
Reusable Enterprise Metadata with
Pattern-Based Structural Expressions

Eli Tilevich and Myoungkyu Song
Department of Computer Science

Virginia Tech, Blacksburg, VA 24060, USA
{tilevich,mksong}@cs.vt.edu

ABSTRACT
An essential part of modern enterprise software development
is metadata. Mainstream metadata formats, including XML
deployment descriptors and Java 5 annotations, suffer from a
number of limitations that complicate the development and
maintenance of enterprise applications. Their key problem
is that they make it impossible to reuse metadata specifica-
tions not only across different applications but even across
smaller program constructs such as classes or methods.

To provide better enterprise metadata, we present pattern-
based structural expressions (PBSE), a novel metadata rep-
resentation that offers conciseness and maintainability ad-
vantages and is reusable. To apply PBSE to enterprise ap-
plications, we translate PBSE specifications to Java annota-
tions, with annotating classes automatically as an interme-
diate build step. We demonstrate the advantages of the new
metadata format by assessing its conciseness and reusabil-
ity, as compared to XML and annotations, in the task of
expressing metadata of J2EE reference applications and a
mid-size, commercial, enterprise application.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software; D.2.6
[Programming Environments]: Integrated environments;
D.3.3 [Language Constructs and Features]: Frameworks,
Patterns

General Terms
Design, Languages, Experimentation

Keywords
Frameworks, Metadata, Annotations, Configuration, Eclipse

1. INTRODUCTION
Automatic programming is the Holy Grail of software en-
gineering. While generating a complete program automati-
cally from a high-level description is still a futuristic vision,

AOSD ’10 Rennes, St. Malo, France

the declarative programming models of modern enterprise
frameworks have taken the first steps toward this vision.
A programmer expresses non-functional concerns, including
persistence, transactions, distributions, and security using
metadata, and frameworks provide the requested function-
ality. In a typical enterprise application, programmers im-
plement the core functionality (i.e., business logic) by writ-
ing source code and non-functional concerns by declaring
metadata.

Metadata identifies program constructs (e.g., classes, meth-
ods, fields, etc.) as interacting with framework services,
which add the requested functionality by transparently in-
jecting it into the identified program constructs. As an
example, persistence frameworks automatically persist the
fields of a class annotated with the @Column JPA [31] an-
notation. Programmers only need to declare which object
fields correspond to relational database columns, and per-
sistence frameworks supply all the required functionality to
render the annotated fields persistent.

Enterprise metadata—a medium for expressing how pro-
gram constructs interact with a framework—comes in dif-
ferent formats. One such format is XML, used for writing
stand-alone XML configuration files, sometimes called de-
ployment descriptors in J2EE [33]. More recently, metadata
tags have been introduced into mainstream programming
languages, including Java and C#. Java 5 annotations are a
part of the source being placed near program constructs. Al-
though in their latest releases, some enterprise frameworks
have been changing their metadata format from XML to an-
notations, one can find examples of both metadata formats
being used in modern enterprise applications.

Despite being the foundation of the declarative program-
ming model, enterprise metadata has its share of mainte-
nance and evolution burdens. Since XML configuration files
refer to program construct names of the main source code
written in Java or C#, such XML files must be kept con-
sistent as the main program is maintained and evolved. If,
for example, a name of a program construct changes, the
change must be propagated to the XML configuration file,
lest the mismatch causes some framework functionality to
fail.

Though annotations are part of the source code, they also
hinder program maintenance. Located right next to pro-
gram constructs, annotations are not affected by the changes

to the constructs’ names (e.g., renaming an annotated field
does not affect its annotation). This tight coupling, how-
ever, is a double-edged sword—it hinders the transitioning
between framework vendors that use different annotations
to express equivalent functionality. For example, unit test-
ing frameworks, such as JUnit 4 [29] and TestNG [4], use
different annotations for test methods and other domain-
specific information. Changing annotations scattered across
an entire codebase is a tedious and error-prone undertaking,
whose prohibitively high costs can cause the Vendor Lock-in
anti-pattern [5].

Additionally, annotations cannot convey any structural in-
formation between programmer written code and framework
functionality. For instance, the @Column(name=”someName”)
annotation added to field “someName” only expresses that
this one field and the database column to which it is per-
sisted share the same name. Annotations cannot express
that this invariant, for example, holds true for all the pri-
vate fields of a class.

Finally, reuse—a major vehicle for increasing programmer
productivity—is impossible with enterprise metadata, in-
cluding both XML and annotations. XML descriptors are
crafted individually for different classes. Annotations must
be added separately not only to individual programs, but
also to all the classes within the same program. Framework
services are often used according to certain patterns that
tend to be repetitive. For example, in many programs, all
private fields may have to be made persistent. Such patterns
cannot be encoded once and applied to multiple programs
or even classes—each program or class must be annotated
anew and its annotations maintained separately.

To address a lack of general reusability and to improve on
other properties of enterprise metadata, this paper presents
a new metadata format—Pattern-Based Structural Expres-
sions (PBSE). By matching the structure of a program with
pattern-based declarations, PBSE captures the relationship
between metadata and the program’s source code, making
the metadata easier to author, understand, reuse, and main-
tain. PBSE is not only more concise than either XML or
annotations, but PBSE specifications can be easily reused
across different applications.

By addressing limitations of enterprise metadata, this paper
presents the following novel contributions:

• A clear exposition of the advantages and shortcomings
of mainstream enterprise metadata formats—XML and
annotations.

• Pattern-Based Structural Expressions (PBSE)—a new
metadata format that offers usability, reuse, and ease-
of-evolution advantages, as compared to both XML
and annotations.

• An automated translation approach that, given pattern-
based structural expressions and their corresponding
source files, can annotate the source with equivalent
Java 5 annotations.

The remainder of this paper is structured as follows. Section
2 demonstrates the disadvantages of the mainstream enter-

prise metadata formats through an example from the trans-
parent persistence domain. Section 3 introduces pattern-
based structural expressions. Section 4 describes the PBSE
language design and our automated PBSE-to-annotations
translator. Section 5 quantifies the advantages of PBSE
through case studies. Section 6 discusses the advantages
of PBSE in comparison to XML and annotations. Section 7
compares this work to the existing state of the art. Section
8 discusses future work directions and presents concluding
remarks.

2. MOTIVATION
Figure 1 demonstrates how modern enterprise frameworks
use metadata, with the domain of transparent persistence as
an example. On the left part of the figure, class ManagerBean
is persisted using EJB 2, a persistence framework that uses
XML configuration files to specify how instances of Enter-
prise Java Beans are mapped to relational database tables.
On the right part of the figure, class ManagerEJB, with equiv-
alent functionality to that of ManagerBean, is persisted using
EJB 3, another persistence framework that uses Java 5 an-
notations as its metadata format. As we argue next, each
of the two enterprise metadata formats has limitations that
complicate the development and maintenance of enterprise
applications that use frameworks.

2.1 Programmability
Using either metadata format to create correct specifications
can be challenging. Authoring XML files with a text editor is
cumbersome: the programmer must ensure not only the cor-
rectness of XML tags and grammar, but also the correspon-
dence between the XML data and the program constructs of
the persisted class. For example, each persisted class must
be specified within <entity> </entity> tags, which is the
root of an XML subtree with the descendant tags <ejb--
class>, <abstract-schema-name>, <field-name>, <primkey--
field>, etc. The immediate descendants of the <entity>
tag may also have other descendants, making the authoring
of such a tree-shaped structure quite error-prone. Omitting
some tags may result in confusing compile and runtime er-
rors. For example, forgetting to specify a <primkey-field>
would render the entire specification invalid. Mistyping any
field name would result in runtime errors, in response to the
framework trying to access a non-existing field.

Annotations are more straightforward than XML files, be-
cause annotations are part of the Java language. Neverthe-
less, adding annotations according to a convention set by a
particular framework may quickly become challenging. Even
though a code completion facility of a modern Integrated
Development Environment (IDE) could help programmers
enter well-formed annotations with correct attributes, code
completion cannot help them determine the value of string
attributes (e.g., name in the @Column annotation) or iden-
tify where annotations should be added. Programmers must
ascertain these requirements based on implicit framework
conventions. For example, the @Column annotation can be
added either to persistent field or to their getter methods ac-
cording to the JavaBean naming convention, and these two
approaches cannot be mixed.

One could argue that more sophisticated IDE support and
better programming tools in general could simplify the au-

1 public abstract class ManagerBean
2 extends javax.ejb.EntityBean {
3 public abstract String getOrderId ();
4 public abstract String getStatus ();
5 public abstract void setOrderId (String param);
6 public abstract void setStatus (String param);
7 ...
8 }

1 <entity>
2 <ejb-class>ManagerBean</ejb-class>
3 <abstract-schema-name>Manager
4 </abstract-schema-name>
5 <cmp-field><field-name>orderId
6 </field-name></cmp-field>
7 <cmp-field><field-name>status
8 </field-name></cmp-field>
9 <primkey-field>orderId

10 </primkey-field>
11 ...
12 </entity>

(1) Metadata as an XML file.

1 @Entity
2 @Table(name="Manager")
3 public class ManagerEJB {
4 private String orderId;
5 private String status;
6

7 @Id
8 @Column(name="orderId", primaryKey=true)
9 public String getOrderId(){

10 return orderId;
11 }
12 @Column(name="status", primaryKey=false)
13 public String getStatus(){
14 return status;
15 }
16 public void setOrderId(String parm){
17 orderId = parm;
18 }
19 public void setStatus(String parm){
20 status = parm;
21 }
22 }

(2) Metadata annotations.

Figure 1: Transparent Persistence Framework Example.

thoring of both XML files and annotations, but the very fact
that such advanced support is required is a testament to the
inherent complexity of expressing metadata using these for-
mats.

2.2 Understandability
Consider a programmer assigned to take over an existing
codebase written using an enterprise framework dependent
on metadata. Examining XML files by hand is quite te-
dious. XML is a computer format optimized for automated
processing rather than exposing information intuitively to
the programmer. To understand how a framework imple-
ments some functionality, XML files must be examined with
their corresponding source files. For example, to understand
how instances of class ManagerBean are persisted, both its
source and XML deployment descriptor must be examined.

While annotations ease program understanding in the small,
programmers must examine the entire framework-dependent
codebase. Annotations scattered around the codebase, pro-
vide no structural or summary information. For example,
the invariant that all private fields of class ManagerEJB are
persistent is not explicitly expressed. To determine this in-
variant, programmers must examine each getter method for
the presence of the @Column annotation.

Sophisticated code analysis tools can certainly help pro-
grammers understand framework-dependent source code, but
a more expressive metadata representation can render such
analysis tools unnecessary.

2.3 Maintainability
Both metadata formats complicate maintenance. XML files
are separate from the main source code, and their correspon-
dences cannot be enforced by the compiler. If a source code
change is not properly synchronized with the corresponding
XML file, the problem will only be discovered at runtime.

For example, if the status field in class ManagerBean is re-
named to orderStatus, one must upgrade the corresponding
entry in the XML file. This requirement, however, is implicit
and depends entirely on the maintenance programmer.

Being a part of the language, annotations are easier to main-
tain. In the presence of structural changes, however, anno-
tations must be added or removed accordingly. For exam-
ple, when a field time added both to the database and the
ManagerEJB class, this field or its getter method must be
properly annotated, lest it will not be persisted. The invari-
ant stating that all fields that share names with database
columns must be persisted is implicit and cannot be enforced
through annotations.

Maintenance of framework-based applications is a formidable
challenge that has been the target of several recent research
efforts [26, 35, 24]. These efforts, however, could be sim-
plified if more expressive metadata could explicitly encode
dependencies that must be preserved during program evolu-
tion.

2.4 Reusability
Both XML and annotation-based metadata representations
are not reusable. The persistence information must be ex-
plicitly encoded for each class. In Hibernate 2 [2], another
transparent persistence framework, a separate XML file must
be used for each persistent class. In EJB 2, the same XML
file is used for all the classes. Nevertheless, in both frame-
works the persistence information is specified individually
for each class. For example, the XML file for class ManagerEJB
does not work with any other class. As a consequence, the
knowledge about persisting ManagerEJB cannot be reused
even for the classes in the same application.

Annotations do not improve reusability—each individual class
must be annotated anew. The effort expended on annotating

1 public class ManagerEJB {
2 private String orderId;
3 private String status;
4

5 public String getOrderId(){
6 return orderId;
7 }
8 public String getStatus(){
9 return status;

10 }
11 public void setOrderId(String parm){
12 orderId = parm;
13 }
14 public void setStatus(String parm){
15 status = parm;
16 }
17 }

(1) Java code for PBSE metadata in (2).

1 Metadata MyJPA<Package p>
2 Class c in p
3 Where (public *EJB)
4 c += @Table
5 @Table.name = (c.name =~ s/EJB$//)
6 Column<c>
7

8 Metadata Column<Class c>
9 Method m in c

10 Where (public * get* ())
11 m += @Column
12 @Column.name = (m.name =~ s/^get//^[A-Z]/[a-z]/)
13 Where (public * get*Id ())
14 @Column.primaryKey = true
15 m += @Id
16

17 MyJPA <"package1">

(2) PBSE metadata.

Figure 2: Transparent Persistence Framework PBSE Example.

a class cannot be leveraged in annotating other classes, due
to annotations not being able to express any structural infor-
mation. Each annotation provides information only about
the annotated program construct. Annotations cannot ex-
press the relationships between the annotated elements (e.g.,
all the fields annotated with the same annotation). Further,
annotations cannot even express a naming equivalence be-
tween its attributes and the annotated program constructs.
For example, the attribute name of annotation Column di-
rectly corresponds to the name of the field of the getter
method it is annotating. Because this invariant is only im-
plicit, it cannot be reused in other contexts, such as different
classes or another application.

Without sophisticated automated programming tools that
utilize machine learning to extract such implicit invariants
from metadata, enterprise metadata cannot be reused sys-
tematically. Since the precision of such programming tools
tends to differ widely, existing enterprise metadata remains
not reusable. A new metadata format designed with reusabil-
ity in mind could improve programmer productivity.

3. PATTERN-BASED STRUCTURAL
EXPRESSIONS

By examining metadata specifications of enterprise frame-
works from different domains across multiple applications,
we have observed that, in most cases, metadata is not added
to a program randomly, but tends to follow well-defined pat-
terns. It is this observation that led us to a new metadata
format that is not only more concise and expressive, but also
reusable. Our new metadata format, called Pattern-Based
Structural Expressions (PBSE), is introduced by example
next.

Consider the original motivating example from the transpar-
ent persistence domain. An equivalent PBSE specification
in the right part of Figure 2 is applied to the Java code in
the left part. PBSE reuses Java 5 annotations, declared as
special Java interfaces, to define its own metadata specifica-
tions. A key difference is that PBSE metadata is declared

in standalone specification files that are kept separate from
the Java source files.

PBSE specifications are organized into modules, each rep-
resenting metadata for a particular program construct. A
PBSE module starts with the keyword Metadata followed
by the module’s name and its parameter declaration. Fig-
ure 2 (2) contains two PBSE modules. The first module is
called MyJPA, and it defines Java Persistence API metadata
for a package p. Line 2 iterates over all the classes in the
package. To designate that only the classes that are public
and whose suffix is “EJB” are to be persisted, a Where clause
is used with the pattern parameter public *EJB.

The indented Where clause specifies the metadata informa-
tion that should be applied to the classes that match the
clause’s pattern. Line 4 attaches @Table metadata to the
matched class. PBSE uses the += operator to express the
attaching of metadata to program constructs. Line 5 uses
regular expressions1 to assign the value of the class name
without its “EJB” suffix to the name property of the @Table
metadata. The =~ operator applies the regular expressions
of its right operand to its left string operand. Line 6 invokes
another PBSE module Column passing it the matched class
as a parameter. All the invocations in PBSE are statically
bound and are resolved by matching their names.

The Column PBSE module accepts a Class parameter and
iterates over its methods (line 9). The Where clause on line
10 matches the getter methods following the JavaBean nam-
ing convention.2 Line 11 attaches @Column metadata to the
matched methods, and line 12 sets the name property of this
metadata to the name of the method, having removed the
“get” prefix and then changed the first letter to lowercase.
Regular expressions are applied one after another from left

1We use the Perl language regular expression style due to
its wide adoption.
2A more elaborate pattern could have filtered out the
methods staring with “get” but returning void, e.g., void
getUpset().

to right, using the result of applying one expression as input
to the next expression. Line 13 encodes the naming strategy
for the getter methods which return persistent values, cor-
responding to the primary key of the underlying database
table. The strategy in place assumes that the names of such
getter methods will end with “id.” The methods matched
by this Where clause have the primaryKey property of their
@Column metadata set to true, and another metadata item,
@Id, is attached.

Finally, line 17 applies the MyJPA metadata module to pack-
age “package1.” Thus, the persistence metadata will be at-
tached to all the classes in this package. Further, since all
persistent classes in an application usually share the same
structure and naming conventions, MyJPA can be effortlessly
reattached to other packages by adding another line of code
(e.g., MyJPA<“package2”>).

3.1 Examples from Different Domains
The applicability of PBSE is not confined to persistence
frameworks. We have discovered that enterprise frameworks
commonly use structural patterns in their metadata. Not all
of these frameworks use both XML and annotations as their
metadata formats. Therefore, in the following we compare
our PBSE specifications to whichever metadata format is
used by a given example framework.

3.1.1 JUnit
Unit testing frameworks exercise test methods designated
as such using metadata. A well-known and widely-used unit
testing framework is JUnit [18], which uses @Test annota-
tions to designate test methods, and @Before and @After
annotations to designate the setup and tear down methods
for each test class. The @Test annotation, in particular,
has to be added to each and every test method, which can
be wasteful, particularly if the number of test methods is
large. Furthermore, neglecting to annotate a newly-added
test method will result in missing tests.

1 Metadata MyJUnitSuite <Package p>
2 Class c in p
3 Where (public class Test*)
4 MyJUnitTest <c>
5

6 Metadata MyJUnitTest <Class c>
7 Method m in c
8 Where (public void before* ())
9 m += @Before

10 Where (public void after* ())
11 m += @After
12 Where (public void test* ())
13 m += @Test
14

15 MyJUnitSuite <"package1">

Figure 3: PBSE metadata for JUnit framework .

Figure 3 shows how JUnit metadata can be attached to all
the test classes in a package, defined as all the public classes
whose name starts with prefix “Test.” The @Test, @Before,
and @After metadata are attached to the public methods
returning void in the test methods based on their respec-
tive prefixes. A more general pattern could match the test
methods whose name does not start with the “test” prefix.

1 Metadata MyTestNGSuite <Package p>
2 Class c in p
3 Where (public class Test*)
4 MyTestNG <c>
5

6 Metadata MyTestNG <Class c>
7 Method m in c
8 Where (public void before* ())
9 m += @BeforeMethod

10 Where (public void after* ())
11 m += @AfterMethod
12 Where (public void test* ())
13 m += @Test
14 Where (public void set* (*))
15 m += @Parameter
16 @Parameter.value = (m.name=~s/^set//)
17

18 MyTestingNG <"package1">

Figure 4: PBSE metadata for TestNG framework .

3.1.2 TestNG
TestNG [4] is another annotation-based unit testing frame-
work, whose annotation set differs from that of JUnit. One
could imagine how the necessity to change the annotations
throughout an entire application from JUnit to TestNG or
vice versa could preclude switching to another unit testing
framework, even if such a switch is beneficial for technical
reasons. Not changing vendors solely due to a prohibitive
upgrade challenge is described by the Vendor Lock-in anti-
pattern [5].

PBSE, being external to the main source code, removes this
anti-pattern. Figure 4 shows the PBSE metadata specifi-
cation for TestNG applied to the same set of test classes
as in the JUnit example above. As a more recent unit test-
ing framework, TestNG offers additional capabilities, among
which is the ability to set custom parameters for test classes.
The additional rule starts on line 14, which attaches the
metadata @Parameter to setter methods (line 15), and sets
its value property to the field name designated by the get-
ter method (line 16), according to the JavaBean naming
convention.

Thus, the same application can be tested with JUnit or
TestNG simply by using a different PBSE specification.

3.1.3 The Security Annotation Framework
Another framework domain that can benefit from our pattern-
based approach to expressing metadata is security. The se-
curity functionality of a typical enterprise application is di-
vided into access control and encryption. An example of a
security framework for enterprise applications is the Secu-
rity Annotation Framework (SAF)[20]. SAF provides access
control and encryption functionality, both of which are con-
figured using Java 5 annotations. Methods can be granted
read, update, create, and delete access. When the code to
be secured with SAF follows a naming convention, the ac-
cess can be granted based on patterns over method names
rather than for each individual method.

Figure 5 shows the PBSE metadata security specification
for a package in which classes are written according to the

1 Metadata MySecurity <Package p>
2 Class c in p
3 Where (public class *)
4 c += @SecureObject
5 MySecureObject <c>
6

7 Metadata MySecureObject <Class c>
8 Method m in c
9 Where (public * get* ())

10 m += @Secure
11 @Secure.SecureAction = READ
12 Where (public void [set|add|remove]* ())
13 m += @Secure
14 @Secure.SecureAction = UPDATE
15 Where (static public Object+ create* ()
16 m += @Secure
17 @Secure.SecureAction = CREATE
18 Where (public * delete* (*)
19 Parameter p in m
20 p += @Secure
21 Where ((Object+ *))
22 p += (@Secure.SecureAction = DELETE)
23

24 MySecurity <"package1">

Figure 5: PBSE metadata for security framework .

Java Bean naming convention. In addition, these classes
have factory methods, which start with the “create” prefix.
Finally, methods with the “delete” prefix deallocate systems
resources passed to them as parameters.

The access control policy expressed by this specification con-
trols access for every public class by using the @SecureObject
metadata. The @Secure metadata and its SecureAction
property are attached as follows. Every getter method is
given the READ access, while every setter method as well as
any method starting with prefixes “add” and “remove” are
given the WRITE access. The DELETE access is given to refer-
ence parameters of the methods whose name starts with the
“delete” prefix. We borrow the AspectJ syntax of Object+
to express reference types.

Enforcing a consistent access policy requires that the entire
codebase be annotated thoroughly, without any tolerance
for omissions or mistakes. For example, giving the UPDATE
permission to a wrong method may breach security. Naming
conventions have become a mainstay of industrial software
development to the degree that they are often enforced with
automatic checkers. Integrated with a source control system,
such an automatic checker can prevent committing any code
edits that violate the naming convention in place. In light of
that, applying a security policy based on structural patterns
of the established naming convention is likely to prove more
reliable than annotating methods individually.

3.1.4 Java Web Services
To support the ever-growing need for service-oriented appli-
cations, frameworks have been introduced to facilitate the
exposition of regular classes as services. In particular, the
Java Web Services (JWS) framework [27] provides a set of
annotations that can be added to Java classes, methods, and
fields, leaving it up to the underlying framework to provide
the necessary plumbing to expose the annotated classes as

1 Metadata MyWebService <Package p>
2 Class c in p
3 Where (public class *Impl)
4 c += @WebService
5 @WebService.name = (c.name =~ s/Impl$//)
6 Field f in c
7 Where (private * *)
8 f += @Autowired
9 Method m in c

10 Where (public * * ())
11 m += @WebMethod
12 @WebMethod.name = m.name
13

14 MyWebService <"package1">

Figure 6: PBSE metadata for Spring Web Service.

externally-accessible Web services. If a class to be exposed
as a Web service has many methods, each of them must be
annotated individually.

Figure 6 shows the PBSE metadata specification that can be
used to render all the public classes in a package as Web ser-
vices. In particular, the logic required to annotate multiple
classes and methods is expressed in only 12 lines of PBSE.
The patterns expressed by this specification encode that the
name of a Web service will differ from that of its correspond-
ing class by the“impl” suffix (line 5). The @Autowired meta-
data is attached to all the private fields. And public methods
are expressed as corresponding to Web service methods with
the same names.

4. DESIGN AND IMPLEMENTATION
Having seen all the advantages of PBSE over annotations
and XML, one may wish that PBSE becomes a new de-facto
metadata standard. Such a transition, however, would re-
quire multiple divergent stakeholders of enterprise comput-
ing to come to a consensus. Thus, to make PBSE specifica-
tions immediately available to the enterprise programmer,
we have implemented an automated translation tool that
annotates Java source code based on its PBSE specification.

4.1 Language Summary
Figure 7 summarizes the syntax of PBSE. The language fol-
lows a minimalistic design, introducing new constructs only
if necessary, with the goal of making it easier to learn and
understand. For example, the class iterator can be used for
iterating through both classes and interfaces of a package.
PBSE expresses metadata declaratively and does not have
explicit conditional or looping constructs. Nevertheless, a
PBSE specification does contain a sufficient level of detail
to describe the metadata information of a typical modern
enterprise framework.

4.2 Translator Implementation
Our translator takes as input a PBSE specification and a col-
lection of Java classes, and annotates the classes as guided
by the specification. Since PBSE borrows its metadata def-
initions from Java 5 annotation interface declarations, the
two formats correspond to each other closely. The trans-
lation process adds annotations by matching PBSE regular
expression patterns against program constructs.

Metadata module_name
<[Package|Class|Method|Field|Parameter]
program_construct_variable>
...
module_name<program_construct_variable>
...
PBSE can call another module passing a parameter

[Class|Method|Field|Parameter] iter_var in collection
An iterator for a collection of program constructs.

Where ([class_pattern | method_pattern |
field_pattern | parameter_pattern])

Patterns to match declarations of program constructs.

@Metadata
Reflective metadata object.

@Metadata.property
A property of a metadata object.

@Metadata.property = value
Assign a value to the metadata’s property.

~s/[ˆ]original_value[$]/new_value/
Substitute original_value with
new_value, as specified by regular expressions.

program_construct_variable += @Metadata
Add @Metadata to program_construct_variable.

Figure 7: PBSE constructs.

Figure 8 demonstrates the translator’s process flow, in which
input files—a set of Plain Old Java Objects (POJOs) [25]
and PBSE metadata—parameterize the translator, and an-
notated POJOs serve as an intermediate build step. Once
the automatically annotated files are compiled, they can be
deployed to be executed by their respective frameworks—
most modern frameworks do use annotations as their meta-
data format.

The PBSE translator processes a Java source file by using
the Eclipse JDT API [7] to traverse the abstract syntax tree
of a Java class, matching PBSE regular expressions against
each encountered program construct’s name including that
of classes, methods, method parameters, and fields. If a
construct’s name is matched, the construct is annotated with
the annotations corresponding to the metadata guarded by
the Where clause of the regular expression.

4.3 Translation Semantics
Next we treat the translation process from PBSE to anno-
tations more formally.

Figure 9 lists the symbols used in describing the translation
process. The sets of program’s structural constructs appear
first. The structure of a program is defined by its classes,
methods, method parameters, and fields, all of which are
finite sets. Each of these structural constructs could be po-
tentially annotated, and a set of available annotations ap-
pears as well. Each annotation is specific to the type of
a program construct to which it can be added, including
classes, methods, method parameters, and fields. The same
annotation could potentially be used at multiple levels; for
example, the @Column annotation can be applied to both
methods and fields in the Java Persistence API.

c denotes a class
m denotes a method
f denotes a field
p denotes a parameter
a denotes an annotation

AC(c) denotes the set of annotations of class c
AM (m) denotes the set of annotations of method m
AP (p) denotes the set of annotations of parameter p
AF (f) denotes the set of annotations of field f

Pc denotes a class regular expression pattern
Pm denotes a method regular expression pattern
Pp denotes a parameter regular expression pattern
Pf denotes a field regular expression pattern

RE(e, Pe) denotes a regular expression match
of a language construct e over pattern Pe

Figure 9: Syntax definitions.

RE(c, Pc) (Pc, a) ∈ PBSE
a ∈ AC(c)

[AnnotateClass]

RE(m, Pm) (Pm, a) ∈ PBSE
a ∈ AM (m)

[AnnotateMethod]

RE(p, Pp) (Pp, a) ∈ PBSE

a ∈ AP (p)
[AnnotateParameter]

RE(f, Pf) (Pf , a) ∈ PBSE

a ∈ AF (f)
[AnnotateField]

Figure 10: Translation rules.

Each structural program construct can be matched with a
regular expression pattern, which are formed by replacing
some substring of a construct with a wildcard character
(e.g., *) that can match multiple constructs. The regular
expressions of PBSE Where clauses have been inspired by As-
pectJ pointcuts [15]. Figure 10 uses set operations to show
how various constructs are annotated if they are matched
by the PBSE regular expressions. Specifically, an annota-
tion a is added to the annotations of a program construct
e (i.e., class, method, parameter, or field) precisely when
the construct matches a regular expression pattern, and the
annotation a is attached to that pattern in the PBSE spec-
ification.

The presented translation semantics is a simplification, in
that it describes only the main translation rules from PBSE
to annotations. More complex features of PBSE, including
nested patterns, module application, and substitutions, have
been elided to save space and simplify the presentation.

4.4 Integration with Eclipse IDE
We have also prototyped the integration of the PBSE trans-
lator with the Eclipse Java code editor. Since PBSE meta-
data is entirely external to the main codebase, the program-
mer examining the source code may want to be informed
about how the examined program constructs are related to

PBSE to
Annotations
Translator XMLAnnotated

Java Src.
Compiler XMLBytecode

XMLPBSE
Metadata

XMLJava
Src.

Figure 8: Translating PBSE to annotations as an intermediate build step.

metadata. Following the approach initially popularized by
AspectJ, whose Eclipse plug in displays visual cues about
AspectJ pointcuts affecting Java program constructs, our
editor shows what we call metadata tips that inform the
programmer about the metadata attached to the examined
program constructs.

5. CASE STUDY
To validate the advantages of PBSE as compared to XML
and annotations, we have conducted a case study with two
J2EE reference applications and a medium sized commercial
application. As our subject applications, we used JPetStore
[32] and JAdventureBuilder(JAB) [30]—well-known refer-
ence applications that demonstrate various Java enterprise
technologies. As a larger-scale subject application, we used
the Prescription Monitoring Program(PMP)3—a real-world
enterprise application built according to the J2EE [33] three
tier architecture.

All three applications included transparent persistence func-
tionality, implemented with EJB 2. This version of the
framework employs XML configuration files as its metadata
format. For our case study, we first upgraded our subject
applications to EJB 3, which is based on annotations. Then,
based on the annotated versions, we produced a correspond-
ing PBSE metadata specification. As it turned out, all three
of our subject applications needed only a single PBSE meta-
data specification, one written according to the structural
source code patterns of the Java Persistence API (JPA) [31].
This specification, used in a prior example, appears in Fig-
ure 2 (2).

Table 1 compares the conciseness of each metadata format.
As is expected, the total number of lines taken by both XML
configuration files or annotations is directly proportional to
the size of the application. Annotations manage to express
the same metadata information significantly more concisely
than XML (between 75% and 90% fewer lines of code on av-
erage). In addition to its reusability advantages, PBSE spec-
ifications are also quite concise. Compared to annotations,
they express the same information in between 64% and 90%
fewer lines of code on average. Of course, these numbers are
dependent on the total size of the application, and PBSE
leverages the fact that JPA metadata follows well-defined
structural patterns.

3Developed by T4G (http://www.t4g.com).

Lines of code JPetStore JAB PMP

Total source code 11,298 10,836 37,621
XML 503 538 890

Annotations 46 75 236
PBSE 17 17 17

Table 1: Conciseness of different metadata formats.

Reducing the amount of maintained hand-written source
code offers tangible software engineering benefits. Since soft-
ware complexity grows exponentially in relation to the size
of a program [3], every line of programmer written code
contributes to the software maintenance burden. Program
changes to address new requirements or fix program defects
require a program maintenance effort that is directly pro-
portional to the size of a program [10].

6. DISCUSSION
Compared to both XML and annotations, PBSE provides
programmability, understandability, maintenance, and reusabil-
ity advantages, summarized next. PBSE also has certain
applicability constraints that are discussed afterwards.

6.1 Programmability
PBSE expresses metadata concisely—a single pattern matches
multiple program constructs, reducing the amount of meta-
data code that has to be written. We argue that PBSE will
be fairly straightforward to learn for a developer familiar
with object-oriented and declarative query (e.g., SQL) pro-
gramming. Programming constructs such as iterators, Where
clauses, and regular expressions, are part of the standard ar-
senal of a commercial software developer working with en-
terprise technologies. Finally, PBSE is more expressive than
either XML or annotations, as they force the developer to
understand and encode the structural correspondences be-
tween the main source code and its accompanying metadata.

6.2 Understandability
PBSE specifications capture the software architecture im-
posed by a given framework, something that neither XML
or annotations can accomplish. XML was designed to facil-
itate the creation of automated parsers rather than to make
XML documents easy to read and understand by a human.

In particular, the opening and closing XML tags often obfus-
cate the described data values and their relationship to one
another. Annotations are easy to understand, but each indi-
vidual annotation expresses only local information about its
program construct; any correspondence between the name
of an annotation and that of the program construct it an-
notates is only implicit. Any relationship between different
program constructs annotated with the same annotation is
only implicit also.

By contrast, by looking at a PBSE specification, program-
mers can understand the relationship between program con-
structs and their metadata. If the framework specific in-
formation can be encoded in PBSE specifications, program-
mers may not need to examine the source code—a short
PBSE code snippet can capture complex invariants that hold
throughout the entire codebase.

6.3 Maintainability
PBSE metadata alleviates the challenges of maintaining frame-
work applications with respect to keeping the source code
of an application consistent with metadata during program
evolution. Although PBSE specifications are maintained
separately from the main source code, their concise nature
and the presence of explicit structural information make
PBSE easier to maintain than either XML or annotations.

XML is disconnected from the main source code and must
be evolved in parallel, thus doubling the maintenance pro-
grammer’s burden. The location of the metadata informa-
tion for a given program construct within an XML document
is not immediately obvious, often taking a time consuming
XML data exploration to discover. Because annotations re-
main next to the program construct they annotate, chang-
ing program construct names does not affect their annota-
tions. However, newly added program constructs must also
be annotated appropriately to ensure their proper interac-
tions with the framework.

PBSE eliminates the Vendor-Lock In anti-pattern and pre-
serves the correctness of metadata in the presence of pro-
gram evolution, as long as a naming convention is followed.
Switching to another framework to implement the same func-
tionality is as straightforward as creating an alternative PBSE
specification. A program can be enhanced with new meth-
ods, fields, and classes added or removed, and as long as the
original naming convention is followed, no changes are re-
quired to keep the PBSE specification up to date. Having a
PBSE specification to consult will make it less likely for the
programmer to violate a naming convention when maintain-
ing the code, as PBSE explicitly encodes the relationship
between program constructs and metadata.

6.4 Reusability
PBSE metadata is reusable not only across different classes
and packages within the same application, but also across
different, and possibly unrelated, applications. By contrast,
the existing metadata formats are not reusable. Neither
XML or annotations are reusable, as they maintain a one-to-
one relationship with the program constructs for which they
provide metadata information. Annotations are particularly
ill-equipped for reuse, as each program construct must be
annotated individually.

The same PBSE metadata specifications can be reused in all
the applications that use the same framework, as framework-
dependent code is written to follow certain naming conven-
tions. Furthermore, a PBSE specification can be easily mod-
ified for a different naming convention by changing only a
few lines of code. For example, different prefixes or suffixes
can be easily incorporated to accommodate the differences in
naming conventions, and as long as the naming conventions
are followed consistently, the slightly modified code can be
fully reused.

6.5 Applicability Constraints
The advantages of PBSE are due to the structural patterns
between the source code and metadata of modern enterprise
framework applications. If, however, metadata is highly spe-
cialized for individual program constructs, without forming
any patterns between the names of program constructs and
their corresponding metadata, the utility and conciseness of
PBSE can be compromised. For example, if every method
or class in an application is annotated differently, the struc-
tural patterns of PBSE would not provide any conciseness or
reusability advantages. One could still express such an ap-
plication’s metadata in PBSE, but each annotated program
construct would require a separate Where PBSE clause.

The reliance on the naming conventions imposed by enter-
prise frameworks makes PBSE susceptible to what is known
in AOP as the fragile pointcut problem [16]. Specifically,
evolving a program can compromise the correctness of its
PBSE declarations. However, the fragile pointcut problem
of PBSE is alleviated by its reliance on the naming con-
ventions and programming discipline imposed by enterprise
frameworks.

As far as program evolution is concerned, program con-
structs could be added and removed, and their names could
be changed. Removing a program construct or changing
its name, within the confines of the naming convention in
place, will not affect the correctness of PBSE declarations.
If an added new construct is named according to a naming
convention, it will be properly captured by PBSE. Anno-
tations can make naming conventions optional. Take for
example the difference between JUnit 3 and 4, the latter of
which is annotation-based. With annotations, test methods
no longer must start with “test”, but can be named arbitrar-
ily. One must ask, however, whether a test method’s name
should still contain the “test” substring. A naming conven-
tion that requires that a test method be named “testFoo”
or “fooTest” improves readability, making the resulting code
easier to understand and maintain. PBSE can capture such
test methods irrespective of whether the naming convention
in place uses “test” as the prefix or suffix.

Sometimes poorly-designed PBSE declarations can inadver-
tently capture program constructs that are not intended
to be interacting with a framework. Consider expressing
metadata as applicable to all getter methods and having
non-getter methods, whose names start with “get”4. The
PBSE examples introduced earlier would incorrectly capture
such methods as getter. The PBSE declaration in Figure 11
avoids capturing such non-getter methods. Using a nested

4void getUpset(), void getAlarmed(), etc.

iteration over both fields and methods, this declaration de-
fines a getter method as one whose name is a function of an
existing private field’s name.

1 Metadata Column<Class c>
2 Field f in c
3 Where (private * *)
4 Method m in c
5 Where(("get" + (f.name =~ s/^[a-z]/[A-Z]/)) == m.name)
6 m += @Column
7 @Column.name = f.name
8 ...

Figure 11: Identifying getters for private fields.

Although enterprise frameworks follow well-defined naming
conventions not just with respect to program constructs but
also to metadata, sometimes the naming conventions are
broken inadvertently. To ensure that the utility of PBSE
is not compromised, approaches to dealing with the fragile-
pointcut problem in AOP, including delta analysis [16, 28]
and pointcut rejuvenation [14], can be adopted.

Another promising approach to this problem is to control
how programs evolve to avoid unsafety and inconsistencies.
In a recent work, Abdelmeged et al. [1] propose that correct-
ness criteria be declared explicitly and define a stricter no-
tion of compatibility to identify inconsistencies. In the same
vein, one could express the naming conventions of enterprise
frameworks explicitly (e.g., using a language extension) and
verify them using an automatic checker. One could also ex-
ecute PBSE declarations as a query against the underlying
program and examine the number of matched program con-
structs. A stricter notion of compatibility can be expressed
in terms of the expected delta in the number of matches,
in response to evolving the program. For example, a JUnit
notion of compatibility, N Test Methods==(N Test Methods +

N New Test Methods), can protect against the unsafe evolu-
tion resulting from mistakenly naming the newly added test
methods as starting with “tst” rather than “test.”

Finally, although Java packages can be annotated, package
annotations are rare and typically are specified in a special
file whose name is fixed to package-info.java. Based on
these observations, we chose not to support structural ex-
pressions over package annotations in PBSE.

7. RELATED WORK
Both AspectJ 5 [34] and JBoss AOP [13] provide language
support for introducing annotations. AspectJ 5 does so
thorough the declare annotation construct. JBoss AOP
provides two ways to introduce annotations: using XML
with the annotation-introduction tag and using a spe-
cial meta-annotation. Both of these AOP languages provide
wildcards to specify a set of program constructs to which an-
notations are introduced. Although these wildcards enable
greater flexibility in expressing the set of annotated program
constructs, the resulting pointcut expressions are not easily
reusable. While one can express, for example, that a certain
annotation be added to all the methods matching a certain
name pattern, the resulting aspect program constructs are
not parameterizable—one cannot reuse them with a different

class. In addition, neither AspectJ 5 nor JBoss AOP make
it possible to express annotation names and attributes as
a function of the annotated program constructs. Overall,
the pointcut expressions used in introducing annotations in
AspectJ 5 and JBoss AOP do not capture the structural
dependencies between the annotations and the annotated
program constructs. As a result, neither of these AOP lan-
guages can express reusable enterprise framework metadata
as concisely as can PBSE.

In addition, AspectJ 5 can match join points based on anno-
tations by including pointcuts for all types of Java 5 annota-
tions. The support of AspectJ for join point matching based
on annotations may help manage some of the shortcomings
of annotations as a metadata format. While AspectJ does
not attempt to create a better metadata representation for
enterprise frameworks, this was our intent behind creating
PBSE.

PBSE is related to several research efforts whose objective
is to validate the correctness of metadata. Eichberg et al.
[8] check the correctness of annotation-based applications,
in terms of their implementation restrictions and depen-
dencies that are implied by annotations. The cases when
the checked source code violates such restrictions and de-
pendencies are reported by an automated, user-extensible
tool. Noguera et al. [22] check the correctness of using an-
notations by adding to their declarations meta-annotations
that define various constraints. Expressed as Object Con-
straint Language queries, these constraints must be satisfied
when the declared annotations are used in the program. The
definitions of annotation model constraints are validated at
compile time by an automated tool. Cepa et al. [6] check
the correctness of using custom attributes in .NET by pro-
viding meta-attributes that define dependencies between at-
tributes. The attribute dependencies are expressed declara-
tively as a custom attribute and are checked using an auto-
mated tool.

These approaches are quite powerful and can catch many
inconsistencies of using metadata. The need for these ap-
proaches, however, is a testament that the mainstream meta-
data formats, such as Java 5 annotations or .NET custom
attributes, are not sufficiently expressive. This is the prob-
lem that PBSE aims to address. PBSE encodes the struc-
tural dependencies between program constructs and their
corresponding metadata. By encoding such correspondences
explicitly, PBSE specifications are less likely to contain un-
expected inconsistencies and bugs. Furthermore, the declar-
ative nature of PBSE makes it easier to ascertain complex
metadata invariants by examining a single PBSE specifica-
tion.

Pattern-based reflective declaration [9, 12, 11] extends C#
and Java to declare program constructs such as fields and
methods as a static, pattern-based, reflective iteration over
other classes. Pattern-based reflective declaration is a meta-
programming technique for generating well-typed program
constructs such as classes, methods, and fields. By contrast,
PBSE is a new metadata format that uses patterns over the
structure of program constructs to achieve conciseness and
reusability.

Other more expressive metadata representations have been
proposed in the literature. RDF [21]—an XML based meta-
data representation—improves network-based services such
as the discovery and rating of resources. RDF associates
values with properties and resources through a metadata
schema. RDF provides flexibility and robustness advantages
but is inapplicable to enterprise frameworks. SGF [17]—an
XML based metadata representation—describes the struc-
ture of a web site to ease its navigation by creating interac-
tive site maps; SGF also captures the semantic relationship
between different web pages. The KNOWLEDGE GRID
metadata [19] uses XML to represent information for man-
aging the resources of a heterogeneous Grid, including com-
puters, data, telecommunication, networks, and software.
Orso, Harrold, and Rosenblum [23] discuss how metadata
can be used to support a wide range of software engineering
tasks with respect to distributed component-based systems.
A particular focus of their work is testing and analysis of
components. PBSE could simplify the analysis and testing
of framework-based applications by capturing their architec-
tural properties.

The complexity of enterprise metadata has motivated the
creation of code generators that can automatically create
metadata files based on higher level input. XDoclet, a pop-
ular open-source extensible code generator [36], is often used
to automatically generate XML deployment descriptors for
EJB from the source of a Java class. XDoclet works by pars-
ing Java source files and special metadata tags (annotations
inside Java comments) in the source code. Output is gener-
ated by using XDoclet template files that contain XML-style
tags to access information from the source code.

The XDoclet metadata tags suffer from the same set of limi-
tations as Java 5 annotations. Our translation tool described
in Section 4 can be retargeted to output standalone XML
deployment descriptors rather than annotated Java source
files.

8. FUTURE WORK AND CONCLUSIONS
The applicability of PBSE is not limited to Java programs
only. It can be applied to other languages with built-in
metadata facilities such as C# and its attributes. What is
more interesting is to apply PBSE to older languages such
as C and C++ as an alternative to XML configuration files.
PBSE can be used not only for frameworks, but as input for
automatic code generators and adapters.

We plan to release our Eclipse Plug-in that automatically
annotates Java code given a PBSE specification. The success
of a new metadata format can only be ensured through a
grassroots movement, with real enterprise developers trying
out the new format and experiencing its benefits first hand.

In this paper, we have presented Pattern-Based Structural
Expressions, a new metadata format that offers several soft-
ware engineering advantages compared to the mainstream
metadata formats such as XML and annotations. PBSE
leverages the common patterns between the source code
and its metadata exhibited by modern enterprise framework
applications. By explicitly capturing and expressing these
patterns, PBSE specifications convey metadata information
concisely and can be reused not only within the same appli-

cation, but also across other applications that use the same
enterprise frameworks. Our evaluation using the domain of
transparent persistence and the EJB 3 enterprise framework
showed that PBSE can provide reusable metadata informa-
tion significantly more concisely than either XML or anno-
tations.

To increase the applicability of PBSE, we have implemented
an automatic translation tool that annotates Java source
code based on its PBSE specification. Our translation tool
can also be useful for adding initial annotations to classes,
even if it is not a developer’s intention to use it continu-
ally. The ability to automatically add annotations to large
codebases can reduce programmer burden.

As enterprise software development has become heavily de-
pendent on frameworks for implementing most of the non-
functional concerns, the role of metadata has gained promi-
nence. Enterprise programmers spend a substantial amount
of their time and efforts implementing and maintaining meta-
data. It is, therefore, important to take a close look at how
metadata is expressed and whether improvement is possible.
In that light, this work explores these difficult questions and
proposes a new metadata format that improves on the ex-
isting state of the art.

ACKNOWLEDGMENTS
We would like to thank Ahmed Abdelmeged, Taweesup Api-
wattanapong, Bryan Chadwick, John Edstrom, Karl J. Lieber-
herr, Barbara G. Ryder, Wesley Tansey, Dave Zook, and the
anonymous AOSD reviewers for several helpful suggestions
that improved the manuscript.

9. REFERENCES
[1] A. Abdelmeged, T. Skotiniotis, and K. J. Lieberherr.

Controlled evolution of adaptive programs. In
IWPSE-Evol ’09: Proceedings of the joint
international and annual ERCIM workshops on
Principles of software evolution (IWPSE) and
software evolution (Evol) workshops, pages 89–98,
New York, NY, USA, 2009. ACM.

[2] C. Bauer, G. King, and I. NetLibrary. Hibernate in
Action. Manning, 2005.

[3] D. Berry. Academic Legitimacy of the Software
Engineering Discipline. Carnegie-Mellon University,
Software Engineering Institute, 1992.

[4] C. Beust and H. Suleiman. Next Generation Java
Testing: TestNG and Advanced Concepts.
Addison-Wesley Professional, 2007.

[5] W. Brown, R. Malveau, H. McCormick III, and
T. Mowbray. AntiPatterns: refactoring software,
architectures, and projects in crisis. John Wiley &
Sons, Inc. New York, NY, USA, 1998.

[6] V. Cepa and M. Mezini. Declaring and enforcing
dependencies between .NET custom attributes. In
Generative Programming and Component Engineering,
pages 319–331. 2004.

[7] Eclipse Foundation. Eclipse Java development tools,
March 2008. http://www.eclipse.org/jdt.

[8] M. Eichberg, T. Schäfer, and M. Mezini. Using
annotations to check structural properties of classes.
In 8th International Conference on Fundamental

Approaches to Software Engineering (FASE 2005),
volume 3442, pages 237–252. Springer, 2005.

[9] M. Fähndrich, M. Carbin, and J. R. Larus. Reflective
program generation with patterns. In GPCE ’06:
Proceedings of the 5th international conference on
Generative programming and component engineering,
pages 275–284, 2006.

[10] L. Gremillion. Determinants of program repair
maintenance requirements. Communications of the
ACM, 27(8):826–832, 1984.

[11] S. S. Huang and Y. Smaragdakis. Class morphing:
Expressive and safe static reflection. In Conf. on
Programming Language Design and Implementation
(PLDI), pages 79–89. ACM, June 2008.

[12] S. S. Huang, D. Zook, and Y. Smaragdakis. Morphing:
Safely shaping a class in the image of others. In
Proceedings of the European Conference on
Object-Oriented Programming (ECOOP), pages
399–424. Springer-Verlag, Aug. 2007.

[13] JBoss. JBoss AOP.
http://www.jboss.org/jbossaop/.

[14] R. Khatchadourian, P. Greenwood, A. Rashid, and
G. Xu. Pointcut rejuvenation: Recovering pointcut
expressions in evolving aspect-oriented software. In
IEEE/ACM International Conference on Automated
Software Engineering (ASE 09), 2009.

[15] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An overview of
AspectJ. In ECOOP. Springer-Verlag, 2001.

[16] C. Koppen and M. Stoerzer. PCDiff: Attacking the
fragile pointcut problem. In European Interactive
Workshop on Aspects in Software (EIWAS), 2004.

[17] O. Liechti, M. Sifer, and T. Ichikawa. Structured
graph format: XML metadata for describing Web site
structure. Computer Networks and ISDN Systems,
30(1-7):11–21, 1998.

[18] V. Massol and T. Husted. JUnit in Action. Manning,
2004.

[19] C. Mastroianni, D. Talia, and P. Trunfio. Managing
heterogeneous resources in data mining applications
on grids using XML-based metadata. In Parallel and
Distributed Processing Symposium, 2003. Proceedings.
International, page 11, 2003.

[20] Maven. Security Annotation Framework.
http://safr.sourceforge.net/.

[21] E. Miller. An introduction to the resource description
framework. Journal of Library Administration,
34(3):245–255, 2001.

[22] C. Noguera and L. Duchien. Annotation framework
validation using domain models. Lecture Notes in

Computer Science, 5095:48–62, 2008.

[23] A. Orso, M. Harrold, and D. Rosenblum. Component
metadata for software engineering tasks. In 2nd Int.
Workshop on Engineering Distributed Objects (EDO
2000). Springer.

[24] J. H. Perkins. Automatically generating refactorings
to support API evolution. In PASTE ’05: Proceedings
of the 6th ACM SIGPLAN-SIGSOFT Workshop on
Program Analysis for Software Tools and Engineering,
pages 111–114, New York, NY, USA, 2005. ACM.

[25] C. Richardson. Untangling enterprise Java. ACM
Queue, 4(5):36–44, 2006.

[26] S. Roock and A. Havenstein. Refactoring tags for
automatic refactoring of framework dependent
applications. In Proc. Int’l Conf. eXtreme
Programming and Flexible Processes in Software
Engineering (XP), 2002.

[27] Spring. Java web service.
http://static.springsource.org/spring/docs/3.
0.x/spring-framework-reference/pdf/
spring-framework-reference.pdf.

[28] M. Stoerzer and J. Graf. Using pointcut delta analysis
to support evolution of aspect-oriented software. In
Proceedings of the 21st IEEE International Conference
on Software Maintenance (ICSM’05), pages 653–656.
Citeseer, 2005.

[29] R. Stuckert. JUnit reloaded, December 2006.
http://today.java.net/pub/a/today/2006/12/07/
junit-reloaded.html.

[30] Sun Developer Network. Java Adventure Builder
Reference application. http:
//java.sun.com/developer/releases/adventure/.

[31] Sun Developer Network. Java Persistence API.
http://java.sun.com/javaee/technologies/
persistence.jsp.

[32] Sun Developer Network. Java Pet Store 2.0 reference
application. http://java.sun.com/developer/
releases/petstore/petstore1_3_1_02.html.

[33] Sun Microsystems Inc. Java 2 Platform, Enterprise
Edition (J2EE), 2003.

[34] the AspectJ Team. The AspectJ 5 development kit
developer’s notebook. http://eclipse.org/aspectj/
doc/released/adk15notebook/index.html.

[35] T. Tourwé and T. Mens. Automated support for
framework-based software evolution. In ICSM ’03:
Proceedings of the International Conference on
Software Maintenance, page 148, Washington, DC,
USA, 2003. IEEE Computer Society.

[36] C. Walls, N. Richards, and R. Oberg. XDoclet in
action. Manning, 2004.

