
Constraint-Driven Dynamic Adaptation of
Mobile Applications for Quality of Service

Young-Woo Kwon1 and Eli Tilevich2

1Department of Computer Science, Utah State University
young.kwon@usu.edu

2Department of Computer Science, Virginia Tech
tilevich@cs.vt.edu

Abstract. Modern mobile applications are executed in a variety of ex-
ecution environments by users with different preferences for energy sav-
ings, performance efficiency, reliability, and privacy. Offloading a mobile
application’s functionality to execute at a remote server has become an
important energy and performance optimization technique. Mobile appli-
cations, however, executed over networks with divergent latency/band-
width characteristics, access cloud-based servers that offer different levels
of performance, availability, and privacy. An effective offloading mecha-
nism must consider all these factors when determining which function-
ality should be offloaded to which server. In addition, offloading can be
used to save energy, improve performance, or both. Implementing an
adaptive offloading mechanism driven by both runtime conditions and
user preferences is non-trivial. In this paper, we present a novel approach
to configurable, adaptive offloading for mobile applications that is driven
by constraint solving. The programmer annotates energy intensive func-
tionality at the method boundary. The end user, via a configuration
menu, specifies how to prioritize energy savings, performance efficiency,
server availability, and privacy. The specified priorities are then auto-
matically translated into constraints used at runtime by a third-party
constraint solver to drive an adaptive offloading runtime system.

Key words: mobile applications, cloud offloading, energy optimization,
constraint-solving, adaptation, software reengineering

1 Introduction

Mobile computing is characterized by a high heterogeneity of the hardware/soft-
ware stack and network environments. That is, the same mobile application can
be executed on mobile devices with different hardware configurations, varying
in terms of their respective CPU, memory, and communication characteristics
[8]. Another source of heterogeneity are mobile operating systems, whose im-
plementation policies can affect the performance/energy profiles of the executed
applications [16]. Finally, mobile devices use a great variety of network types
with divergent characteristics, including latency, bandwidth, congestion, packet
loss, and interference. Another prominent trend of mobile computing is the appli-

2 Young-Woo Kwon, Eli Tilevich

cations’ energy demands outpacing the devices’ battery capacities. Rapid growth
in application functionality requires ever greater energy budgets, thus subsuming
any advances in battery capacities.

A common energy optimization technique for mobile applications is cloud
offloading—placing energy-intensive functionality to run at a remote, cloud-
based server. Executing this functionality at a remote server saves the mobile
device’s battery power. The superior computational power of offloading servers
also typically increases the performance efficiency of the offloaded functionality.
As a result, cloud offloading has become a versatile optimization tool; program-
mers can use it to minimize energy consumption, maximize performance, or
maximize some given energy-performance ratio.

By taking advantage of distributed execution, cloud offloaded applications
can become subject to partial failure and privacy vulnerabilities. In particular,
mobile networks are prone to volatility, with fluctuations in latency, bandwidth,
and congestion. Depending on their location and administrative procedures, of-
floading servers may offer different levels of trust. Thus, while providing energy
optimization advantages, cloud offloading also incurs problems traditionally as-
sociated with distributed execution.

These realities of mobile execution give rise to two fundamental problems of
engineering effective cloud offloading optimizations: (1) how can the application
programmer express the desired optimization priorities? (2) how can the system
programmer create a runtime adaptation mechanism to drive offloading opti-
mizations that takes into account both the expressed optimization priorities and
the runtime environment in place? Solving these problems requires overcoming
the high level of complexity imposed by the need to consider multiple parame-
ters, both static and dynamic. These parameters need to be efficiently obtained
and evaluated. Furthermore, the considered parameters may change depending
on users, devices, and deployments. In the end, the goal of adaptive cloud of-
floading is to decide which portion of the mobile application’s functionality to
offload to which server.

In this paper, we present a novel dynamic adaptation approach for cloud
offloading that leverages constraints satisfaction. We express the optimization
priorities of cloud offloading as a constraint satisfaction problem (CSP). Infor-
mally, a CSP computes the values that a set of variables must take in order
to satisfy a set of conditions imposed on the variables. Our system architecture
maps variables to offloading optimization criteria (e.g., energy savings, perfor-
mance efficiency, server availability, server trustworthiness, etc.); values to the
actual runtime parameters of the criteria (e.g., the amount energy consumed by
a method, the time taken to execute a method, the average failure rate for an of-
fload server, and the user-specified degree of trust for a server); conditions to the
end user’s specified optimization priorities (e.g., minimize energy consumption,
minimize execution time, maximize a given energy/performance ratio, prefer
offload servers with higher trust levels).

This paper makes three technical contributions: (1) a software model for
constraint-solving driven adaptive cloud offloading, (2) a reference implementa-

Title Suppressed Due to Excessive Length 3

tion of adaptive runtime system based on our model, and (3) empirical evaluation
through a series of micro-benchmarks and case studies of optimizing the energy
efficiency of third-party mobile applications.

The rest of this paper is structured as follows. Section 2 presents a real world
scenario applying our approach and introduces the concepts and technologies
used in this work. Section 3 details our technical approach. Section 4 presents
the results of evaluating our approach. Section 5 discusses the advantages and
limitations of our approach. Section 6 compares our approach to the related state
of the art, and Section 7 presents concluding remarks.

2 Real World Scenario and Technical Background

In this section, we first present a real world scenario that motivates our approach.
Then, we introduce the main technical concepts used in this work.

2.1 Real World Scenario

Consider traveling to a foreign country whose language you cannot read. Not
being able to read public signs in an unfamiliar language (e.g., Chinese for an
English-speaking visitor) is likely to hinder one’s traveling experiences. Mezzo-
fanti is an Android application that solves this problem; it translates signs taken
as a picture with the mobile device’s camera. The taken pictures parameterize
an optical character recognition (OCR) algorithm that extracts the text con-
tained in the picture. The application then translates and presents the extracted
text using automatic language translation. Because of the energy-intensive OCR
functionality, using the Mezzofanti application heavily can quickly drain the
device’s battery.

As consuming an inordinate amount of energy, the OCR functionality makes
a promising candidate for cloud offloading. That is, instead of running the OCR
algorithm on the mobile device, text images can be transferred across the network
to the cloud server, so that the OCR functionality would be executed remotely,
without draining the device’s battery power. The extracted text can then be
transferred back to the device to be automatically translated. Because the server
processing capacities (i.e., CPU speed, memory size, cache architecture, etc.) are
more powerful than those on the device, the offloaded OCR functionality is also
bound to improve its performance efficiency.

Nevertheless, one must ask whether the OCR functionality should be of-
floaded once and for all. For example, when a mobile device is disconnected,
offloading optimizations render applications unusable. When the network con-
nection is poor, the energy savings afforded by the offloading optimization will
quickly disappear, as retransmitting lost packets over a volatile cellular network
can tap deeply into the application’s energy budget. By contrast, in the presence
of a stable network connection, an offloading optimization can be used to reduce
energy consumption, to maximize performance, or to pursue an optimization
strategy that correlates both of these objectives.

4 Young-Woo Kwon, Eli Tilevich

Consider the following three scenarios of using Mezzofanti that would prior-
itize the offloading of the OCR functionality in different ways:

1. When using the application within a close proximity to the hotel, the user
may want to maximize both energy savings and performance efficiency. Run-
ning out of battery power would not be catastrophic, as the user can come
back to the hotel and recharge the device.

2. When riding a city bus and using the application to make sense of public
service announcements, the user may want to maximize performance effi-
ciency. If an announcement, for example, conveys the intent to alter the
original service route, the user needs to learn this information as soon as
possible to have enough time to get off at the very next stop if necessary.

3. When exploring the areas far away from the hotel, the user may want to
maximize energy savings. The user needs to keep the device operational for
as long as it takes to get back to the hotel.

Our work addresses the need for scenario-specific configurability for adaptive
cloud offloading optimizations as demonstrated by the scenarios above.

2.2 Technical Background

The major technologies used in this work are cloud offloading and constraints
satisfaction. We describe them in turn next.

Cloud Offloading Cloud offloading has become a popular optimization tech-
nique for mobile applications. It leverages the resources of cloud-based remote
servers to execute portions of a mobile application’s functionality. By execut-
ing some of the application’s functionality in the cloud, offloading reduces the
amount of energy consumed by the mobile device, thus saving its battery power.
An additional benefit of cloud offloading is improved performance efficiency,
as cloud servers have hardware resource more powerful that those available on
mobile devices. Application-level cloud offloading optimizations are typically im-
plemented by partitioning the application into the client and server parts com-
municating across the network.

In our prior work in cloud offloading, we introduced a novel partitioning
mechanism that leverages static program analysis and program transformation
techniques to optimize a transferred program state [7]. In addition, we introduced
an adaptive offloading mechanism, in which the local/remote application parts
are determined at runtime, as driven by the execution environment in place [9].

Constraint Satisfaction Problem Constraint satisfaction problem (CSP) is
a mathematical model that describes optimization scenarios involving objects
and their states; various constraints are imposed on the states, and the solution
must satisfy all the constraints. Formally, a CSP involves finite sets of domains,
variables, and constraints. A domain defines a finite set of values or value ranges.
Each variable is assigned to a domain. A constraint is a predicate expressed in
first-order logic. A constraint expresses the condition of assigning a domain to

Title Suppressed Due to Excessive Length 5

variables. To solve a CSP is to find an assignment that satisfies all the speci-
fied constraints. A common variant of CSP is the boolean satisfiability problem
(SAT), which uses a boolean formula to solve a CSP.

As a specific example, consider a domain D = {1, 2, 3}, assigned to variables
X and Y (i.e., X ∈ D and Y ∈ D). We want to satisfy the following two
constraints: C1 : X 6= Y and C2 : X < Y . The first solution for this CSP is
X = 1 and Y = 2. To find the second solution (i.e., X = 2 and Y = 3), we
would have to add another constraint C3 : (X 6= 1) ∧ (Y 6= 2). In terms of its
time complexity, a general CSP is NP-complete. However, practical heuristics
have been created to solve CSPs in a reasonable time.

3 Constraints-Driven Adaptive Cloud Offloading

In this section, we present constraints-driven adaptive cloud offloading, a new
approach to enhancing mobile applications with adaptive energy optimization
capabilities. Then, Section 4 presents the empirical results of applying our ap-
proach to third-party mobile applications.

3.1 Approach Overview

Our approach enhances third-party applications with the ability to optimize
their execution via user-configured adaptive cloud offloading. Figure 1 outlines
the design space for this work, whose key objective is to flexibly adapt offload-
ing optimizations for the inherent variabilities of distributed mobile execution.
Specifically, cloud offloading environments are characterized by the presence of
heterogeneous mobile devices, offloading servers, mobile/cellular networks, and
user privacy preferences.

Adaptive Middleware

Annotation

Validation
State

Selection

Program
Transformation Deployment

Environment
Monitor

Offloading
Manager

Constraints
SolverPreferences

Optimization Priorities

Settings

Application
Programmer

End User

Fig. 1. Overall procedure for the proposed approach.

Figure 1 shows our ap-
proach’s main workflow.
The runtime adaptivity
of the offloading behavior
is parameterized by both
application programmers
and end users. The appli-
cation programmer’s re-
sponsibility is to identify
the methods that impose a high energy overhead and would make promising
offloading candidates. How the programmers identify these methods is orthogo-
nal to our approach—they can take advantage of existing energy profiling tools
[17, 10]. The identified methods are marked by annotation @OffloadingCandidate.
Based on their application knowledge, programmers provide additional con-
figuration parameters using the Selection annotation, which defines the criteria
of EnergySavings—minimize the amount of energy consumed, PerformanceEfficiency—
minimize the execution time, Availability—favor the offloading servers that are

6 Young-Woo Kwon, Eli Tilevich

more likely to be available, Privacy—favor the servers deemed as more trustwor-
thy. The following code snippet presents an example of annotating a method:

public class OCR {
@OffloadingCandidate
@Selection(criteria={EnergySavings|PerformanceEfficiency|Availability})
public void ImgOCRAndFilter(...) { ... } }

The programmer identified this method as an energy hotspot suitable for a
cloud offloading optimization. The programmer also specified that the offloading
should be parameterized with the optimization criteria of energy savings, perfor-
mance efficiency, and server availability. These criteria are then made available to
end users, who determine the actual runtime behavior of the identified offloading
optimization.

The annotated application is then analyzed and transformed by going through
the following steps. The programmer specified annotations are first verified to
make sure that the identified candidate methods can be safely offloaded (i.e.,
they do not rely on device-specific resources such as sensors). Then a static
program analysis determines the program state that must be transferred to the
server and back. Based on the analysis’ results, a bytecode enhancer modifies
the compiled application to generate the necessary checkpoints1.

Based on the offloading criteria specified by the @Selection annotation, a new
settings menu is added to the optimized application. Once the end user selects
the optimization criteria, a generator, also added to the application, synthesizes a
set of constraint declarations for each specified criteria. The details of generating
the constraint declarations appear in Section 3.2.

The enhanced application is installed on the mobile device and on each avail-
able offloading server. A simple configuration file installed on the mobile device
lists the URLs of the available offloading servers, their respective trustworthiness
rankings (in percents), and the availability threshold (i.e., the availability rate
bellow which the server should not be considered). This file should be provided
by a person knowledgeable about the application’s execution environment, such
as a system system administrator or a sophisticated end user. In addition to the
enhanced application, our approach also distributes a small runtime system pa-
rameterized with the synthesized constraint specifications. The runtime system
includes an environment monitor to keep track of the execution environment, a
constraint solver to determine offloading strategies at runtime, and an offload-
ing manager to handle network communication and state synchronization. The
details of the runtime system appear in Section 3.3.

3.2 Generating and Evaluating CSP Constraint

Recall that CSP constraints are boolean predicates that can be efficiently evalu-
ated by a constraint solver. Our approach uses constraints to express commonly
accepted invariants of the cloud offloading optimization. For example, to save

1 We employed the same static program analysis and program transformation mech-
anisms developed through our prior work [7], [9].

Title Suppressed Due to Excessive Length 7

energy by offloading a method to the cloud, the amount of energy consumed
by the network transfer must be lower than the amount of energy consumed by
executing the method locally. Similarly, to increase performance by offloading a
method to the cloud, the time taken by the network transfer must be less than
the time taken by executing the method locally. With respect to server avail-
ability, the server with the highest observed availability rate should be selected.
With respect to server privacy, the server with the highest level of trustworthi-
ness, as specified by the system administrator, should be selected. The reference
implementation of our approach provides the invariants for energy savings, per-
formance efficiency, availability, and privacy.

The constraint definitions are generated at configuration time, once the end
user has selected the optimization criteria. These constraint definitions param-
eterize a third-party constraint solver, whose role is to efficiently determine the
offloading strategy that meets the user’s preferences for a given distributed ex-
ecution environment. Therefore, the constraints adhere to the common CSP
format, which is accepted by many third-party constraint solvers. Even though
the reference implementation uses the Sugar constraint solver [12], this system
component is plug-in replaceable.

The user interface for expressing the optimization criteria enables the end
user to specify an ordered set of either single criteria or correlations of criteria.
The items appearing earlier in the set have higher priority. Consider the following
two examples of user-specified optimization settings:
Example #1: The end user selects “Energy Savings” as the first criterion
and ”Performance Efficiency” as the second criterion. This selection forms an
ordered set of two items and is interpreted as follows: (1) select offloading servers,
executing a method on which would consume less energy than executing the
method on the mobile device (i.e., by considering the network communication
costs), (2) select offloading servers, executing a method on which would take
less time than executing the method on the mobile device, (3) compute the
intersection of the results from steps (1) and (2) (i.e., satisfying both criteria),
and (4) select the highest ranking member of the intersection by favoring the
first criterion over the second one.
Example #2: The end user selects “Energy Savings & Performance Efficiency”
as the first criterion and “Availability” as the second criterion. This selection
forms an ordered set of two items and is interpreted as follows: (1) select of-
floading servers, executing a method on which would yield higher energy/per-
formance ratio than executing the method on the mobile device, (2) select of-
floading servers whose observed availability rates are higher than the system
administrator-specified availability threshold, (3) compute the intersection of
the results from steps (1) and (2), and (4) select the highest ranking member of
the intersection by favoring the first criterion over the second one.
Example #3: The end user selects “Performance Efficiency” as the first crite-
rion, “Energy Savings” as the second criterion, and “Availability” as the third
criterion. This selection forms an ordered set of three items and is interpreted
as follows: (1) select offloading servers, executing a method on which would take

8 Young-Woo Kwon, Eli Tilevich

less time than executing the method on the mobile device, (2) select offloading
servers, executing a method on which would consume less energy than executing
the method on the mobile device, (3) select offloading servers whose observed
availability rates are higher than the system administrator-specified availability
threshold, (4) compute the intersection of the results from steps (1), (2) and
(3) (i.e., satisfying all three criteria), and (5) select the intersection’s highest
ranking member favoring the first criterion over the second one, and the second
over third.

To see how this selection process works with specific runtime parameters,
consider applying the following runtime environment to the two examples above.
Table 1 presents three runtime parameters: energy consumption, execution time,
and availability rate for Local execution on the mobile device, and on three
offloading servers, S1, S2, S3. The parameters are dynamically estimated by
our adaptive runtime system, whose design is detailed in Section 3.3.

Table 1. Example runtime environment.

Local S1 S2 S3

Energy Consumption (Joule) 20 15 17 22
Execution Time (ms) 250 200 125 100
Availability Rate (%) 100 90 85 98
Energy/Performance Ratio 30 50 88 54

In Example #1: (1) The energy savings constraint will select servers S1 and
S2, whose energy consumption numbers of 15 and 17 are smaller than that of
Local (i.e., to be executed on the mobile device). (2) The performance efficiency
constraint will select servers S1, S2, and S3, whose estimated execution time is
shorter than that of Local. (3) The intersection between these results is S1 and
S2. (4) Select S1, as its energy consumption is lower than that of S2.

In Example #2: (1) The energy and performance constraint will select
servers S1, S2 and S3, whose respective energy/performance ratios are higher
than that of Local. (2) The availability constraint will select servers S1 and
S3, whose observed availability rates are higher than the 90% user-specified
threshold. (3) The intersection between these results is S1 and S3. (4) Select S3
over S1 as having a higher energy/performance ratio.

In Example #3: (1) The performance efficiency constraint will select servers
S1, S2, and S3, whose estimated execution time is shorter than that of Local.
(2) The energy savings constraint will select servers S1 and S2, whose respective
energy consumption numbers are smaller than that of Local. (3) The availability
constraint will select server S3, whose availability rate is higher than the specified
threshold of 95%. (4) The intersection between these results is empty. (5) Execute
locally (however, if the availability rate of S2 were to increase to above 95%, it
would be selected).

Even though constraint solving is known to be an NP-Complete problem, the
limited number of constraints used in a typical cloud offloading scenario makes
the approach not just feasible but quite efficient. Running the constraint solver
incurs energy and performance overheads not surpassing more than a couple

Title Suppressed Due to Excessive Length 9

of percentage points of the overall energy/performance budgets. We detail our
assessment of the constraint solving overheads in Section 4.

Generating constraint definitions, a one-time expense incurred at the con-
figuration time, is linear in complexity, in which a predefined template is just
filled in with application-specific parameters. Figure 2 shows a specific example
of generating a constraint definition from a template.

; BEGIN #name
; nbDomains=#num
#domains
; nbVariables=#num
#variables
; nbPredicates=#num
#predicates
; nbConstraints=#num
#constraints
; END #name

; BEGIN EnergyAndPerformance
; nbDomains=2
(domain D1 (#energy))
(domain D2 (#performance))
; nbVariables=2
(int V1 D1)
(int V2 D2)
; nbPredicates=2
(predicate (P1 X) (le X #e_local))
(predicate (P2 X) (le X #p_local))
; nbConstraints=2
(P1 V1) ; C1
(P2 V2) ; C2
; END EnergyAndPerformance

Fig. 2. CSP template and constraint files.

3.3 Adaptive Runtime System

Our approach hinges on the ability to adaptively offloading functionality at run-
time based on the current environmental conditions. This ability is provided by
an adaptive runtime system that we describe next. The runtime system runs
on the devices and provides monitoring, estimation, and offloading services. It
monitors network delay, network connection type, CPU frequency, CPU time,
and voltage. It estimates the expected energy consumption and execution time
of running the offloaded method on each offloading server. It offloads meth-
ods, transferring and synchronizing the required program state. Running on the
mobile device, the runtime system must exhibit low energy and performance
overheads to be practical.

Adaptive Cloud Offloading Middleware

Execution
History Module

Constraint Solving Module
Monitoring

Module

System Monitoring

Estimator

State Management
Module

State
Synchronization

Network Module

Network Channel
Factory

Sync.
Channel

Async.
Channel

Constraint Solving
Workflow Generator

Energy Data

Performance
Data

CSP Solver

Fig. 3. Adaptive runtime system.

Major Components Figure 3
shows a component diagram of
the runtime system. The function-
ality is encapsulated within five
modules: monitoring, constraint
solving, state management, net-
work, and execution history.

The monitoring module is re-
sponsible for monitoring the ex-
ecution environment, both of the
mobile device and of the network.
The system monitoring unit taps
into the platform diagnostics API

10 Young-Woo Kwon, Eli Tilevich

to periodically obtain the values of network connection type and current voltage.
The CPU usage time and frequency are retrieved from proc\[pid]\stat. The current
network delay as well as the execution and idle times of network communication
are measured by sending probe packets to remote servers.

To predict the amount of energy to be consumed during an offloading, the
estimator correlates previously measured energy consumption values and the
currently measured value:

Eprtd = {Eavg
cpu + (C

act
net × T

est act
net) + (C

idle
net × T

est idle
net)} × V

where Eprtd is the estimated future energy consumption, Eavg
cpu is the average

energy consumption value of the offloading operation, T est actnet is the estimated
communication time, and T est idlenet is the estimated idle time, respectively. V is
the voltage reported by platform-specific battery APIs (e.g., the BatteryStat class
on Android). Finally, the estimator computes the expected execution time by
averaging the prior execution time and predicting the communication time.

Having completed an offloading operation, the system monitoring unit mea-
sures the amount of energy consumed:

E = {Σ(Cact
cpu@f × T

(u+s)
cpu) + (Cact

net × T
act
net) + (Cidle

net × T
idle
net)} × V

where Cactcpu@f is the electric current of the CPU at a given clock speed. Tucpu and

T scpu are the user and system times of an application process, respectively. Cactnet

and Cidlenet are the electric current of the network processor needed during the
active and idle phases, respectively. T actnet and T idlenet are the measured active and
idle times during the offloading operation, respectively. The energy consumption
and performance are continuously measured and cached for use in subsequent
estimations, thus improving the accuracy of the estimation process.

delays← checkDelays(URLs);
FOREACH Sn ∈ ∀S DO
Durl ← delays.getDelay(url)
Eprtd ← computeEnergyConsumption(Durl, Sn)
Tprtd ← computeExecutionTime(Durl, Sn)
updateConstraints(url, Eprtc, Tptrd)
END FOREACH

/∗∗ Determine a server & an offloading unit ∗/
offloadingServer,method← solveConstraints()

/∗∗ Store the current program state ∗/
toServer ← checkpointCurrentState()

/∗∗ Send prog. state to the remote server ∗/
sendToServer(offloadingServer, toServer)

/∗∗ Receive a new state or exception and
notify of it to all relevant parties ∗/

CASE Succeed
fromServer ← offloadingCompleted(...)
Ecnsmd, Texec ←− endMeasurement()
update(offloadingServer, toServer,
fromServer, delays, Ecnsmd, Texec)
synchronize(fromServer, toServer)
CASE Fail
exception← offloadingFailed(...)
update(url, toServer, exception)

Fig. 4. Adaptive cloud offloading operation.

The constraint solving mod-
ule is responsible for running
the constraint-solving workflow,
which computes solutions that
satisfy the current constraints.
The constraint workflow genera-
tor parameterizes the generated
constraint definitions with the ac-
tual runtime values obtained from
the monitoring module, so that
the CSP solver always works with
the most up-to-date runtime in-
formation.

The state management mod-
ule is responsible for synchroniz-
ing the program state. The pro-
gram state is synchronized by
using copy-restore, a parame-
ter passing semantics for remote
methods that is applicable to

Title Suppressed Due to Excessive Length 11

complex linked data structures [15]. This semantics first copies the reachable
program state to the server, and then efficiently synchronizes the client’s state
with the server modified data, while preserving all the client-side aliases.

The network module is responsible for managing connections between the
client and the offloading servers. The network channel factory creates multi-
ple network channels for each server. A network channel reports the measured
network delay, sends/receives messages, and computes the time of each commu-
nication phase (i.e., sending, idle, and receiving time).

The execution history module is responsible for managing the offloading his-
tory data. It maintains the energy and performance caches, which are consulted
by the estimator unit when computing the expected energy consumption and ex-
ecution time numbers. The pseudo code in Figure 4 shows the runtime execution
logic and the interactions between the modules described above.

4 Evaluation

This section describes the micro benchmarks and case studies that evaluate the
effectiveness of our approach. The experimental setup includes a low-end mo-
bile device (600MHz CPU, 256MB RAM, 802.11g), a high-end mobile device
(1.5GHz dual-core CPU, 2GB RAM, 802.11n), and an offload server (3.0GHz
quad-core CPU, 8GB RAM). Table 2 shows the device-specific values that pa-
rameterize the runtime systems of the mobile devices under test. To measure
energy consumption, we used our energy model described in Section 3.3.

Table 2. Manufacturer provided energy profiles.

High-end Device Low-end Device High-end Device Low-end Device

CPU

1512.0 MHz: 577 mA 800.0 MHz: 280 mA
WiFi

96 mA 130 mA
1209.6 MHz: 408 mA 685.7 MHz: 236 mA 0.3 mA 4 mA
907.2 MHz: 249 mA 571.4 MHz: 207 mA

Mobile
250 mA 300 mA

604.8 MHz: 148 mA 342.8 MHz: 165 mA 3.4 mA 3 mA
302.4 MHz: 55 mA 228.5 MHz: 87 mA

4.1 Micro Benchmarks

Benchmark I: Runtime System Overheads In this benchmark, we executed
empty remote methods passing to them three different payloads (100kB, 1MB,
and 5MB) over the network (20ms latency and 50Mbps bandwidth), with and
without the adaptive runtime functionality enabled, thus isolating the runtime
system’s performance and energy overheads 2. Table 3 shows the results for each
device. As expected, both the performance and energy overheads of the runtime
system are proportional to the offloaded methods’ payload (i.e., the size of the
program state transferred). Since the average size of the program state trans-
ferred during an offloading is 2-3 MB, the corresponding energy/performance

2 To emulate network conditions, we used Network Emulator for Windows Toolkit
(NEWT) version 2.1.

12 Young-Woo Kwon, Eli Tilevich

overheads of ˜100mJ/˜300ms indicate one could use adaptive runtime system to
drive offloading in practical settings.

Table 3. Performance and energy consumption overhead.

Payload
High-end device Low-end device
Plain Adaptation Plain Adaptation

100kB
Energy 16mJ 22mJ 41mJ 46mJ
Time 160 ms 167ms 227ms 264ms

1MB
Energy 236mJ 214mJ 362mJ 407mJ
Time 1132ms 1156ms 1355ms 1278ms

5MB
Energy 1643mJ 1828mJ 3012mJ 3287mJ
Time 3371ms 3904ms 5192ms 5673ms

Benchmark II: Performance and Energy Consumption of Solving Con-
straints In this benchmark, we assessed the scalability of the constraint solver
w.r.t. the number of constraints. Figure 5 shows that the solver’s performance
time and energy consumption grow linearly with the number of constraints. Since
the number of constraints is not expected to exceed five in a typical application,
the solver does not appear to be either an energy or performance bottleneck.

0

50

100

150

200

250

300

350

1 3 5 7 9 11 13 15 17 19

So
lv

in
g

 T
im

e
 (

m
s)

The number of constraints

High-end Device
Low-end Device

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19

En
er

gy
 c

o
n

su
m

p
ti

o
n

 (
m

J)

The number of constraints

High-end Device
Low-end Device

Fig. 5. Performance and energy consumption of the constraint solver.

Benchmark III: Multi-Server Environment In this benchmark, we exe-
cuted empty remote methods passing to them the 1MB payload over two types of
networks with the following round trip time (RTT)/bandwidth ratios (Network
I: 20ms/50Mbps; Network II: 50ms/3Mbps). While executing these methods, the
runtime system ran its estimation algorithm taking into account an increasing
number of offloading servers. As it turned out, the number of offloading servers
does not significantly affect their respective runtime/energy efficiency due to the
asynchronous architecture.

Table 4. Performance comparison when connecting multiple servers.

Server # 1 2 3 4 5

Network I 904ms 1064ms 978ms 1036ms 1154ms
Network II 1967ms 1960ms 1952ms 1991ms 2111ms

Title Suppressed Due to Excessive Length 13

24.8

4.6 4.5

10.4

0

5

10

15

20

25

30

En
er

gy
 C

o
n

su
m

p
ti

o
n

(J

o
u

le
)

High-end Device

Selected
 Server

15.4

5.9 6.3

20.2

0

5

10

15

20

25

Ex
ec

u
ti

o
n

 T
im

e
(S

ec
.)

 High-end Device

Selected
 Server

35.7

6.7 6.8

13.6

0

10

20

30

40

En
er

gy
 C

o
n

su
m

p
ti

o
n

(J

o
u

le
)

Low-end Device

Selected
 Server

43.6

13.3 14.1

25.4

0

10

20

30

40

50

Ex
e

cu
ti

o
n

 T
im

e
(S

e
c.

) Low-end Device

Selected
 Server

(a) Energy consumption and execution time of the OCR app.

7.48

5.6 5.5

8.2

0

2

4

6

8

10

En
er

gy
 C

o
n

su
m

p
ti

o
n

(J

o
u

le
)

High-end Device

Selected Servers

3.2
4.5 5.4

14.2

0

5

10

15

Ex
ec

u
ti

o
n

 T
im

e
(S

ec
.)

 High-end Device

Selected Servers

17.3

10.6 10.7

17.1

0

5

10

15

20

En
er

gy
 C

o
n

su
m

p
ti

o
n

(J

o
u

le
)

Low-end Device

Selected Servers
16.6

12.4 13.2

24.1

0

5

10

15

20

25

30

Ex
ec

u
ti

o
n

 T
im

e
 (

Se
c.

) Low-end Device

Selected Servers

(b) Energy consumption and execution time of the face recognition app.

Fig. 6. Experimental results of the subject applications.

4.2 Case Study

To determine if our approach can improve the energy efficiency of real-world
mobile applications, we experimented with open source projects as our experi-
mental subjects. Mezzofanti3, described in Section 2, extracts and translates text
from images; we marked its method ImcOCRAndFilter in class OCR as @OffloadingCandidate
with the @Selection criteria set to both EnergySavings and PerformanceEfficiency. JJIL4

recognizes faces from images; we marked its method push in class DetectHaarParam as
@OffloadingCandidate with the @Selection criteria set to both EnergySavings and Performance
Efficiency. A separate, preceding profiling procedure determined the annotated
methods as energy and computation intensive.

3 https://code.google.com/p/mezzofanti
4 http://code.google.com/p/jjil/

14 Young-Woo Kwon, Eli Tilevich

Table 5. Emulated execution environment settings.

S1 S2 S3

Avg. latency(ms)/bandwidth(Mbps) 5/50 5/50 20/3
Additional exec. time (ms) 0 1000 0

Figure 6 shows how our approach has reduced the amount of energy con-
sumed by the subjects. The amount of energy consumed and the execution time
were measured. For each subject, we present four graphs showing the amount of
the energy consumed by their canonical use cases. Specifically, the OCR appli-
cation examines one text image file containing about 200 characters. The face
recognition application examines one image file for the presence of human faces.
The experiment assumes that the end user has configured the OCR applica-
tion for energy+performance and the face recognition application for energy
savings. Table 5 summarizes the emulated experimental environments for each
of the three offloading servers.

In this case study, we assessed whether our adaptive offloading mechanism
would select the most appropriate offloading server to satisfy the specified user
preferences. To that end, we modified the runtime systems’ implementation to
always offload the annotated to all the available servers. This way, we could
measure the actual energy consumption and execution time for each offloading
scenario. We also recorded which offloading server was selected by the constraint
solving module. Thus, we evaluated the effectiveness of our offloading selection
mechanism in the presence of complete knowledge about the resulting ener-
gy/performance gains provided by each server. For the OCR application (Figure
6 (a)), our constraint-solving based offloading selection mechanism always chose
the server that maximized the optimization criteria in place. For the face recog-
nition application (Figure 6 (b)), our selection mechanism chose either the best
or the second best offloading option. This variability stems from optimizing only
for energy savings, with the actual energy consumption levels being quite close
for the two top options (within 3%).

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10

En
er

gy
 C

o
n

su
m

p
ti

o
n

(J

o
u

le
)

Adaptive Plain

Network I Network II

Local Execution

0

5

10

15

1 2 3 4 5 6 7 8 9 10

Ex
ec

u
ti

o
n

 T
im

e
(s

e
c.

)

Adaptive Plain

Network I Network II

Local Execution

Fig. 7. Experimental results of the face recogni-
tion app. when changing network conditions (i.e.,
20ms/50Mbps → 50ms/3Mbps).

For the next experiment, we
studied the impact of changes
in network conditions on the
energy consumption and exe-
cution time improvements af-
forded by offloading optimiza-
tions. To that end, we com-
pared the respective effective-
ness of the plain and adaptive
offloading mechanisms. The user
preferences for the face recog-
nition application were set
to energy+performance. The
main application loop was exe-
cuted 10 times, divided equally
into two phases. The network

Title Suppressed Due to Excessive Length 15

conditions (delay/bandwidth) were emulated for the first phase as 20ms/50Mbps
and for the second one as 50ms/3Mbps. As shown in Figure 7, during the first
phase (favorable network conditions), both plain and adaptive offloading schemes
were equally effective. However, during the second phase (poor network condi-
tions), the adaptive scheme turned more effective, particularly for performance.
Indeed, in the presence of a poor network condition, executing locally, without
any offloading, turned to be the optimal strategy.

5 Discussion

How one can dynamically adapt mobile applications for execution environments
and users is a hard problem, and we do not claim that constraint solving is the
solution. By discussing our approach’s advantages and limitations, we strive to
highlight the complexity of the target domain and the challenges to be overcome.

5.1 Advantages

As compared to the related state of the art on cloud offloading, our approach
offers a high degree of configurability. The adaptive behavior is configured first
by the application programmer and then by the end user. Furthermore, complex
adaptivity requirements are expressed via intuitive interfaces. Specifically, appli-
cation programmers annotate energy and performance intensive methods, while
end users use a GUI-based settings dialog automatically added to the application
based on the annotations.

The mechanism that translates these declarative specifications into sophis-
ticated runtime behavior is our adaptive runtime system. The use of a third-
party constraint solver streamlines the process of evaluating multiple complex
conditions, making it robust and efficient. The runtime system implementation
imposes a low energy and performance overhead on the underlying application
by relying on system-provided facilities for querying the runtime information.

5.2 Limitations

By relying on CSP, our approach has limited scalability, as CSP is an NP-
Complete problem in general. When in an experiment, we increased the num-
ber of constraints to 20, the solver’s performance on a high-end mobile device
remained practical. However, in our broader evaluation, with the number of
constraints not exceeding 4, the solver’s performance was never an issue.

Another limitation stemming from our use of CSP is that our approach can-
not express degrees and ranges as constraints. Because we use an SAT-based
constraint solver, all our constraints are boolean predicates. However, using boolean
predicates turned to be quite suitable for mobile devices that are known for
their heterogeneous hardware and software stacks. In that light, expressing spe-
cific number ranges as constraints would likely turn counterproductive.

16 Young-Woo Kwon, Eli Tilevich

Because our runtime system estimates the energy consumption and perfor-
mance efficiency parameters at the software level model, the resulting estima-
tions turn to be inaccurate. For example, the energy consumed by a method
containing significant file I/O or using sensors may turn inaccurate because our
energy model only takes CPU and network information into account. However,
by adopting this energy measurement approach, we are trading potential inac-
curacy for practicality. Because we aim at deploying our technology on standard
consumer mobile devices, it would not be practical to use specialized hardware
to measure the exact amount of consumed energy.

6 Related Work

Our approach is related to other complementary efforts that optimize mobile
applications via cloud offloading. In addition, the server selection problem has
been applied in other contexts to improve the QoS of distributed systems. Be-
cause these research areas are vast and extensive, we next compare and contrast
our work only with the most closely related examples of prior work.

6.1 Optimizing Mobile Applications via Cloud Offloading

The cloud offloading optimization for mobile applications has been heavily cov-
ered in the research literature, with the following approaches sharing objectives
or techniques with this work. CloneCloud [5] leverages hardware-based dynamic
profiling to automatically partition a mobile application, enabling the server par-
tition to migrate workloads at the thread level by means of a customized VM.
ThinkAir [6] offloads energy intensive methods to the cloud, so that the result-
ing cloud-based execution can be scaled up by running the offloaded methods in
parallel on dynamically allocated VMs.

Our prior contributions to cloud offloading [7, 9] also optimized energy con-
sumption by reducing the amount of transferred program state via program
analysis and driving the offloading via adaptive middleware. Here, we shift our
focus on using cloud offloading to achieve flexible optimization objectives that
consider multiple criteria configured by the end-user. To the best of our knowl-
edge, this work is the first to leverage constraint solving to express the complex
requirements of adaptive cloud offloading and evaluate them at runtime.

6.2 Server Selection

The problem addressed in this work is related to replica selection in distributed
systems and service composition in service-oriented applications. Next, we briefly
cover each research topic to explain how our approach differs from them.

Title Suppressed Due to Excessive Length 17

Replica Selection In distributed systems, servers are replicated to improve
robustness, scalability, and performance. Replica selection algorithms can be
static or dynamic algorithms [13]. Static algorithms for load balancing assign
replicas based on predefined rules (e.g., round robin, random access, proportional
access, etc). Dynamic algorithms are used to improve the quality of service [4]
as well as reduce overheads, increase accuracy, and support scalability.

Our approach differs in two ways. First, it executes the client code (at the
method boundary) at a remote server rather than accessing the server’s func-
tionality. Second, it selects replicas adaptively, as based both on the end user’s
configuration and the runtime environment in place.

Web Service Composition Composing Web services is often driven by users,
with complex service scenarios. Based on business processes, Web services are
composed by using configuration files [2] or domain-specific languages [11] to
express complex service requirements. The heterogeneous Web environment im-
poses the QoS challenges on publishing, locating, and invoking web services.
Constraint solving has also been used to compose Web services efficiently. A
constraint driven Web service composition framework METEOR-S [1] binds
Web services and generates an executable process; it dynamically selects the
best service candidate given the constraints of performance, cost, reliability, and
availability. General constraint-based optimizations, especially CSP, can satisfy
user preferences and QoS requirements in selecting services [3, 14].

Our approach applies constraint satisfaction to a new domain. Rather than
composing software services, our approach selects a server to be used as a plat-
form for executing portions of functionality of mobile applications. Another ma-
jor difference is focusing our constraints-driven optimization on energy savings.

7 Conclusion

This paper introduced a novel dynamic adaptation approach, constraints-driven
adaptive offloading, to optimizing mobile applications for energy-efficiency, per-
formance, availability and privacy. The novelty of our approach lies in expressing
this optimization problem in terms of constraint solving and providing an effi-
cient runtime system that implements this adaptive offloading mechanism. As
configurability has become an intrinsic requirement for modern software, our ap-
proach provides an expressive and efficient solution to the problem of adaptively
leveraging cloud computing resources to optimize mobile applications.

References

1. R. Aggarwal, K. Verma, J. Miller, and W. Milnor. Constraint driven Web ser-
vice composition in METEOR-S. In Proceedings of the 2004 IEEE International
Conference on Services Computing, 2004.

18 Young-Woo Kwon, Eli Tilevich

2. P. Albert, L. Henocque, and M. Kleiner. Configuration based workflow composi-
tion. In Proceedings of the 2005 IEEE International Conference on Web Services,
2005.

3. A. Ben Hassine, S. Matsubara, and T. Ishida. A constraint-based approach to hori-
zontal Web service composition. In Proceedings of the 5th International Conference
on The Semantic Web, 2006.

4. R. L. Carter and M. E. Crovella. Server selection using dynamic path charac-
terization in wide-area networks. In Proceedings of the IEEE 16th Annual Joint
Conference of the IEEE Computer and Communications Societies, volume 3, pages
1014–1021. IEEE, 1997.

5. B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti. CloneCloud: elastic exe-
cution between mobile device and cloud. In Proceedings of the 6th ACM European
Conference on Computer Systems, 2011.

6. S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang. ThinkAir: Dynamic
resource allocation and parallel execution in the cloud for mobile code offloading.
In Proceedings of the IEEE Annual Joint Conference of the IEEE Computer and
Communications Societies, 2012.

7. Y.-W. Kwon and E. Tilevich. Energy-efficient and fault-tolerant distributed mobile
execution. In Proceedings of the 32nd International Conference on Distributed
Computing Systems, 2012.

8. Y.-W. Kwon and E. Tilevich. The impact of distributed programming abstractions
on application energy consumption. Inf. and Software Technology, 55(9):1602–
1613, 2013.

9. Y.-W. Kwon and E. Tilevich. Reducing the energy consumption of mobile applica-
tions behind the scenes. In Proceedings of the 29th IEEE International Conference
on Software Maintenance, 2013.

10. Y. Li, H. Chen, and W. Shi. ACM HotMobile 2013 poster: Bugu: An application
level power profiler and analyzer for mobile devices. SIGMOBILE Mob. Comput.
Commun. Rev., 17(3):27–28, Nov. 2013.

11. D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. McIlraith,
S. Narayanan, M. Paolucci, et al. OWL-S: Semantic markup for Web services.
2004.

12. N. Tamura, T. Tanjo, and M. Banbara. System description of a SAT-based CSP
solver sugar. In Proceedings of the 3rd International CSP Solver Competition, pages
71–75, 2009.

13. C. Tan and K. Mills. Performance characterization of decentralized algorithms for
replica selection in distributed object systems. In Proceedings of the 5th Interna-
tional Workshop on Software and Performance, 2005.

14. R. Thiagarajan and M. Stumptner. Service composition with consistency-based
matchmaking: A CSP-based approach. In Proceedings of the 5th European Con-
ference on Web Services, 2007.

15. E. Tilevich and Y. Smaragdakis. NRMI: Natural and efficient middleware. IEEE
Transactions on Parallel and Distributed Systems, 19(2):174–187, 2008.

16. A. Vahdat, A. Lebeck, and C. S. Ellis. Every joule is precious: The case for
revisiting operating system design for energy efficiency. In Proceedings of the 9th
workshop on ACM SIGOPS European workshop: beyond the PC: new challenges
for the operating system, pages 31–36. ACM, 2000.

17. L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao, and L. Yang.
Accurate online power estimation and automatic battery behavior based power
model generation for smartphones. In Proceedings of the 8th IEEE/ACM/IFIP
International Conference on Hardware/Software Codesign and System Synthesis,
2010.

