass by remote-reference. The plugin-generated code overrides
this default functionality of Java RMI by rendering a given remote object as a
memory buffer using Serialization. This technique effectively “hides” the remote
object, as the RMI runtime transfers memory buffers without inspecting or mod-
ifying their content. The “hidden” remote object can then be extracted from the
buffer on the server-side and used as a parameter. Once the copy is obtained, all
subsequent invocations made on the parameter (i.e., server proxy) are delegated
to the local copy of the parameter.

Thus, passing an object of type A as a parameter to a remote method will
result in the client-side plugin replacing it with its type-incompatible stub. The
server-side plugin wraps this type-incompatible stub into the generated server-
side proxy that is type-compatible with the original remote object.

We note that a subset of the strategies described above is used for supporting
the native semantics copy and remote-reference.

3.2 Copy Restore Semantics

A semantics with a different set of implementation requirements than that of
lazy parameter passing is the copy-restore semantics. It copies a parameter to
the server and then restores the changes to the original object in place (i.e.,
preserving client-side aliases).
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Fig. 3. Copy-Restore Semantics Plugin Interaction Diagram
(P : Set of parameters passed to foo; PLM : Linear map of parameters; Pl: Modified
parameters (restorable data); ret : values returned by the invocation; P1

LM : Modified
linear map; (1) The client invokes method foo() passing parameter p; (2) The client-
side plugin constructs a linear map PLM and calls the original foo(p); (3) Server-side
plugin invokes foo and returns modified parameters Pl and the return value ret ; (4)
Changes restored and the return value ret is passed to the client.)

Implementing the copy-restore semantics involves tracing the invocation ar-
guments and restoring the changes made by the server after the call. The task
is simplified by the well-defined hook points provided by the framework. Prior
to the remote method invocation, the copy-restore plugin obtains a copy of the
parameter A and does some pre-processing on both the client and the server
sites. The invocation then resumes and the server mutates the parameter dur-
ing the call. Once the call completes, the server-side plugin needs to send back
the changes to the parameter made by the server to its client-side peer. This
is accomplished using the custom information passing facility provided by the
framework. The client-side plugin uses this information from its server-side peer
to restore the changes to the parameter A in the client’s JVM.

3.3 Copy Restore With Delta Semantics

For single-threaded clients and stateless servers, copy-restore makes remote calls
indistinguishable from local calls as far as parameter passing is concerned [23].
However, in a low bandwidth high latency networking environment, such as in
a typical wireless network, the reference copy-restore implementation may be
inefficient. The potential inefficiency lies in the restore step of the algorithm,
which always sends back to the client an entire object graph of the parameter,
no matter how much of it has been modified by the server. To optimize the
implementation of copy-restore for low bandwidth, high latency networks, the
restore step can send back a “delta” structure by encoding the differences be-
tween the original and the modified objects. The necessity for such an optimized
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copy-restore implementation again presents a compelling case for extensibility
and flexibility in remote parameter passing.

The following pseudo-code describes our optimized copy-restore algorithm,
which we term copy restore with delta:

1. Create and keep a linear map of all the objects transitively reachable from
the parameter.

2. On the server, again create a linear map, Lmap1, of all the objects transitively
reachable from the parameter.

3. Deep copy Lmap1 to an isomorphic linear map Lmap2.
4. Execute the remote method, modifying the parameter and Lmap1, but not

Lmap2.
5. Return Lmap1 back to the client; when serializing Lmap1, encode the changes

to the parameter by comparing with Lmap2 as follows:
(a) Write as is each changed existing object or a newly added object.
(b) Write its numeric index in Lmap1 for each unchanged existing object.

6. On the client, replay the encoded changes, using the client-side linear map
to retrieve the original old objects at the specified indexes.

Creating Linear Map. A linear map of objects transitively reachable from
a reference argument is obtained by tapping into serialization, recording each
encountered object during the traversal. In order not to interfere with garbage
collection, all linear maps use weak references.
Calculating Delta. The algorithm encodes the delta information efficiently
using a handle structure shown below.

class Handle{

int id;

ArrayList<Long> chId;

ArrayList<Long> chScript;

ArrayList<Object> chObject;

}

The identifier id refers to the position of an object in the client site linear
map. The change indicator chId identifies the modified member fields using a
bit level encoding. chScript contains the changes to be replayed on the old
object. For a primitive field, its index simply contains the new value, whereas
for an object field, its index points to chObject, which contains the modified
references.
Restoring Changes. For each de-serialized handle on the client, the corre-
sponding old object is obtained from the client’s linear map using the handle
identifier id. The handle is replaced with the old object, and the changes en-
coded in the handle are replayed on it. Following the change restoration, garbage
collection reclaims the unused references.

As a concrete example of our algorithm, consider a simple binary tree, t,
of integers. Every node in the tree has three fields: data, left, and right. A
subset of the tree is aliased by non-tree pointers alias1 and alias2. Consider
a remote method such as the one show below, to which tree t is passed as a
parameter.
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void alterTree (Tree tree) {

tree.left.data = 0;

tree.right.data = 9;

tree.right.right.data = 8;

tree.left = null;

Tree temp = new Tree (2, tree.right.right, null);

tree.right.right = null;

tree.right = temp;

}

Figure 4 shows the sequence of steps involved in passing tree t by copy restore

with delta and restoring the changes made by the remote method alterTree to
the original tree.

We measured the performance gains of our algorithm over the original copy-
restore by conducting a series of micro-benchmarks, varying the size of a binary
tree and the amount of changes performed by the server. The benchmarks were
run on Pentium 2.GHz (dual core) machines with 2 GB RAM, running Sun
JVM version 1.6.0 on an 802.11b wireless LAN. Figure 5 shows the percentage
of performance gain of copy-restore with delta over copy-restore. Overall, our
experiments indicate that the performance gain is directly proportional to the
size of the object graph and is inversely proportional to the amount of changes
made to the object graph by the server.

By providing flexibility in parameter passing, DeXteR enables programmers
to use different semantics or different variations of the same semantics as deter-
mined by the nature of the application. For instance, within the same application
one can use regular copy-restore for passing small parameters and copy-restore

with delta for passing large parameters.

3.4 Other Semantics

Additional semantics we implemented using DeXteR include streaming [25], pa-

rameter substitution a.k.a caching [4], and some others. Due to space constraints,
we do not explain them in detail.

DeXteR offers the advantages of supporting a wide variety of remote pa-
rameter passing semantics through a uniform API. Developments in hardware
and software designs are likely to cause the creation of new parameter pass-
ing semantics. These semantics will leverage the new designs, but may be too
experimental to be included in the implementation of a standard middleware
system. DeXteR will allow the integration and use of these novel semantics at
the application layer, without changing the underlying middleware. As a partic-
ular example, consider the introduction of massive parallelism into mainstream
processors. Multiple cores will require the use of explicit parallelism to improve
performance. Some facets of parameter passing are computation-intensive and
can benefit from parallel processing. One can imagine, for instance, how mar-
shaling could be performed in parallel, in which parts an object graph are seri-
alized/deserialized by different cores.
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(a) (b)

(c) (d)

(e)

Fig. 4. Copy-restore with delta algorithm by example (a) State after step 3. (b) State
after step 4. The remote procedure modified the parameter. (c) State during step 5.
Copy the modified objects (even those no longer reachable through tree) back to
the client; compute the delta script for modified objects using a hash map. (d) State
during step 6. Replace the handles with the original old objects; replay the delta script
to reflect changes. (e) State of the client side object after step 6.
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4 Discussion

This section discusses the advantages of DeXteR as well as some of the con-
straints of our design.

4.1 Design Advantages

Expressing remote parameter passing choices as a part of the method declaration
has several advantages over a type-based system. Specifically, a declarative ap-
proach increases expressiveness, improves readability, and eases maintainability.
To further illustrate the advantages of our declarative framework, we compare
and contrast our approach with that of Java RMI.

Expressiveness. Java RMI restricts expressiveness by assuming that all instances
of the same type will be passed identically. Passing the same type using different
semantics therefore requires creating subclasses implementing different marker
interfaces and changing the method signature. By contrast, our approach does
not require any new subclasses to be created or any changes to be made to the
original method signature. Furthermore, under Java RMI, the programmer of
the class has no simple way to enforce how the parameters are actually passed
to its remote methods. The simple declarative style of our annotations makes
enforcement of the parameter passing policies straightforward.

Readability. Examining the declaration of a remote method does not reveal any
details about how its parameters are passed, forcing the programmer to examine
each parameter type individually, which reduces readability and hinders program
understanding. By contrast, our approach provides a single point of reference
that explicitly informs the programmer about how remote parameters are passed.

Maintainability. An existing class may have to be modified to implement an
interface before its instances can be passed as parameters to a remote method.
This complicates maintainability as, in the case of third-party libraries, source
code may be difficult or even impossible to modify. By contrast, our approach
enables the maintenance programmer modify the semantics by simply specifying
a different parameter passing annotation.

Extensibility. Even if the copy-restore semantics gets the attention of the Java
community and is natively supported in the next version of Java, including
new optimization mechanisms such as using copy-restore with delta would still
mean modifying the underlying Java RMI implementation of both the client
and the server. By contrast, our approach supports extending the native remote
parameter passing semantics at the application-level, requiring absolutely no
modifications to the underlying middleware.

Reusability. DeXteR also enables providing the parameter passing semantics as
plugin libraries. Application programmers thus can obtain third-party plugins
and automatically enhance their own RMI applications with the new parameter
passing semantics.
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Efficiency. Another advantage of our approach is its efficiency. That is, all the
transformations described in Section 3 do not result in any additional overhead
in using objects of type A until they are passed using a particular mode in an
RMI call. This requires that one know exactly when an object of type A is used
in this capacity. The insight that makes it possible to efficiently detect such cases
is that the program execution flow must enter an RMI stub (dynamic proxy) for
a remote call to occur.

To measure the overhead of DeXteR, we ran a series of microbenchmarks
comparing the execution times of the DeXteR-based parameter passing seman-
tics’ implementations and their native counterparts, of which pass by remote-

reference is of particular interest. In lieu of support for type-compatible dy-
namic proxies for classes in Java, our remote-reference DeXteR plugin emulates
this functionality using a type-incompatible client-side dynamic proxy and a
type-compatible server-side wrapper proxy. Thus, this emulated functionality
introduces two new levels of indirection compared to the standard Java RMI
implementation of this semantics. As any new level of indirection inherently
introduces some performance overhead, it is important to verify that it is not
prohibitively expensive.

To distill the pure overhead, we ran the benchmarks on a single machine. In
the presence of network communication and added latency, the overhead incurred
by the additional levels of local indirection would be dominated. Therefore, the
results do not unfairly benefit our approach. The resulting overhead never ex-
ceeds a few percentage points of the total latency of a remote call executed on a
single machine. Due to space constraints, we do not present the detailed results
of this experiment here, but the interested reader can find them in reference [9].
In general, as the latency of a remote call is orders of magnitude greater than
that of a local call, the overhead incurred by a DeXteR plugin adding a few
simple local calls to a remote call should be negligible.

4.2 Design Constraints

Achieving the afore-mentioned advantages without changing the Java language
required constraining our design in the following ways.

First, array objects are always passed by copy though the array elements
could be passed using any desired semantics. While this is a limitation of our
system, it is still nonetheless a strict improvement over standard RMI, which also
passes array objects by copy, but passes array elements based on their runtime
type.

Second, passing final classes (not extending UnicastRemoteObject) by
remote-reference would entail either removing their final specifier or perform-
ing a sophisticated global replacement with an isomorphic type [22]. This re-
quirement stems from our translation strategy’s need to create a proxy subclass
for remote-reference parameters, an impossibility for final classes. Since heavy
transformations would clash with our design goal of simplicity, our approach
issues a compile-time error to an attempt to pass an instance of a final class
by remote-reference. Again, this limitation is also shared by standard RMI.
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Classes Analyzed Total Classes With Public Fields Total Public Fields

All User-Accessible Classes 2732 57 123

GUI Classes 913 15 65

Exception Classes 364 33 34

RMI Classes 58 22 22

Java Bean Classes 56 3 3

Table 1. Analysis of Java 6 JDK’s public member fields (some overlap exists due to
Exception classes spanning multiple packages).

Finally, since our approach does not modify standard Java, it is not possible
to support direct member field access for instances of system classes passed by
remote-reference. While this is a conceptual problem, an analysis of the Java 6
library shown in Table 1 indicates that this is not a practical problem. For our
purposes, we analyzed the java.* and javax.* classes, as they are typically
the ones mostly used by application developers. As the table demonstrates, ap-
proximately 1% of classes contain non-final member fields. However, the vast
majority of these classes are either GUI or sound components, SQL driver de-
scriptors, RMI internal classes, or exception classes, and as such, are unlikely to
be passed by remote-reference. Additionally, the classes in java.beans.* pro-
vide getter methods for their public fields, thereby not requiring direct access.
The conclusion of our analysis is that only one (java.io.StreamTokenizer) of
the more than 5,500 analyzed classes could potentially pose a problem, with two
public member fields not accessible by getter methods.

5 Related Work

The body of research literature on distributed object systems and separation
of concerns is extremely large and diverse. The following discusses only closely-
related state of the art.

Separation of Concerns. Several language-based and middleware-based approaches
address the challenges in modeling cross-cutting concerns.

Proxies and Wrappers [20] introduce late bound cross-cutting features, though
in an application-specific manner.

Aspect Oriented Programming (AOP) [11] is a methodology for modularizing
cross-cutting concerns. Several prior AOP approaches aim at improving various
properties of middleware systems, with the primary focus on modularization [26,
5].

Java Aspect Components (JAC) [17] and DJCutter [12] support distributed
AOP. The JAC framework enables the dynamic adding or removing of an advice.
DJCutter extends AspectJ with remote pointcuts, a special language construct
for developing distributed systems. DeXteR could use these approaches as an
alternative to AspectJ.
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A closely related work is the DADO [24] system for programming cross-
cutting features in distributed heterogeneous systems. Similar to DeXteR, DADO
uses hook-based extension patterns. It employs a pair of user-defined adaplets,
explicitly modeled using IDL for expressing the cross-cutting behavior. To ac-
commodate heterogeneity, DADO employs a custom DAIDL (an IDL exten-
sion) compiler, runtime software extensions, and tool support for dynamically
retrofitting services into CORBA applications. DADO uses the Portable Inter-
ceptor approach for triggering the advice for cross-cutting concerns, which do not
modify invocation arguments and return types. Thus, using DADO to change
built-in remote parameter passing semantics would not eliminate the need for
binary transformations and code generation.

Remote Parameter Passing. Multi-language distributed object systems such as
CORBA [14], DCOM [1], etc., use an Interface Definition Language (IDL) to
express how parameters are passed to remote methods. Each parameter in a
remote method signature is associated with keywords in, out, and inout desig-
nating the different passing options. This approach however, does not completely
decouple parameter passing from parameter types. When the IDL interface is
mapped to a concrete language, the generated implementation still relies on a
type-based parameter passing model of the target language. Specifically, in map-
ping IDL to Java [16], an IDL valuetype maps to a Serializable class, which
is always passed by copy. Conversely, an IDL interface maps to a Remote class,
which is always passed by remote-reference. Additionally, even if we constrain
parameters to valuetypes only, the mapped implementation will generate differ-
ent types based on the keyword modifiers present [15]. Thus, remote parameter
passing in IDL-based distributed object systems is neither fully declarative, nor
it is extensible.

.NET Remoting [13] for C# also follows a mixed approach to remote param-
eter passing. It supports the parameter-passing keywords out and ref. However,
the ref keyword designates pass by value-result in remote calls rather than the
standard pass by reference in local calls. This difference in passing semantics may
lead to the introduction of subtle inconsistencies when adapting a centralized
program for distributed execution. Furthermore, in the absence of any optional
parameter passing keywords, a reference object is passed based on the parameter
type. While this approach shares the limitations of Java RMI, remote-reference

proxies are type-compatible stubs, which provide full access to the remote ob-
ject’s fields. Therefore, while the parameter passing model of .NET Remoting
contains some declarative elements, it has shortcomings and is not extensible.

Doorastha [2] represents a closely related piece of work on increasing the
expressiveness of distributed object systems. It aims at providing distribution
transparency by enabling the programmer to annotate a centralized application
with distribution tags such as globalizable and by-refvalue, and using a specialized
compiler for processing the annotations to provide fine-grained control over the
parameter passing functionality. While influenced by the design of Doorastha,
our approach differs in the following ways. First, Doorastha does not completely
decouple parameter passing from the parameter types, as it requires annotating
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classes of remote parameters with the desired passing style. Unannotated remote
parameters are passed based on their type. Second, Doorastha does not support
extending the default set of parameter passing modes. Finally, Doorastha re-
quires a specialized compiler for processing the annotations. While Doorastha
demonstrates the feasibility of many of our approach’s features, we believe our
work is the first to present a comprehensive argument and design for a purely
declarative and extensible approach to remote parameter passing.

6 Future Work and Conclusions

A promising future work direction is to develop a declaration-based distributed
object system for an emerging object-oriented language, such as Ruby [21], uti-
lizing its advanced language features such as built-in aspects, closures, and co-
routines. Despite its exploratory nature and the presence of advanced features,
Ruby’s distributed object system, DRuby [19], does not significantly differ from
Java RMI.

We presented a framework for declarative parameter passing in distributed
object systems as a better alternative to type-based parameter passing. We de-
scribed how a declarative parameter passing model with multiple different se-
mantics can be efficiently implemented on top of a type-based parameter passing
model using our extensible framework, DeXteR. We believe that our framework
is a powerful distributed programming platform and an experimentation facility
for research in distributed object systems.

Availability. DeXteR can be downloaded from http://research.cs.vt.

edu/vtspaces/dexter.
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