
A Pluggable Framework for Parallel Pairwise Sequence Search

Jeremy Archuleta, Wu-chun Feng, Eli Tilevich

Abstract— The current and near future of the computing
industry is one of multi-core and multi-processor technology.
Most existing sequence-search tools have been designed with a
focus on single-core, single-processor systems. This discrepancy
between software design and hardware architecture substan-
tially hinders sequence-search performance by not allowing full
utilization of the hardware.

This paper presents a novel framework that will aid the
conversion of serial sequence-search tools into a parallelversion
that can take full advantage of the available hardware. The
framework, which is based on a software architecture called
mixin layers with refined roles, enables modules to be plugged
into the framework with minimal effort. The inherent modula r
design improves maintenance and extensibility, thus opening up
a plethora of opportunities for advanced algorithmic features
to be developed and incorporated while routine maintenanceof
the codebase persists.

I. I NTRODUCTION

Every twelve to eighteen months the collective amount of
genetic information doubles [1], [2]. While beneficial to our
knowledge of genetics, this increased volume of information
doubles the amount of computation required when comparing
an unknown sequence to the databases of known sequences.
For the last couple of decades, the computer industry has
been able to thwart this data explosion by doubling the
performance of the processor, i.e., central processing unit
(CPU), every eighteen months through improvements in se-
rial processing. However, after hitting the proverbial wall for
improving serial CPU performance, additional performance
gains must be achieved through parallel processing, i.e.,
multi-core and multi-CPU technology.

This shift in CPU technology will affect nearly all ex-
isting sequence-search tools. These tools, which have been
invaluable to bioinformaticists, are designed to run only on
a single CPU core and are thus unable to take advantage
of multiple cores and multiple CPUs. In order to maintain
the performance needed to keep pace with the growth of
genetic sequence databases, sequence-search tools must be
parallelized in order to take advantage of emergent architec-
tures that use multiple cores and multiple CPUs.

There are two main approaches to transform sequence
searching from a sequential environment to a parallel envi-
ronment: (1) run multiple sequential searches in parallel or
(2) modify the serial search algorithm to become a parallel
algorithm.

Although executing multiple sequential searches in parallel
increases throughput by an amount that is proportional to

J. Archuleta, W. Feng and E. Tilevich are with the Departmentof Com-
puter Science, Virginia Tech, Blacksburg, VA 24061, USA(jsarch,
feng, tilevich)@cs.vt.edu

the number of simultaneous sequential searches, the latency
of each search will continue to increase at the rate that
sequence databases are growing (i.e., exponentially). So,
although there may be hundreds of simultaneous searches
running, each search will take longer and longer to complete.
Furthermore, unless the number of simultaneous searches
increases proportional to the growth of the sequence database
size, throughput will actually decrease.

Transforming a serial algorithm into a parallel one, how-
ever, requires knowledge in parallel programming, an area
that has traditionally been confined to high-performance
computing. Because sequence-search tools were not origi-
nally designed with parallelism in mind, it would be unfair to
impose on the maintainers of these search tools the burden of
converting these tools into efficient parallel sequence-search
tools. Moreover, the effort in converting each search tool
from serial to parallel would involve reinventing the wheel
over and over again because many of the search tools follow
a “scatter-search-gather” execution flow when parallelized.

In this paper, we present a novel framework that will vastly
improve the process of parallelizing sequential-search tools
and improve the performance of existing search tools. By
utilizing this framework, pairwise sequence-search toolscan
be “plugged in” with minimal effort and be immediately
transformed into efficient parallel search tools.

The rest of this paper is structured as follows. Section II
provides background on existing parallelization strategies
for pairwise alignment. Section III describes our novel
parallelization framework. Finally, we conclude with some
preliminary results and future work in Section IV.

II. EXISTING STRATEGIES

There has been no shortage of effort in parallelizing
sequence-search tools [3], [4], [5], [6], [7]. The basic par-
allelization approach that most schemes utilize is “master-
worker” with an execution flow of scatter, search, and gather.
In this manner, the master process scatters relevant search
input (e.g., database sequences, unknown query sequences,
parameters, etc.) to each worker process. Each worker pro-
cess performs a search using the received search input, and
the master process gathers the results. However, even with
such a basic strategy, there exist several variations.

A. Segmentation and Fragmentation

The key part of the scatter phase is knowingwhat to scatter
— the query or the database. Query segmentation (QS) [4],
[5], [6], [7] partitions an aggregate query into individual
subqueries and scatters each subquery (along with the entire
database to be searched) to each worker, as shown in Fig. 1.

Fig. 1. Overview of Query Segmentation (QS)

However, QS is not without a substantial issue: each
subquery requires a complete copy of the entire database
and the database is oftentimes much larger than the size
of memory. This puts tremendous pressure on the system
hardware to provide each worker process with a copy of
(or at the very least, access to) the entire database. The
pressure can be alleviated by requiring that each worker
process have enough local storage to store the entire database
or by investing in a globally accessible parallel filesystem.
However, paging the database from storage kills performance
as it is orders of magnitude slower than accessing the
database from memory. Thus, QS alone is a parallelization
strategy that will not scale as databases continue to double
in size every 12 to 18 months [1], [2].

Rather than scattering the query, database fragmentation
(DF) scatters the database, as first implemented in mpi-
BLAST [3] — a parallelization of the National Center for
Biotechnology Information Basic Local Alignment Search
Tool, commonly known as NCBI BLAST [8], [9]. Specifi-
cally, DF splits the database into fragments that fit into each
worker’s memory but then delivers the same query to each
worker, as shown in Fig. 2.

Using DF results in super-linear speedup because each
database fragment now fits in memory, thus eliminating the
need to page data between memory and disk. For over a
decade, this novel technique of DF was presumed to be
impossible for NCBI BLAST because generating correct
“e-value” scores depended on each sequence knowing the
“effective size” of the entire database. However, since thee-
value is calculated mathematically, mpiBLAST surmounted
this “impossible” obstacle by appending the relevant infor-
mation to the database fragment, thus allowing each worker
process to calculate exact e-value scores.

Since query segmentation (QS) and database fragmen-
tation (DF) are orthogonal parallelization strategies, we
combined the approaches recently, i.e., QS+DF. This hybrid
approach to parallelizing BLAST realized the benefit of both
fitting each fragment in memory through DF and executing
subqueries in parallel via QS. In this way, throughput is
increased through QS by simultaneously executing many
subqueries, and latency is decreased via DF by eliminating

Fig. 2. Overview of Database Fragmentation (DF)

paging from storage. The result is a 305-fold speedup with
mpiBLAST version 1.4.0, as seen in the following table.

Workers DF QS+DF
8 23 23
16 45 48
32 81 76
64 147 173
128 187 305

TABLE I

SPEEDUP OFDF VS. DF+QS (BASELINE = 1 WORKER)

B. Parallelization Model

The parallelization model often used in parallel sequence
searching is known as a “master-worker” model. The master
process is responsible for distributing jobs to worker pro-
cesses, usually one worker process per CPU (or CPU core).
This separation of tasks appears to be well suited to the
embarassingly parallel nature of DF and QS. For example,
a query is segmented intoQ subqueries, and each subquery
is assigned to a group ofN worker processes. Within each
group of worker processes, the database is split intoM frag-
ments, where usuallyM = N . Thus, each worker process
searches some portion of the query against some portion of
the database. After finishing a search, the worker process
notifies the master process of completion, and the master
gathers all the results to process for output. Unfortunately, as
the number of workers increases, a bottleneck at the master
(during the gather phase) begins to dominate the execution
time [10].

Alleviating this bottleneck has been the subject of several
papers [10], [11], [12]. From these papers, what has become
clear is that the single-master, multiple-worker parallelization
model will not scale. As seen in [11] and [12], a multiple-
master approach improves parallel BLAST scalability to
thousands of processors. With this in mind, a key feature
of our new framework is the ability for various paralleliza-
tion models (including the multiple-master strategy) to be
implemented without necessitating wholesale changes to the
framework.

Fig. 3. Example of Interchangeable Modules

III. T HE FRAMEWORK

In presenting our framework, we focus on the main
design and implementation decisions that we made and their
relevance to bioinformatics. We elide the low-level imple-
mentation details as they are not pertinent to the discussion
and are beyond the scope of this paper.

A. Features

Our framework uses state-of-the-art software engineering
tools and techniques to provide a plug-in replaceable infras-
tructure for sequence-search tools. It enables sequence-search
tools to take advantage of the parallel hardware both in
everyday personal computers as well as in specialized high-
performance computing systems. In addition, our framework
is easy to extend and maintain.

1) Modularity: The crux of the framework is modularity,
which enables maintainable and extensible high-performance
sequence search. Fig. 3 shows a subset of the modules of the
framework, with each phase of a search algorithm confined
to a separate module. The modularity based on the phases
of the algorithm makes it possible to interchange modules
independently of each other. This ability to mix-and-match
modules is essential in creating search tools that can take full
advantage of different hardware and software configurations
in modern parallel systems (e.g., parallel NCBI BLAST on
a multi-core PC, parallel HMMER on IBM BlueGene with
parallel input/output performance enhancements, etc.)

2) Extensibility: One of the key design objectives that
we had for our framework was that it be easy to extend. As
pointed out earlier, high modularity is conducive to flexible
interchanges of different phases of a search algorithm in
a plug-and-play fashion, allowing for an extensive feature
list. New search algorithms, new parallelization models, and
novel performance-enhancement modules are all examples
of the features that can be quickly incorporated into this
framework, as exemplified in Fig. 3.

Using our framework hides away many of the low-
level nuances of parallel programming (e.g., creation and
scheduling of tasks), which traditionally can be a hurdle in
parallelizing a serial algorithm. This abstraction allowsdevel-
opers to focus on the details of porting the search algorithm
to the framework, which primarily involves modifying the
algorithm to obtain input data from the “database” module
and to return output data to the “writer” module.

The scheduler is the brain of our framework and handles
what, when, and to whom the processes communicate. In

the framework, the “scheduler” module provides all the
scheduling functionality. When the default master-worker
scheduler is not appropriate for a particular system, such
as in a massively-parallel system like IBM BlueGene/L, an
alternative state-of-the-art parallelization model suchas [11],
[12] can be easily provided via a new scheduler.

In addition to replacing the scheduler, specialized input-
output modules can further improve performance. For exam-
ple, one can provide a special-purpose “write” module uti-
lizing a parallel filesystem with parallel input-output features
available, a la [10].

3) Maintainability: The modular design of our framework
improves maintainability. With functionality encapsulated
within modules, bugs are likely to be constrained to indi-
vidual modules. For example, an error in the command-line
processing would be found in the command-line module and
not in the formatting module. Thus, routine maintenance
of the framework is orthogonal to its development; a bug
can be tracked down, fixed, tested, and the fix deployed
independently of feature development.

In addition to modularity, strict adherence to the ANSI
C++ syntax and unit testing further improve maintainability.
The primary advantage of using ANSI C++ syntax is max-
imal portability as nearly all major platforms support ANSI
C++. Unit testing allows each “unit” of code (i.e., module)
to be tested thoroughly and rigorously in the absence of the
entire application [13]. Our framework is a good fit for unit
testing due to the low coupling it exhibits. Additional details
of the software engineering rationale behind our framework
can be found in [14].

B. Implementation

The software architecture that enables all the above-
mentioned benefits for this framework uses mixin layers as
its implementation mechanism. Mixin layers is an imple-
mentation technique for collaboration-based designs, which
assembles software modules in layers in which each succes-
sive layer is represented as a collection of inner classes [15],
[16], [17]. Furthermore, both the enclosing class and its
inner classes participate in an inheritance relationship with
an abstract superclass: the enclosing class inherits from the
enclosing superclass, and each inner class inherits from its
corresponding inner class in the super enclosing class.

This design enables flexibility in adding functionality with
each layer: a layer defines inner classes only for those
objects for which it needs to add functionality. A typical
C++ implementation of a mixin layer is as follows:

template <class Super>
class MixinLayer : public Super {
class Inner1 : public Super::Inner1 { /* body */ };
class Inner2 : public Super::Inner2 { /* body */ };

};

Each inner class represents a different “role” in the
design. We call our implementation “mixin layers with
refined roles,” as it enables flexible collaboration between
different roles without duplicating code. Specifically, the
roles in our framework areCommon, Master, and Worker,

Fig. 4. Mixin Layers with Refined Roles

with Common representing common functionality used by
both Master and Worker. Fig. 4 demonstrates the main
details of our implementation, showing how it provides the
benefits of maintainability and extensibility. With respect to
maintenance, code reuse greatly reduces the possibility of
Master andWorker from having different (and incompatible)
implementations of the same functionality. In terms of exten-
sibility, the separate classes allow bothMaster and Worker
to be enhanced independently.

We arrived at the decision to use “mixin layers with refined
roles” as the architectural design for our framework after a
thorough analysis of multiple architectural styles. The details
of this analysis are beyond the scope of this paper; the
interested reader can learn about our experiences in [14].
However, the primary reason for using “mixin layers with
refined roles” is that this design provides maintainable and
extensible high-performance through plug-in replaceableand
reusable software components that can be easily mixed and
matched. One can think of the different layers as LegoTM

blocks for constructing a parallel search application, with
the shape of a block determining with which other blocks it
can be combined to ensure an efficient parallel execution.

IV. FUTURE WORK AND CONCLUSIONS

This framework has been utilized to create mpiBLAST-
2.0, a parallelization of the new NCBI BLAST C++ Toolkit.
Although mpiBLAST-2.0 improves overall execution time
of searchingE. chrysanthemi against theNT database in
relation to mpiBLAST-1.4.0, e.g., by 43% on 32 nodes
of SystemX [18], it is difficult to quantify precisely what
percentage of this improvement is due to the new design and
what is due to the search algorithm. We plan to thoroughly
evaluate the framework in an effort to minimize the overhead
of the framework such that the framework will scale to
hundreds and thousands of processor cores.

We also plan to implement many of the enhancements
mentioned in this paper such as multiple master, parallel
input-output, and other search algorithms. These enhance-
ments have already been proven to be useful in [11] and [12]
and would be well worth incorporating into the framework.

Additionally, improvements to sequence search should
not be confined to algorithms and performance. The user
interface (UI) of sequence search tools is an area of sequence
searching that has been relatively ignored due to search
execution times being on the order of minutes, if not hours.
Harnessing the parallel processing capability of current and
future generations of computers, sequence search is set to
become an interactive experience. Through this framework,
research and development focusing on the UI is now possible
and creating a new UI is as easy as replacing a layer.

In conclusion, parallel processing has become a necessity
for sequence search tools, and we believe that our framework
will facilitate the creation of parallel tools in this important
domain.

REFERENCES

[1] D. A. Benson, I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, B. A. Rapp,
and D. L. Wheeler, “GenBank,”Nucleic Acids Res., vol. 30, pp. 17–20,
2002.

[2] “Gold - Genomes Online Database,” http://www.genomesonline.org/.
[3] A. Darling, L. Carey, and W. Feng, “The Design, Implementation,

and Evaluation of mpiBLAST,” inInternational Conference on Linux
Clusters: The HPC Revolution 2003, 2003.

[4] R. Bjornson, A. Sherman, S. Weston, N. Willard, and J. Wing,
“TurboBLAST(r): A parallel implementation of BLAST built on
the TurboHub,” inInternational Parallel and Distributed Processing
Symposium, Apr 2002.

[5] N. Camp, H. Cofer, and R. Gomperts, “High-throughput BLAST,”
SGI, Tech. Rep., Sep 1998.

[6] K. Pedretti, T. Casavant, R. Braun, T. Scheetz, C. Birkett, and
C. Roberts, “Three Complementary Approaches to Parallelization of
Local BLAST Service on Workstation Clusters,”Lecture Notes in
Computer Science, vol. 1662, pp. 271–282, 1999.

[7] E. Chi, E. Shoop, J. Carlis, E. Retzel, and J. Riedl, “Efficiency of
Shared-Memory Multiprocessors for a Genetic Sequence Similarity
Search Algorithm ,” University of Minnesota, Tech. Rep., 1997.

[8] S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman, “Basic
Local Alignment Search Tool,”Journal of Molecular Biology, vol.
215, pp. 403–410, 1990.

[9] S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang,
W. Miller, and D. J. Lipman, “Gapped BLAST and PSIBLAST: A
New Generation of Protein Database Search Programs,”Nucleic Acids
Research, vol. 25, pp. 3389–3402, 1997.

[10] H. Lin, X. Ma, P. Chandramohan, A. Geist, and N. Samatova,
“Efficient Data Access for Parallel BLAST,” inInternational Parallel
and Distributed Processing Symposium, Apr 2005.

[11] C. Oehmen and J. Nieplocha, “ScalaBLAST: A Scalable Implementa-
tion of BLAST for High-Performance Data-Intensive Bioinformatics
Analysis,” IEEE Trans. Parallel Distrib. Syst., vol. 17, no. 8, pp. 740–
749, 2006.

[12] O. Thorsen, K. Jiang, A. Peters, B. Smith, H. Lin, W. Feng, and
C. Sosa, “Parallel Genomic Sequence-Search on a Massively Parallel
System,” inACM International Conference on Computing Frontiers,
May 2007.

[13] K. Beck, Test-Driven Development: By Example. Addison-Wesley,
2003.

[14] J. Archuleta, E. Tilevich, and W. Feng, “A MaintainableSoftware
Architecture for Fast and Modular Bioinformatics SequenceSearch,”
in IEEE International Conference on Software Maintenance, Oct 2007.

[15] Y. Smaragdakis and D. Batory, “Implementing Layered Designs with
Mixin Layers,” in European Conference on Object-Oriented Program-
ming (ECOOP). Springer-Verlag LNCS 1445, 1998.

[16] ——, “Mixin-Based Programming in C++,” inGenerative and
Component-Based Software Engineering Symposium (GCSE), 2000.

[17] ——, “Mixin Layers: An Object-Oriented ImplementationTechnique
for Refinements and Collaboration-Based Designs,”ACM Transactions
on Software Engineering and Methodologies (TOSEM), vol. 11, no. 2,
pp. 215–255, 2002.

[18] “Advanced Research Computing,” http://www.arc.vt.edu.

