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Abstract—One of the fundamental building blocks of a mobile
application is the ability to persist program data between
different invocations. Referred to as persistence, this functionality
is commonly implemented by means of persistence frameworks.
When choosing a particular framework, Android—the most pop-
ular mobile platform—offers a wide variety of options to devel-
opers. Unfortunately, the energy, performance, and programming
effort trade-offs of these frameworks are poorly understood,
leaving the Android developer in the dark trying to select the
most appropriate option for their applications. To address this
problem, this paper reports on the results of the first systematic
study of six Android persistence frameworks (i.e., ActiveAndroid,
greenDAO, OrmLite, Sugar ORM, Android SQLite, and Java
Realm) in their application to and performance with popular
benchmarks, such as DaCapo. Having measured and analyzed
the energy, performance, and programming effort trade-offs for
each framework, we present a set of practical guidelines for the
developer to choose between Android persistence frameworks.
Our findings can also help the framework developers to optimize
their products to meet the desired design objectives.

I. INTRODUCTION

Any non-trivial application provides the ability to preserve
and retrieve user data, both during the application session
and across sessions. This ability is called persistence, and
in object-oriented applications is commonly implemented by
means of object-relational mapping (ORM) or object-oriented
(OO) frameworks. These frameworks relieve the developer
from the necessity to write raw SQL to interact with the un-
derlying database engines and thus streamline the development
process.

As mobile devices continue to replace desktops as the
primary computing platform, Android is poised to win the
mobile platform contest, taking the 82.8% share of the mobile
market in 2015 [1] with more than 1.6 million applications
developed thus far [2]. Energy efficiency remains one of
the key considerations when developing mobile applications,
as the energy demands of applications continue to exceed
the devices’ battery capacity. Consequently, in recent years
researchers have focused their efforts on providing Android
developers with insights that can be used to improve the energy
efficiency of mobile applications. The research literature on
the subject includes approaches ranging from general program
analysis and modeling [3], [4], [5] to application-level analysis
[6], [7].

Despite all the progress made in understanding the energy
impact of programming patterns and constructs, a notable
omission in the research literature on the topic is energy
behaviors of persistence frameworks. Without understanding
the energy, performance, and programming effort trade-offs
of persistence, one cannot gain a comprehensive insight on
the overall energy efficiency of modern mobile applications.
Although an indispensable building block of mobile applica-
tions, persistence has never been systematically studied in this
context.

This paper reports on the results of a comprehensive
study we have conducted to measure and analyze the energy,
performance, and programming effort trade-offs of popular
Android persistence frameworks. To that end, we consider the
persistence libraries most widely used in Android applications
[8]. In particular, we study five widely used ORM persis-
tence frameworks (ActiveAndroid, greenDAO, OrmLite, Sugar
ORM, Android SQLite), and one OO persistence framework
(Java Realm) as our experimental targets [9], [10], [11], [12],
[13], [14]. These frameworks operate on top of the popular
SQLite or Realm database engines.

In an effort to understand the noticeable performance
and programming effort disparities between different persis-
tence frameworks, our experiments apply these six persis-
tence frameworks to different benchmarks, and then compare
the resulting energy consumption, runtime performance, and
programming effort (i.e., the amount of programmer-written
code). Our benchmarks include a set of micro-benchmarks
designed to measure the performance of individual database
operations as well as a well-known DaCapo H2 database
benchmark [15]. We also conclude a set of guildlines to help
developers select a suitable persistence framework for their
applicat-ions.

Hence, the overriding goal of our study is to help Android
mobile developers decide which persistence framework they
should choose to achieve the desired energy/performance/-
programming effort balance for the development scenario at
hand. Depending on the amount of persistence functionality
in a given application, the choice of a persistence framework
may dramatically impact the levels of energy consumption
and runtime performance. By precisely measuring and thor-
oughly analyzing the energy/performance/programming effort
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characteristics of alternative Android persistence frameworks,
this study aims at obtaining a deeper understanding of the
persistence’s impact on the mobile software development
ecosystem.

Based on our experimental results, the main contributions
of this paper are as follows:
1 To the best of our knowledge, this is the first study to

empirically evaluate the energy, performance, and program-
ming effort trade-offs of widely used Android persistence
frameworks.

2 Our experiments consider multifaceted combinations of
factors which may impact the energy consumption and
performance of persistence functionality in real-world appli-
cations, which include persistence operations involved, the
volume of persisted data, and the number of transactions.

3 Based on our experimental results, we offer a series of
guidelines for Android mobile developers to select the
most appropriate persistence framework for their mobile
applications. For example, ActiveAndroid fit well for appli-
cations processing relatively large data volumes in a read-
write fashion. These guidelines can also help the framework
developers to optimize their products for the mobile market.
The rest of this paper is organized as follows. Section II

provides the background and related work information for this
research. Section III describes the design of our experimental
study. Section IV presents the study results, listing our findings
and offering guidelines for Android developers. Section V
summarizes our conclusions.

II. BACKGROUND AND RELATED WORK

To set the context for our work, this section describes the
persistence functionality, as it is realized by means of database
engines and persistence frameworks. Then it also discusses
some prior approaches that have studied performance and
energy efficiency.

The ORM (object-relational mapping) frameworks have
been introduced and refined to facilitate the creation of
database-oriented applications [16]. The prior studies of the
ORM frameworks mainly have focused on their performance
efficiency. However, as the energy demands of mobile appli-
cations continue to exceed the battery capacities of mobile
devices, one cannot neglect energy efficiency as a key consider-
ation when analyzing the performance of ORM frameworks on
mobile platforms. Studies have shown that a lot of software de-
velopment related factors can significantly influence the energy
consumption of a software system[17] (e.g., design patterns
involved, the Model-View-Controller architecture, information
hiding, implementation of persistence layers, code obfuscation,
refactoring, and data structure usage). In this paper, we com-
pare the energy consumption of different ORM frameworks in
a mobile execution environment with the goal of understanding
the results from the software design perspective.

Multiple prior studies have focused on profiling the energy
consumption of different applications/system calls [3], [4], [5],
[6], [7]. The research literature includes approaches ranging
from general program analysis and modeling, to application

level analysis. However, to guide the mobile developers in
selecting the most suitable ORM framework for their applica-
tions, we should further consider both the runtime performance
and the programming effort incurred.

Android persistence frameworks A persistence framework
serves as a middleware layer that bridges the application logic
with the database engine’s operations. The differences between
object-oriented and relational models have been known as the
object-relational impedance mismatch. Specifically, the object-
relational mapping (ORM) and object-oriented frameworks
that we study operate as follows. The database engine main-
tains a schema in memory or on disk, and the framework pro-
vides a programming interface for the application to interact
with the database engine.

We evaluate six frameworks: Android SQLite, ActiveAn-
droid, greenDAO, OrmLite, Sugar ORM, and Java Realm,
backed up by the SQLite and Realm database engine, which
are customized for mobile devices, with limited resources,
including battery power, memory, and processor.

III. EXPERIMENT DESIGN

In this section, we explain the main design decisions we
had to make in designing our experiments. In particular, we
discuss the benchmarks, the measurement variables, and the
experimental parameters.

A. Benchmark Selection

DaCapo H2, a well-known Java database benchmark that
interacts with the H2 Database Engine via JDBC. To adapt
this benchmark for Android, we replace H2 with SQLite or
Realm. This benchmark manipulates a considerable volume of
data to emulate bank transactions. The benchmark includes 1)
a complex schema and non-trivial functionality, obtained from
a real-world production environment. The database structure is
complex (12 tables, with 120 table columns and 11 relationship
between tables), while the database operations simulate the
running of heavy-workload database-oriented applications; 2)
complex database operations that require: batching, aggrega-
tions, and transactions.

However, using the DaCapo benchmark alone would leave
unanswered the questions of the performance of persistence
frameworks under the low data volumes with simple schema
conditions. To establish a baseline for our evaluation, we thus
designed a set of micro benchmarks, referred to as the Android
ORM Benchmark, which features a simple database schema
with few data records. Specifically, this benchmark’s database
structure includes 2 tables comprising 11 table columns, and
a varying small number of data records. Besides, this micro-
benchmark comprises the fundamental database operation in-
vocations “create table”, “insert”, “delete”, “select”, “update”.
As the database operations in many mobile applications tend
to be rather simple, the micro-benchmark’s results present
valuable insights for application developers.
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B. Parameters and Variables

Our experimental setup comprises a mobile application that
uses each of the benchmarked frameworks to execute both
DaCapo and the Android ORM Benchmark1. Our experiments
fix different settings while varying the persistence frameworks.

Next, we explain the variables used to evaluate the perfor-
mance, energy consumption, and programming effort of the
studied persistence frameworks. We also describe how these
variables are obtained.

• Overall Execution Time: is the time elapsed from the
point when a database transaction is triggered to the point
when it stops.

• Read/Write Database Operation Number: is obtained
by hooking into the SQLite operation interfaces provided
by the Android System Library. We focus on com-
paring the Read/Write numbers only on SQLite-based
frameworks (ActiveAndroid, greenDAO, OrmLite and
Sugar ORM). When performing the same combination of
transactions, the differences in Read/Write number is the
output of how different persistence frameworks interpret
database operation invocations. The read/write ratio can
also impact the energy consumption.

• Energy Consumption: is obtained by monitoring the
real-time current, voltage, and power of the the Android
device’s battery. We use the Monsoon Power Monitor [18]
to monitor the energy of the device battery.

• Uncommented Line of Codes (ULOC): reflects the
programming effort in terms of how much code the pro-
grammer has to write to use each persistence framework.

We further introduce the input parameters for different
benchmarks. For the DaCapo benchmark, we want to explore
the performance boundary of different persistence frameworks
under a heavy workload. Therefore, we vary the amount of
total transactions to a large scale, and record the overall time
taken and energy consumed.

For the micro benchmark, we study the “initialize”, “insert”,
“select”, “update” and “delete” invocations in turn. We change
the number of transactions for the last four invocations, so
for the “select”, “update” and “delete” invocations, the
amount of data records also changes. Therefore, the input
parameters for the micro benchmark is a set of two parameters,
{NUMBER OF TRANSACTIONS, AMOUNT OF DATA RECORDS}.

C. Experimental Hardware

All the measurements are conducted on an LG LS740 smart-
phone, with 1GB of RAM, 8GB of ROM and 1.2GHz quad-
core Qualcomm Snapdragon 400 processor, running Android
4.4.2 KitKat operating system. The device has a 3000mAh
removable Lithium Ion battery. All experiments are executed
as the only load on the device’s OS. We run each benchmark
5 times within the same environment, with the first two runs
to warm up the system, and the reported data as the average
of the last 3 runs.

1All the code used in our experiments can be downloaded from https:
//github.com/AmberPoo1/PEPBench.

IV. STUDY RESULTS

In this section, we report and analyze our experimental
results.

A. Experiments with the Android ORM benchmark

In this group of experiments, we study how the types of
operation (insert, update, select and delete) and the variations
on the number of transactions impact energy consumption and
performance with different frameworks using micro bench-
mark2 The experimental results for each type of persistence
operation are presented in Fig.1. The first row, Fig 1(a)-(c)
shows the energy consumption, execution time, and read/write
operations of the “insert” database invocation, and Fig 1(d)-(f),
(g)-(i), (j)-(l) show that of the “select”, “update” and “delete”
database invocations respectively.

The results show that the persistence frameworks differ in
terms of their respective energy consumption, performance,
read, and write measurements. Next, we compare the results
by operation:

Insert We observe that ActiveAndroid has the longest insert
operation runtime, while Sugar ORM is second longest, with
the remaining frameworks showing similar performance levels.
The runtime trace reveals that interactions with the cache trig-
gered by insert in ActiveAndroid are expensive, costing 62%
of the overall execution time. Sugar ORM performs the highest
number of database operations, a measurement that explains
its performance. By contrast, greenDAO’s performance is the
best, due to its simple but efficient batch insert encapsulation.

Update From (g) and (h) we can observe that, the cost of
Java Realm update is several orders of magnitude larger than
other frameworks especially when the number of transactions
grows. One reason is that Java Realm lacks support for batch
update. Another cause is that its update procedure invokes the
underlying Realm library method—TableView.size()—
performed on a memory-hosted list of entities and costing
98.3% of the overall execution time. The cost of Sugar ORM
is still high because it has the highest number of read and write
operations. Sugar ORM needs to find the target object before
updating it. This finding procedure involves an expensive
recursive design for the SugarRecord.find() method,
costing 96% of the overall execution time.

Select and Delete For select and delete operations, we
observe from (d,e,f) and (j,k,l) that Sugar ORM 1) has the
worst performance in terms of execution time and energy
consumption; 2) has the highest number of database opera-
tions, as it executes an extra query for each atomic operation.
Sugar ORM’s select and delete inefficiency related to the extra
underlying operations, but as mentioned above, most of the
execution time is spent in the recursive find method. OrmLite,
greenDAO and Android SQLite show comparable performance
levels with these two operations.

Table I sums up the ranking of each persistence frame-
work w.r.t. different database operation invocations. We also

2We use the terms—micro benchmark and the Android ORM benchmark
interchangeably in the rest of the presentation.
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Fig. 1. Energy/Performance/Read and Write for Android ORM Benchmark Initialization with Alternative Persistence Frameworks

measure the ULOC for implementing all the basic database
operation invocations for each persistence framework and
include it in the table. From Table I and our above analysis,
we can draw the following conclusions:

1 By adding up the ranking of different operations, we
can rank these frameworks in terms of their overall per-

formance: Android SQLite >greenDAO >OrmLite >Java
Realm >Sugar ORM ≥ ActiveAndroid , where “>” means
“faster than”.

2 Considering the programming effort when using different
frameworks, greenDAO, sugar ORM and ActiveAndroid
require less programming effort.
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Compared Item ActiveAndroid greenDAO OrmLite Sugar ORM Android SQLite Java Realm
ULOC 253 241 326 226 306 313
Initialization Ranking 6 4 5 1 3 2
Insert Ranking 6 1 4 5 2 3
Update Ranking 3 4 2 5 1 6
Select Ranking 5 2 3 6 1 4
Delete Ranking 3 1 2 6 3 5
Summed up Ranking 23 12 16 23 10 20

TABLE I
COMPARISON OF PERSISTENCE FRAMEWORKS IN THE ANDROID ORM EXPERIMENT

3 Considering the programming effort of implementing all
database operations using different frameworks, greenDAO
can be generally recommended for developing database-
oriented mobile application with standard database opera-
tion/schema complexity.

4 Sugar ORM would not be an optimal choice when the
dominating operations in a mobile application are select or
delete, while Java Realm would not be optimal when the
dominating operation is update.

B. Experiments with the DaCapo benchmark

In DaCapo experiments, we study how the energy consump-
tion and performance of each framework changes in relation
to the number of executed bank transactions. The benchmark
comes with a total of 41,971 records, so in our experiments
we differ the number of bank transactions.

In Fig.2, (a) shows the energy/performance of the DaCapo
Initialization. The dominant database operation in this phase
is insert, and (a) shows the performance levels consistent with
those seen in the Android ORM benchmark for the same
operation: Sugar ORM and ActiveAndroid have the longest
runtime. greenDAO performs better than Android SQLite,
possibly due to greenDAO supporting batch insert.

In our measurements, we vary the number of bank transac-
tions over the following numbers: 40, 120, 200, 280, 360, 440,
520, 600, 800, 1000, 1500. The total number of transactions is
the sum of basic bank transactions, as listed in Table II. Each
transaction comprises a complex set of database operations.
The key transactions in each run are “New Order”, “Payment
by Name”, and “Payment by ID”, which mainly execute the
“query” and “update” operations. In our experiments, “New
Order” itself takes 42.5% of the entire number of transactions.
(b),(c) show the execution time and energy consumption for
each transaction number, and Table II shows the average time
consumption for each transaction.

From Table II, we observe that Java Realm and Sugar
ORM have the longest execution time when executing the
transactions whose major database operation is update (e.g.,
”New order”, ”New order rollback”, ”Payment by name”, and
”Payment by ID”). This conclusion is consistent with that
derived from the Android ORM update experiments above.
Android SQLite takes rather long to execute, as it involves
database aggregation (e.g., sum, and the table queried had
30,060 records) and arithmetic operations (e.g. field − 1) in

the select clause. Meanwhile, as ActiveAndroid only uses raw
SQL manipulation interface for complex update operations,
its performance is the fastest, albeit at the cost of additional
programming effort.

Table II also shows that greenDAO, ActiveAndroid, and An-
droid SQLite incur higher execution costs for the “Stock level”
transaction. One possible explanation is that this transaction
contains a multiple entities conjunctive query action, and only
these three frameworks provide the SQL “JOIN” interface.
Supporting this interface is known to be computationally
expensive. However, the SQL “JOIN” interface can help save
the programming effort.

From Fig.2 (a-c) and Table III we can conclude that:
1 ActiveAndroid offers the overall best performance for all

DaCapo transactions. It shows the best performance for
the most common transactions, at the cost of additional
programming effort. Besides, its execution invokes the
smallest number of database operations, due to its caching
mechanism.

2 Sugar ORM and Java Realm have the longest execution
time, in line with the Android ORM benchmark’s results
above.

3 greenDAO’s performance is in the middle, while requir-
ing the lowest programming effort, taking 24.5% fewer
uncommented lines of code to implement than the other
frameworks.

V. CONCLUSION

In this paper, we present a systematic study of popular
Android ORM/OO persistence frameworks. We first compare
and contrast the frameworks to present an overview of their
features and capabilities. Then we present our experimental
design of two sets of benchmarks, variables, and input param-
eters, used to explore the performance, energy consumption
and programming effort of these frameworks in different
application scenarios. We describe the benchmark results, and
also use our analysis of the framework features and capabilities
to explain the results. Finally, we summarize a set of guildlines
from our experiments to help mobile developers in their deci-
sion making process when choosing a persistence framework
for a given application. To the best of our knowledge, this
research is the first step to better understand the trade-offs
between the performance, energy efficiency, and programming
effort of Android persistence frameworks.
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Fig. 2. Energy/Performance/Read and Write for DaCapo Benchmark with Alternative Persistence Frameworks

Transaction Type ActiveAndroid greenDAO OrmLite Sugar ORM Android SQLite Java Realm
Stock level 136 189 86 91 98 41
Order status by name 72 101 95 100 112 36
Order status by ID 106 91 94 113 108 33
Payment by name 50 55 50 124 59 86
Payment by ID 25 32 40 119 44 60
Delivery schedule 1 1 1 1 1 1
New order 177 209 189 402 272 496
New order rollback 186 271 176 299 248 427

TABLE II
PERFORMANCE ANALYSIS FOR INDIVIDUAL DACAPO BANK TRANSACTIONS, THIS TABLE SHOWS THE EXECUTION TIME (MS) FOR EACH PERSISTENCE

FRAMEWORK IN EACH TRANSACTION TYPE

DaCapo LOC
ActiveAndroid 2923
greenDAO 2200
OrmLite 3310
Sugar ORM 2911
Android SQLite 3068
Java Realm 3071

TABLE III
LOC FOR DACAPO BENCHMARK
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