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Abstract. The energy demands of modern mobile devices are outstrip-
ping their battery lives. As a result, energy efficiency—fitting an energy
budget and maximizing the utility of applications under given battery
constraints—has become an important system design consideration. Be-
cause network communication incurs high energy costs in mobile ap-
plications, middleware presents a promising target for energy optimiza-
tions. Unfortunately, mainstream middleware mechanisms are oblivious
to the highly volatile nature of mobile networks, operating over which en-
ergy efficiently requires aligning the middleware communication patterns
with the network conditions in place. In this paper, we present a novel
middleware architecture that optimizes energy consumption by adapting
various facets of middleware functionality (e.g., data communication, en-
coding, and compression) dynamically in response to fluctuations in net-
work conditions. By means of a simple configuration file, the programmer
can specify the policies to follow for various parts of the communication
functionality and how policies should be triggered by changes in net-
work conditions. As compared to mainstream middleware mechanisms,
our reference implementation improves the energy efficiency of mobile
applications. Specifically, our benchmarks and case studies demonstrate
that the new middleware architecture can reduce the energy budget of a
typical third-party mobile application by as much as 30%.

Key words: energy-efficiency, mobile computing, energy models, mid-
dleware, dynamic adaptation

1 Introduction

Energy efficiency is rapidly becoming a key software design consideration [13],
as mobile devices are steadily replacing desktop computers as the dominant
computing platform. The increasingly feature-rich nature of mobile applications
renders battery capacities a key limiting factor in the design of mobile appli-
cations [15]. To reduce the energy consumed by modern mobile applications,
system designers must consider all the constituent parts of a distributed mobile
execution. Although middleware has become an essential component of mod-
ern mobile software, existing mainstream middleware mechanisms were designed
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with the primary focus of facilitating distributed communication and improving
performance rather than on reducing energy consumption.

Network communication commonly constitutes one of the largest sources of
energy consumption in mobile applications. According to a recent study, network
communication consumes between 10% and 50% of the total energy budget of
a typical mobile application [14]. Many mobile applications are designed with
the assumption that they will be operated over some mobile networks with a
certain fixed bandwidth/latency ratio. However, this assumption will not hold
if an application is operated across a variety of mobile networks (WiFi, 3G, and
4G), whose conditions (e.g., bandwidth, delay, packet loss, etc) often fluctuate
continuously. As an example, during the same execution, the application can be
accessing a remote service using either the 3G network (low bandwidth, long
delay) or the WiFi (high bandwidth, short delay). Furthermore, the conditions
of either network can be fluctuating at runtime. Networks and their conditions
can significantly affect how much energy is consumed by a mobile application.

Since middleware defines the patterns through which a distributed applica-
tion transmits data across the network, the choice of middleware can heavily
impact the amount of energy consumed by mobile applications. However, the
execution patterns in mainstream middleware mechanisms are fixed; they can-
not be flexibly adapted to reduce energy consumption when mobile applications
switch between mobile networks with different conditions [11]. Furthermore, to
maximize energy savings, the middleware execution patterns must be individ-
ually tailored for specific applications, so as to take into consideration their
application logic. To support that kind of customization, middleware must be
equipped with appropriate programming abstractions that can express how en-
ergy optimization strategies should be triggered and parameterized.

In this paper, we present a new middleware architecture, which equips mo-
bile application developers with pragmatic tools and methodologies to engineer
energy-efficient distributed mobile software. Our middleware architecture em-
ploys dynamic, adaptive optimization as a mechanism to minimize the amount
of energy consumed by mobile applications to perform distributed interactions.
We call our novel middleware mechanism e-ADAM (energy-Aware Dynamic
Adaptive Middleware). e-ADAM enables the programmer to express a rich set
of middleware energy optimizations and the runtime conditions under which
these optimizations should be applied. e-ADAM then dynamically applies the
expressed optimizations as specified for the network conditions in place.

For the thoughtful system designer, e-ADAM opens up new energy opti-
mization opportunities at the cost of slightly increasing the programming effort:
specialized optimization strategies are crafted for individual runtime conditions.
However, the e-ADAM continuous dynamic adaptation makes it possible to reach
the middleware energy efficiency levels that cannot be achieved via automatic
optimizations performed outside of the programmer’s purview.

Our experiments have demonstrated the effectiveness of the e-ADAM ap-
proach to reduce the amount of energy consumed by a set of benchmarks and
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third-party Android applications executed across volatile mobile networks. By
presenting e-ADAM, this paper makes the following technical contributions:

– A middleware architecture that enables dynamic, application-specific
energy consumption optimization: e-ADAM features configurable energy
optimization that effectively addresses the execution volatility common in
modern mobile networks.

– Application-specific energy consumption estimation: e-ADAM fea-
tures an application-level energy model that enables the e-ADAM runtime
system to accurately measure and predict the energy consumption levels ex-
perienced by mobile applications under fluctuating runtime conditions.

– Systematic evaluation: e-ADAM optimized the amount of energy consumed
by a set of benchmarks and third-party mobile applications, with the resulting
energy savings as high as 30% in some cases.

The rest of this paper is structured as follows. Section 2 defines the problem
that our approach aims at solving and introduces the concepts and technologies
used in this work. Section 3 details our technical approach. Section 4 discusses
how we evaluated our approach. Section 5 discusses the advantages and limita-
tions of our approach. Section 6 compares our approach to the related state of
the art. Section 7 concludes and presents future work directions.

2 Problem and Background

In this section, we outline the problem that our approach is intended to solve
and the major technologies it uses.
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Fig. 1. Energy consumption comparison showing different thresholds.

2.1 Problems and Technical Challenges

The work presented here is motivated by an insight gained from our recent ex-
periment that has studied the impact of distributed programming mechanisms
on energy efficiency [10]. Our experiments measured the amount of energy con-
sumed by passing varying volumes of data over networks with different condi-
tions to infer common energy consumption patterns. Through this research, we
have discovered that dissimilar networks consume different amounts of energy
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to transmit the same data. Thus, the amount of energy consumed on a net-
work transmission can be minimized by employing the communication patterns
tailored for given network conditions. In other words, adapting the execution
behavior of middleware in response to changes of network conditions can reduce
the overall energy consumption.

To elaborate on our prior results, we measured the amount of energy that
can be saved by applying the common energy optimization technique of data
compression. In this experiment, we used TCP sockets to transfer simple data
buffers between a mobile device and a remote server. Figure 1 shows the impact
of compressing the transferred data on the mobile device’s energy consumption
for the WiFi and two typical cellular networks. We experimented with two mobile
devices that differed vastly in their respective hardware setups (i.e., Motorola
Droid (low-end) and Samsung Galaxy S3 (high-end)) to ensure that the observed
energy consumption differences are due to the network transmission rather than
any other execution parameters.

When executing over the WiFi network using a high-end device, data com-
pression does not seem to affect the amount of consumed energy. When executing
over the WiFi network using a low-end device, data compression does not af-
fect the amount of consumed energy until the 400kB data transfer threshold has
been reached. Starting from that threshold, data compression ends up reducing
the overall energy consumption. When executing over the 3G network and 4G
network using either low-end or high-end device, data compression does not af-
fect the amount of consumed energy until the 10kB and 300kB data transfer
thresholds have been reached, respectively. Starting from that thresholds up,
data compression ends up reducing the overall energy consumption.

The specific thresholds, devices, and network types used in this experiment
are immaterial and only prove the point that compression must be applied in
a device- and network-specific fashion, so as to maximize the potential energy
savings. Because the network environment and device in place determine the
thresholds at which compression should be engaged to reduce energy consump-
tion, middleware should be able to turn this and other optimizations on and off
at runtime as needed. This experiment demonstrates the need for adaptivity in
middleware to be able to transfer data using the communication and execution
patterns that match the execution environment in place.

At the same time, the middleware adaptations should be sufficiently general
to benefit users using a variety of mobile devices. For example, Facebook reports
that the mobile version of their application is accessed by 2,500 varieties of
mobile devices [4]. Each of these devices is likely to exhibit different energy
consumption patterns due to the hardware differences of the devices. Since it
would be unrealistic to statically specify adaptations for each mobile device and
application, we designed our approach to rely on runtime monitoring that can
trigger the available adaptations as required by a given execution environment.

In this paper, we present a new middleware architecture that realizes the vi-
sion outlined above as energy-aware dynamic, adaptive middleware (e-ADAM).
Enabling effective runtime adaptations with the goal of saving energy requires



e-ADAM: Energy-Aware Adaptive Middleware Mechanism 5

innovation in programming abstraction expressiveness and sophisticated runtime
support. Specifically, our approach enables the programmer to implement mul-
tiple strategies for the same middleware functionality, each of which is deployed
as dictated by the runtime changes in the execution environment. At execution
time, e-ADAM monitors runtime network conditions and then automatically se-
lects an appropriate energy optimization strategy provided by the programmer.
Furthermore, in response to the changes of runtime network conditions, e-ADAM
dynamically switches between the provided strategies.

2.2 Technical Background

Our middleware architecture combines dynamic adaptation and runtime energy
consumption monitoring.

Middleware for Distributed Execution Our middleware architecture uses
features from mainstream middleware mechanisms for distributed execution as
building blocks. To facilitate effective reuse, we classify existing middleware ar-
chitectures on two main axes: level of abstraction and network communication
footprint. In terms of the level of abstraction, there are socket-, remote proce-
dure call-, message-, and service-based platforms. In terms of the network com-
munication footprints, they transfer data across the network in binary and text
(primarily XML)-based formats. Major, widely used middleware architectures
include sockets, Message Oriented Middleware (MOM), remote method invoca-
tion (RMI), and Web services. Our middleware architecture uses a proxy-based
distributed execution mechanism and encodes the transferred data in binary.

Transport Layer Energy Saving Provisions The IEEE 802.11 standard
codifies a power saving mode (PSM), under which the wireless network interface
enters the sleep mode when idle. Other approaches have leveraged this mode
to save energy. For example, reference [16] describes one such energy saving
strategy that takes advantage of the prior knowledge of the application’s com-
munication patterns. This strategy employs a bandwidth throttling mechanism,
implemented via a custom network protocol stack, to control the network trans-
mission rate. Thus, adjusting application communication patterns can lengthen
the wireless network interface’s sleep time, thereby saving energy. This strategy
has been shown effective in media streaming or large data transfer applications.
The goal of our approach is to achieve similar energy saving benefits, but without
modifying the standard protocol stack. By operating at the application level, our
approach adapts crude-grained communication patterns, providing comparable
energy saving benefits. For example, application communication patterns can be
adapted to be periodic and predictable by breaking down large transmitted data
into blocks or by reshaping the TCP traffic into bursts.

Dynamic Middleware Adaptation Dynamic middleware adaptations change
the execution strategies at runtime to optimize the overall execution by lever-
aging the information provided by various system components. Dynamic adap-
tation has been also used to optimize energy consumption [6, 12]. The Odyssey
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platform [6] adapts data or computational quality to save energy consumption,
so as not to exceed the available system resources. DYNAMO [12] is an another
middleware platform that adapts energy optimizations across various system lay-
ers, including applications, middleware, OS, network, and hardware, to optimize
both performance and energy. These energy-aware adaptations identify possible
trade-offs between energy consumption and quality of service and then choose
optimal energy optimizations based on runtime conditions.

e-ADAM shares the same vision with these approaches. However, as com-
pared to these approaches, our approach aims at providing a high degree of
customizability. It provides a programming model that enables programmers
to implement application-specific energy optimization strategies as well as to
express how these strategies should be applied at runtime.

3 Energy-Aware Dynamic Adaptive Middleware

In this section, we present e-ADAM by giving an overview of the approach and
then describing its major parts.

3.1 Approach Overview

The e-ADAM approach hinges on the concept of configurable energy optimiza-
tion strategies. e-ADAM provides a Java API for implementing the strategies,
whose triggering and operation is specified using simple key-value configuration
files (for an example, see Figure 3). By continuously monitoring the execution
environment, the e-ADAM runtime system dynamically loads and applies the
strategies as specified in the provided configurations. By selecting the strategies
to apply at runtime in accordance with the environment in place, e-ADAM can
optimize energy efficiency more effectively than static approaches.
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Fig. 2. e-ADAM component diagram.

Figure 2 presents the archi-
tectural design of e-ADAM that
comprises three main compo-
nents: a strategy manager, a run-
time monitor, and an adaptation
manager. First, the strategy man-
ager reads configuration files and
maps the parsed configurations to
the available strategy implemen-
tations. Second, the runtime mon-
itor continuously collects runtime
information that includes net-
work and hardware characteris-
tics (e.g., delay, network connec-
tion type, CPU frequency, etc.)
by leveraging the Android system
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APIs. Third, the adaptation manager correlates the collected execution data
with the configuration parameters. If the resulting correlation indicates that a
different energy optimization strategy should be triggered, the adaptation man-
ager dynamically locates, loads, and executes the triggered strategy.

3.2 e-ADAM Configuration

As shown in Figure 3-(a), the e-ADAM energy optimization configuration files
follow a simple key-value format, thus making it straightforward for programmers
to compose and understand. Each set of configuration settings is identified by
a unique name followed by a collection of key-value pairs. Configurations are
demarcated by an empty line.

The three configuration keys are execution, strategy, and criteria. The ex-

ecution pair identifies a remote server by means of a URL or an IP address. The
strategy pair identifies the adaptation strategies to be applied for this commu-
nication. If a configuration file has multiple strategies, the runtime adaptation
module then makes use of the selection criteria values. Recall that the runtime
continuously applies policies speculatively, so as to evaluate their effectiveness.

The criteria pair defines which notion of effectiveness should be used with a
given configuration. The criteria value of energy indicates the effectiveness to
reduce energy consumption, while that of performance to speed up performance.
The value of epr indicates the effectiveness to increase the energy/performance
ratio. The value of never disables the configuration from being applied, while
the value of always applies the configuration irrespective of its effectiveness.

configuration = [name]
execution = [remote API]@[address]
strategy = [name] ((and|or) [name])*
criteria = (energy|performance|
epr|never|always)

(a) Configuration file format.

public enum Pointcut {Before, After, Around;}

public class Invocation {
public Method getMethod() {...}
public Object[] getParams() {...}
public Object getResult() {...}
public void setParams(Object[] o) {...}
public void setResult(Object res) {...}
public Object proceed(int mode) {...} }

public class [name] extends Strategy {
public Pointcut getPointcut() {...}
public Object invoke(Invocation invoc) {...} }

(b) Strategy API class.

Fig. 3. Energy optimization configurations.

Adaptation strategies are implemented by extending class Strategy, which
provides a single method invoke. To enable the programmer to control at which
execution point a strategy should be applied, e-ADAM features an Aspect Ori-
ented Programming [8] abstraction to specify whether the implemented strategy
is to be invoked before, after or around (instead of) a remote communication.

The components implementing the strategies referenced in configuration files
follow the Java naming convention, in which class names are prefixed with their
full package names (e.g., edu.vt.eadam.Compression). The e-ADAM runtime calls
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method invoke(...) at the specified pointcut when both the specified remote
API is invoked and the energy optimization strategy is activated. A typical
adaptation strategy makes use of common energy optimizations, including data
compression, reducing image quality, and redirecting to an easier-to-reach remote
server as discussed in Section 3.4.

3.3 e-ADAM Process Flow

Having described the individual components of e-ADAM, we now explain how
they interact with each other. The e-ADAM process flow comprises three main
processes: (1) energy consumption prediction, (2) communication monitoring,
and (3) distributed communication.

The energy consumption prediction process estimates future energy consump-
tion levels and communication latencies to select the specified energy optimiza-
tion strategy. To that end, the adaptation manager requests snapshots of the
current and prior execution environment (e.g., CPU, delay, transferred data size,
execution time, etc.) from the runtime monitor and the execution history (cache),
respectively. Based on these parameters, the adaptation manager estimates the
energy and latency to be incurred by a given communication operation and ap-
plies the energy optimization strategy as guided by the configuration in place.

The distributed communication monitoring process continuously collects run-
time data and creates an execution history cache to consult when estimating
the energy consumption and latency of future communication operations. This
process dispatches remote operations in accordance with the applied energy op-
timization strategy. Next, we describe each process of e-ADAM in detail.

Energy Consumption Estimation The energy consumption estimation mod-
ule predicts how much energy will be consumed by a given remote communication
by computing the workload expected to be carried out by the communication.
Specifically, e-ADAM only computes the energy consumed by the CPU and net-
work communication as follows:

E = Ecpu + Enet = (Pcpu × Tcpu + Pnet × Tnet)× V
= {Σ(Cact

cpuf
× T (u+s)

cpu ) + (Cact
net × T act

net) + (Cidle
net × T idle

net )} × V

where Cact
cpuf

is the electric current of the CPU at a particular clock speed. Mod-
ern CPUs feature speed-step, a facility that allows the clock speed of a processor
to be dynamically changed by the operating system, with different levels of power
consumed at each clock speed. Tu

cpu and T s
cpu are user and system times taken by

the distributed execution, and they are obtained by consulting the statistics pro-
vided by the operating system (e.g., /proc/[pid]/stat). V is current voltage,
which is also obtained from the operating system (/sys/class/..../voltage now).
Cact

net and Cidle
net are the electric current of the network processor required during

the active and idle phases, respectively. T act
net and T idle

net are the active and idle
runtime periods during the remote communication, respectively. These device-
and execution-specific values are cached to estimate the amount of energy to be
consumed during future remote communications.
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Training-Based Energy Consumption Prediction To predict the amount
of energy that is likely to be consumed during remote communications, e-ADAM
correlates the device- and execution-specific values that were previously mea-
sured and cached. These measured values are cached and used for predicting the
future energy consumption and execution time. Then, using the cached prior ex-
ecution parameters (e.g., delay, communication time, transferred data size, total
execution time, etc.) and the current measured execution parameters, e-ADAM
predicts the communication latency. During the initialization phase, e-ADAM
bootstraps the training process by executing all the strategies specified in the
input configuration file and persists the obtained results to permanent storage.
Based on the estimated communication latencies, as observed from prior execu-
tions, the e-ADAM runtime system predicts the expected energy consumption
for a given remote communication as follows:

Eprd = {Eavg
cpu + (P act

net × T prd act
net ) + (P idle

net × T prd idle
net )} × V

where Eprd is the predicted future energy consumption, Eavg
cpu is the average

energy consumption of the given remote communication, and T prd act
net is the pre-

dicted communication time, which are computed by correlating past execution
data (e.g., delay, communication time, transferred data size, total execution time,
etc), the current data size to be sent and the current network delay, respectively.
The current network delay is measured by sending a probe packet and then, to
avoid a delay spike, the delay value is recomputed by weighting the most recently
obtained value (i.e., delay = delay×α+delay× (1−α)). α was set to 0.3 in our
reference implementation). The computed energy consumption value and execu-
tion time are used as a parameter for selecting the optimal energy optimization
strategy for a given scenario.

FOREACH strategy ∈ ∀Strategies DO
CASE Energy:
Eexptd ← estimateEnergy(..., strategy)
IF Eexptd is the smallest THEN
bestStrategy ← strategy END IF

CASE Performance:
Texptd ← estimateExecTime(..., strategy)
IF Texptd is the smallest THEN
bestStrategy ← strategy END IF

CASE EPR:
Eexptd ← estimateEnergy(..., strategy)
Texptd ← estimateExecTime(..., strategy)
epr ← getEPR(Eexptd, Texpted)
IF epr is the smallest THEN
bestStrategy ← strategy END IF

END FOREACH

bestStrategy.invoke(...) //Execute

/∗∗ Receive result and update exec. history ∗/
CASE Succeed: result← executionCompleted()
CASE Fail: result← executionFailed()
update(result)

Fig. 4. The procedure to select a strategy.

Energy Optimization Strategy Se-
lection Figure 4 shows the procedure
for selecting the provided energy opti-
mization strategies at runtime. To se-
lect an appropriate energy optimiza-
tion strategy, the adaptation module
predicts the future energy consump-
tion and the future execution time by
analyzing the collected runtime execu-
tion values and cached prior executions.
Then, the module selects the optimiza-
tion strategy that would yield either
the lowest expected energy consump-
tion, or the shortest expected execu-
tion time, or the highest expected ener-
gy/performance, as specified by given
selection criteria—energy, performance
epr, etc. While the first two parame-
ters are self-explanatory, epr (the en-
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ergy/performance ratio) is a parameter that we have formulated in our prior
research [10]. This ratio correlates performance and energy consumption values
so as to maximize the resulting correlation. The runtime system computes epr
value as follows:

EPR(x) =
MIN(Tprd(1),...,Tprd(n))/Tprd(x)

Eprd(x)/MIN(Eprd(1),...,Eprd(n))
× 100

where, Tprd and Eprd are the expected execution time and energy consumption
values, respectively. A higher EPR represents a condition under which the en-
ergy optimization strategy in place consumes less energy while retaining high
performance as compared to other strategies.

3.4 Energy Optimization Strategies

Recall that the observation that underlies the design of e-ADAM is that cer-
tain pieces of middleware functionality can be implemented differently. In the
following discussion, we give specific examples of middleware functionality and
the alternatives for their implementations.

Data compression: Data compression will reduce network transfer, but
will be more computationally intensive, thus requiring additional CPU process-
ing. Transmitting raw data will increase network transfer, but will require less
CPU processing. Which of the strategies will consume less energy depends on
the runtime conditions in place. This strategy, thus, will determine the optimal
compression point while considering the trade-off between CPU processing and
network transfer.

Redirection: Another optimization is redirection. This strategy iterates
through different endpoints of a distributed execution in the case of experiencing
poor network conditions. For instance, when experiencing a network congestion
at a.com/foo, alt.a.com/foo can be invoked instead. This strategy, thus, will
find an optimal execution path, as operating over a congested network is likely
to require additional energy resources.

Batching: A common middleware optimization is batching multiple dis-
tributed communications into a single bulk communication. For modern net-
works, whose bandwidth improvements surpass that of their latencies, trans-
mitting data in bulk can reduce the aggregate latency. However, the degree of
batching should be determined by the network conditions in place. Thus, the
programmer should be able to specify which distributed communications should
be batched and under which conditions.

In addition to the aforementioned general optimization strategies, one can
also apply application-specific optimizations, tailored for particular application
scenarios. For example, in a video conferencing application, the QoS can be
traded for energy efficiency when the battery level gets below a certain threshold.

4 Evaluation

We have evaluated the effectiveness of e-ADAM by applying it to benchmarks
and third-party applications.
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4.1 Micro-Benchmarks

In this micro-benchmark, we compared the performance and energy consumption
characteristics of XML-RPC and e-ADAM in executing a collection of remote
invocations with different parameter sizes. In this benchmark, the client exe-
cutes empty server methods with different parameters. This strategy isolates
the energy consumed by the underlying middleware mechanism.

Experimental Setup The experimental setup for micro benchmarks includes
a Motorola Droid (600MHz CPU, 256MB RAM, 802.11g, 3G) (a low-end mobile
device), a Samsung Galaxy III (1.5GHz 2-core CPU, 2GB RAM, 802.11n, 4G) (a
high-end mobile device), and a Dell PC (3.0GHz 4-core CPU, 8GB RAM) (the
remote server). The network types are WiFi, 3G network, and 4G. For the WiFi,
the following two network conditions were emulated: high-end (Network I: 2ms
round trip time and 50Mbps bandwidth) and medium-end (Network II: 50ms
and 1Mbps). The Droid used a 3G network (Network III: 70ms and 500Kbps),
while the Galaxy III used a 4G network (Network III: 70ms and 1Mbps) 1. Table
1 shows the device-specific values that parameterize the runtime systems of the
mobile devices being tested.

Table 1. Manufacturer provided energy profiles.

High-end Device Low-end Device High-end Device Low-end Device

CPU

1512.0 MHz: 577 mA 800.0 MHz: 280 mA
WiFi

96 mA 130 mA
1209.6 MHz: 408 mA 685.7 MHz: 236 mA 0.3 mA 4 mA
907.2 MHz: 249 mA 571.4 MHz: 207 mA

Mobile
250 mA 300 mA

604.8 MHz: 148 mA 342.8 MHz: 165 mA 3.4 mA 3 mA
302.4 MHz: 55 mA 228.5 MHz: 87 mA

N/A 114.2 MHz: 66 mA

Benchmark I: Performance and Energy Consumption Overhead In this
benchmark, we compared the total execution time and energy consumption of
the baseline versions of the benchmarks with that using an adaptation strat-
egy. Figure 5 (top) shows the total execution time measured on each device. As
one can see, the performance overhead is quite insignificant. In particular, the
overhead for both devices never exceeds 100ms and remains constant for all the
measured data transfer sizes. Figure 5 (bottom) shows the amount of energy
consumed by each device. As expected, the high-end device (Samsung Galaxy)
consumes less energy than the low-end device (Motorola Droid). In particular,
the overhead for both devices never exceeds 50mJ, which is insignificant as com-
pared to a typical total energy budget.

Benchmark II: Adapting Energy Optimizations In this benchmark, we
evaluated how the runtime system can adapt its middleware functionality be-
tween no optimization and a compression optimization in response to changes in
network conditions on the high-end device. First, we evaluated how accurately
the runtime system can predict how much energy will be consumed when using
two different optimization strategy on the high-end device.

1 We used Network Emulator for Windows Toolkit (NEWT) version 2.1.
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Fig. 5. Performance and energy consumption overhead.

Figure 6 shows both the predicted and the consumed energy by e-ADAM
with no optimization vs. a compression optimization. In this benchmark, the
average error was 23.09 % and standard deviation was 10.74 %, which is higher
than in other benchmarks, whose error rates are 6-7 %). This is because when
an application consumes a small amount of energy, small changes in the execu-
tion environment, such as delay or CPU frequency, can significantly affect the
predicted energy consumption. (e.g., when the transferred data size increases,
the average error decreases.).
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Fig. 6. Energy consumption prediction.

Then, we evaluated the effec-
tiveness of the runtime system
in selecting the energy optimiza-
tion strategies that would be op-
timal for different execution en-
vironments. As an optimization
strategy we chose data compres-
sion, which trades CPU process-
ing for network transfer. Com-
pressing the data reduces its size,
thus reducing the workload of the remote operation transferring the data. How-
ever, running the compression algorithm uses up additional CPU cycles. First, we
measured the actual amount of energy used by the same remote operation, with
and without the compression strategy applied. To obtain statistically relevant
measurements, each pair of remote operations (compressed and uncompressed)
was repeated a 100 times under the 3 simulated networks whose parameters are
explained in Section 4.1. After we measured the concrete amount of energy con-
sumed under compression and without compression, we queried the e-ADAM
runtime system whether it would trigger the compression optimization strat-
egy. Furthermore, to evaluate the impact of the training process, we compared
the effectiveness of the untrained and trained states of the runtime system (for
10 consecutive execution cycles). Table 2 shows the evaluation criteria for this
experiment.

Table 2. The evaluation criteria.

Strategy causes → Less Energy More Energy

Trigger strategy Success Failure
Not trigger strategy Failure Success
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Table 3 shows the failure rates for each network type and data size. As ex-
pected, when transferring small data volumes, compression creates some noise.
Because the runtime system uses a moving average to estimate future energy
consumption, it continuously reacts to the relevant changes in the execution
environment. Because the runtime does not respond instantaneously, e-ADAM
does not suffer from the noise that can arise due to sudden fluctuations, such as
a delay spike. However, in the cases of low energy consumption (e.g. the test case
with network type I and 10kB consumes only 15-100mJ.), frequent fluctuations
make noise unavoidable, thus increasing the failure rate of the runtime system.
However, the programmer can configure e-ADAM not to engage any optimiza-
tions when the average energy consumption level is already low. In all other test
cases, nevertheless, the e-ADAM runtime system showed itself quite effective,
with the training decreasing the failure rate across the board.

Table 3. Failure rate when triggering the opt. strategy.

Data Size
Network I Network II Network III
Not Training / Not Training / Not Training /

Training Training Training

10 kB 18 % / 12 % 9 % / 7 % 3 % / 2 %
100 kB 7 % / 2 % 3 % / 0 % 1 % / 0 %
1000 kB 3 % / 0 % 1 % / 0 % 0 % / 0 %

4.2 Case Study

To determine how well our approach works with real-world mobile applications,
we experimented with open source projects, used as experimental subjects in our
prior research on cloud offloading [9]. JJIL2 is a face recognition application; its
recognition functionality executes remotely in class DetectHaarParam. OS-
MAndroid3 is a navigation application; its shortest path calculation functional-
ity executes remotely in class ShortestPathAlgorithm. Mezzofanti4 is a text
recognition application; its OCR functionality executes remotely in class OCR.

The experimental setup for the case study includes a same high-end mobile
device and a same remote server. The mobile device is connected to two emulated
WiFi networks (Network I and Network II) and a cellular network (Network III).

For each subject, we measured the amount of the energy consumed and the
execution time by typical, simple use cases. Specifically, for OSMAndroid, we
selected two locations and the requested route between them. For the face recog-
nition application, we examined one image file for the presence of human faces.
Then, we selected the compression strategy for the face recognition application
because it transfers a large amount of data; we selected the redirection strategy
for OSMAndroid. The use cases were executed under two optimization modes:
(1) original distributed execution without an energy optimization and (2) the
e-ADAM approach with either the epr or energy criteria. Figure 7 shows the

2 http://code.google.com/p/jjil/
3 https://code.google.com/p/osm-android
4 https://code.google.com/p/mezzofanti
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configurations used in this case study. In this case study, we do not compare
other middleware architectures with our approach because we already showed
effectiveness of our approach in the prior benchmarks.

Figure 8-(a) shows how the e-ADAM approach has reduced the amount of en-
ergy consumed by the face recognition application. Because in a high-end mobile
network (i.e., Network I) the compression strategy incurs additional processing
overhead, e-ADAM does not apply this strategy. However, in other networks (i.e.,
Network II and III), the compression strategy reduced the amount of energy con-
sumed by 30%. Figure 8-(b) shows the total execution time taken by the face
recognition application. Similarly, e-ADAM improved the overall performance.

configuration = JJIL
execution = DetectHaarParam.push(*)@[*:*]
strategy = edu.vt.eadam.Compression
criteria = energy

configuration = OSMAndroid
execution = ShortestPath.execute(*)@[*:*]
strategy = edu.vt.eadam.Redirection;
criteria = epr

configuration = Mezzofanti
execution = OCR.ImgOCRAndFilter(*)@[*:9999]
strategy = *.Batching and *.Compression
criteria = energy

Fig. 7. Configuration files.

For the OSMAndroid applica-
tion, we used a different scenario.
Because the application transfers
less data than the first subject ap-
plication, we selected a redirection
strategy. Figure 8-(c),(d) show the
energy consumption and total exe-
cution time for the subject applica-
tion. At the first phase, two remote
servers (i.e., Server I and II) have the
same execution environments (e.g.,
network condition), but at the sec-
ond phase, we injected network de-
lay to both remote servers and in-
jected 500 ms processing delay at
the Server I. With the epr criteria,
while e-ADAM selects Server I during the first phase, it selects Server II dur-
ing the second phase, as it considers both energy consumption and performance
metrics when selecting an optimal strategy.

For the OCR application, we used two strategies—Batching and Compression—
to optimize the transfer of the fragments of a large (∼6MB) image file. The
strategies are applied sequentially in the order of appearance in the config-
urations, Batching followed by Compression. Figure 8-(e),(f) show the results
of e-ADAM applying these strategies: first, Batching alone and then combined
with Compression. In a high-end mobile network (i.e., Network I) compressing
data incurs additional processing overhead, whose energy costs are not offset by
the resulting reductions in bandwidth utilization. Thus, for these networks, the
Batching strategy should be the only one applied. However, in limited networks,
adding the Compression strategy causes the overall energy consumption to be
reduced by 20%. Figure 8-(e),(f) show the total execution time and total execu-
tion time for the same OCR application. Energy consumption and total execution
time are positively correlated. Indeed, e-ADAM reduced the total runtime by 6%
and 14%, when the Batching and the (Batching + Compression) strategies were
applied, respectively. Furthermore, reusing the Compression strategy has reduced
the implementation burden of this case study.
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(a) Face recognition (energy).
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(b) Face recognition (time).
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(d) OSM-Android (time).
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Fig. 8. Energy consumption and execution time of the subject applications.

5 Discussion

e-ADAM enables a greater separation of concerns in that it can change a mobile
applications’s energy/performance characteristics without affecting its core busi-
ness logic. The energy optimization strategies and the configurations to apply
them are expressed separately from the main source code. This degree of sepa-
ration also makes it possible to effectively reuse energy optimization strategies
and configurations across components and applications.

Although e-ADAM can deliver tangible benefits to the mobile application
programmer, it also has some inherent limitations. In particular, the limitations
concern its ranges of applicability and usability. The overhead imposed by the
e-ADAM runtime makes the approach inapplicable to those distributed mobile
applications that use simple, infrequent remote interactions. The runtime over-
head is offset if the optimized application spends a substantial amount of energy
on remote interactions. Thus, application designers have to decide whether using
e-ADAM would be beneficial for each application.
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Another limitation of e-ADAM is that the approach is automated rather than
automatic. The programmer is responsible for implementing energy optimization
strategies using the provided API and for expressing how the strategies should be
applied. Although implementing common optimization strategies is facilitated by
the presence of multiple third-party libraries and frameworks, the programmer
must be aware of which predefined building blocks they have at their disposal.

Finally, although enhanced configurability and adaptability of communica-
tion are key to improving the energy efficiency of mobile applications, having
to learn how to use a new middleware interface may negatively affect pro-
grammer productivity. Nevertheless, we argue that the design of e-ADAM eases
adoption—e-ADAM can be used as a drop-in replacement for any middleware,
structured around the RPC paradigm.

6 Related Work

Reducing the energy consumption of mobile applications to extend the battery
life of mobile devices has been the focus of multiple complimentary research
efforts, including system- and application-level optimizations. The system-level
optimizations include CPU scheduling algorithms [18], disk power managements
[17], network interfaces [1], specialized-network protocols [2], and process migra-
tion [3]. Although these system-level optimizations have proven quite effective
in extending the battery lives of mobile devices, the system changes these opti-
mization require complicate their deployment to heterogeneous mobile devices.

In contrast to system-level optimizations, application-level optimizations pro-
vide pragmatic, automatic tools or guidelines to the programmer [9, 13, 7]. The
effectiveness of application-level optimizations hinges on the accuracy of the in-
formation provided by the underlying system and execution environments.

Cross layer optimizations leverage the information provided by multiple sys-
tem layers. Odyssey orchestrates the interactions between the OS and appli-
cations [6]. Similarly to our approach, Spectra [5] provides a specialized APIs
for the mobile programmer. By monitoring multiple execution environments,
Spectra selects an optimal communication path to a remote server. While Spec-
tra only provides a single fixed optimization, e-ADAM enables the program-
mer to implement multiple application-specific optimizations. The e-ADAM ap-
proach makes it possible to reuse known energy optimization techniques to design
application-specific energy optimizations.

7 Conclusions and Future Work

This paper has presented e-ADAM, a middleware architecture that employs
dynamic adaptation to reduce the energy consumption of mobile applications. e-
ADAM features a sophisticated runtime system that predicts and regulates the
energy consumed during remote interactions. By means of configurations, the
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runtime can deploy programmer-provided optimization strategies. Our evalua-
tion comprised applying e-ADAM to reduce the energy consumed by benchmarks
and third-party applications under different execution environments. These re-
sults indicate that the e-ADAM approach represents a promising direction in
developing energy efficient mobile applications.

As future work, we plan to apply e-ADAM to improve the energy efficiency of
cloud offloading, another energy optimization technique. Cloud offloading makes
it possible to execute the application’s energy intensive functionality in the cloud,
thereby reducing the amount of energy consumed by the mobile device running
the application [19, 9]. Integrating middleware-related optimizations with cloud
offloading has the potential to open up new energy optimization opportunities
for mobile applications.
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