
Facilitating the Implementation of Adaptive Cloud
Offloading to Improve the Energy Efficiency of

Mobile Applications
Young-Woo Kwon

Department of Computer Science
Utah State University
young.kwon@usu.edu

Eli Tilevich
Department of Computer Science

Virginia Tech
tilevich@cs.vt.edu

Abstract—Cloud offloading—leveraging remote cloud-based
computing resources to execute energy-intensive functionality—
has become a widely-used optimization technique for mobile
applications. However, implementing cloud offloading techniques
remains a delicate and complex task, reserved for expert pro-
grammers. If cloud computing is to realize its promise as a
generally applicable, powerful optimization technique for mobile
applications, its implementation barrier must be lowered. As
we have discovered, reusable system building blocks exposed
via a convenient programming model can facilitate the im-
plementation of complex cloud offloading optimizations. This
paper describes a system architecture for implementing adaptive
cloud offloading optimizations. In particular, the architecture
features parameterizable building blocks for monitoring and
estimating energy consumption and performance efficiency as
well as state synchronization across address spaces, which the
mobile programmer can use à la carte. These blocks streamline
the implementation procedure for a wide array of adaptive of-
floading optimizations. Applying this system architecture to third-
party mobile applications has optimized their energy efficiency,
depending on the execution environment in place.

Index Terms—mobile applications; energy optimization; cloud
offloading; programming model; adaptation

I. INTRODUCTION

As the energy demands of modern applications continue
to outstrip the battery capacities of mobile devices, the topic
of energy optimization has enjoyed a wide coverage in the
research literature. A particularly popular energy optimization
technique is cloud offloading—transforming a mobile appli-
cation to move its functionality containing energy spots to
execute at a cloud-based server, with the parameters and results
transferred across the mobile network. The energy savings
afforded by cloud offloading stem from the functionality
executed by cloud-based servers not draining the battery power
of the mobile devices running the application.

The main difficulties of implementing effective cloud of-
floading optimizations lie in the high heterogeneity of mobile
hardware and the volatility of mobile networks. Mobile devices
come in numerous hardware configurations, which vary in
terms of their respective CPU, memory, and communication
characteristics. For example, Facebook reports that the mobile
version of their application is accessed from more than 2,500

varieties of mobile devices [1]. The same mobile application
running on devices with dissimilar hardware capacities would
consume divergent amounts of energy. In addition, the mobile
network characteristics in place have been shown to affect
the amount of energy spent transferring the same parameters
across the network [2]. Finally, mobile applications are highly
context-sensitive, with different users favoring energy and
performance efficiencies to varying degrees.

Hence, research in cloud offloading is steadily heading in
the direction of adaptivity, deciding on what functionality
should be offloaded at runtime [3]. Unfortunately, implement-
ing effective adaptive cloud offloading optimization is non-
trivial. Although cloud offloading techniques differ widely in
their respective designs, all need the ability to make informed
decisions whether and when an offloading is most likely to
save energy. Also, when offloading a functionality without
modifying the underlying runtime system, the program state
must be correctly and efficiently synchronized across the
mobile device and cloud server. Implementing these mecha-
nisms can incur large engineering overheads, slowing research
progress and rendering the technique prohibitively complex for
real-world environments.

Having studied cloud offloading for the last couple of years,
we have discovered that the implementation barrier for this
powerful energy optimization can be effectively lowered if its
main building blocks can be provided as a general system
architecture exposed to the programmer via a convenient
programming model. In particular, we argue that a system
architecture featuring four main building blocks—(1) energy
consumption monitoring and estimation, (2) performance ef-
ficiency monitoring and estimation, (3) program state syn-
chronization, and (4) the offloading process monitoring and
notification—can be effectively leveraged to straightforwardly
implement adaptive cloud offloading optimizations. We show
how these building blocks enable a flexible system architecture
for enhancing third-party mobile applications with the ability
to adaptively optimize their energy efficiency.

By presenting our novel system architecture for optimizing
the energy efficiency of mobile applications, this paper makes
the following contributions:

• An extensible system architecture for implementing cloud
offloading optimizations with reusable building blocks
that the programmer can use à la carte.

• A programming model for using the building blocks as
required to implement adaptive offloading optimizations.

• A case study of using the system architecture to engineer
a non-trivial cloud offloading optimization; the engi-
neered optimization was applied successfully to reduce
the energy usage of third-party mobile applications.

The rest of this paper is structured as follows. Section II
defines the problem that our approach aims at solving and
introduces the concepts and technologies used in this work.
Section III details our technical approach. Section IV and
Section V discuss how we evaluated our approach. Section VII
compares our approach to the related state of the art. Section
VI discusses the advantages and limitations of our approach,
and Section VIII concludes this paper.

II. PROBLEM DEFINITION AND TECHNICAL BACKGROUND

In this section, we define the problem to be solved and
provide a technical background for the main technologies used
in our solution.

A. Motivation and Problem Definition

Having studied the cloud offloading optimization in the
last couple of years, we have found that the heterogeneity
of mobile hardware and volatility of mobile networks require
highly adaptive energy optimizations to be effective. However,
implementing adaptive optimizations can be a daunting engi-
neering undertaking, suited only for expert programmers. The
goal of this research is to define a system architecture that
features reusable building blocks that can be used to stream-
line the process of implementing adaptive cloud offloading
optimizations.

Figure 1 demonstrates the need for adaptivity in mobile
applications as compared to applications written to run on
stationary computers. When it comes to energy efficiency, the
more diverse the execution environment, the more configurable
the software that runs in it needs to be. Desktop applications
tend to have fixed configurations that reflect the end user’s
preferences mostly with respect to the application’s look-
and-feel. Laptops can be configured at the system level to
save energy when battery-powered; application-level energy
usage options are not common. Finally, applications written

End User Configurability & Execution Environment Diverse

Desktop
PC

Laptop Tablet

Smart
phone

High adaptivity

Fixed

Static configurations

Fig. 1. Characteristics of mobile software.

for tablets and smartphones commonly feature per-application
energy saving options. Mobile applications can be configured
to behave differently depending on the mobile network in
place. For example, the user can configure to compress the
data transferred only when no Wi-Fi network is available.

Thus, an effective energy optimization strategy for mo-
bile applications should take into consideration the device’s
hardware characteristics, the execution environment in place,
and end-user preferences. Properly accounting for all these
variables requires that optimizations be highly adaptive. Im-
plementing adaptive behaviors, however, can be prohibitively
complex from both the development and maintenance per-
spectives, especially for application programmers. This paper
advocates a system architecture that can simplify the im-
plementation of adaptive energy optimization by providing
reusable building blocks.

B. Technical Background

The technical concepts behind our approach include cloud
offloading and system-level adaptation. We describe these
technologies in turn next.

1) Cloud Offloading: Cloud offloading optimizes the en-
ergy consumption of mobile applications by executing the
application’s energy intensive functionality in the cloud, so
as to avoid draining the mobile device’s battery power. A
typical implementation technique for cloud offloading is pro-
gram partitioning, transforming the original mobile application
into: the client part running on a mobile device and the
server part running in the cloud; all the calls between the
parts become network communication. Program-level cloud
offloading is an application of automated program partitioning,
an automated technique for transforming centralized applica-
tions to run across the network using a compiler-based tool
[4]. In this work, we focus on method-level offloading, in
which application functionality is shipped to be executed by
the server at method granularity. This design assumption is
in line with solid object-oriented design principles, which
favor fine-grained methods. If the functionality to offload
is not confined to method boundaries, an Extract Method
refactoring [5] can be performed to restructure the code,
making it amenable to method-level offloading. Representative
recent cloud offloading approaches leverage program analysis,
automated transformation, and adaptive runtime [6], [7].

In our prior work, we introduced cloud offloading that
transforms applications, leveraging static program analysis and
program transformation techniques, without destroying their
ability to execute locally in the case of network disconnec-
tion [8]. Then, we introduced a cloud offloading technique
that takes advantage of dynamic adaptation by means of a
hand-crafted runtime system [6]. Specifically, this technique
automatically enhances a centralized program with the ability
to execute across the network, while the local/remote parts are
determined dynamically at runtime, as required by the current
execution environment. The approach presented in this paper
draws on the lessons of these prior approaches by innovating
in the implementation design space.

2) System-Level Adaptation: Middleware can be adapted
at runtime to change its execution strategies, so as to op-
timize the overall distributed execution in accordance with
the information received from various system components.
Researchers have leveraged dynamic adaptation to optimize
energy consumption [9], [10]. The Odyssey platform [9]
provides the ability to adapt data or computational quality as
a mechanism for reducing energy consumption and operating
within the available system resources. Another middleware
platform adapting energy optimizations across system layers
is DYNAMO [10]; it optimizes both performance and energy
by adapting at the level of applications, middleware, OS,
network, and hardware. By identifying possible trade-offs
between energy consumption and QoS, these energy-aware
adaptations can choose optimal energy optimizations for a
given runtime condition.

The approach presented here shares the system design
objectives with these approaches. The novelty of our approach
lies in its system implementation benefits. Our design goal
is to enable state-of-the-practice developers to take advan-
tage of adaptive energy optimizations implemented as cloud
offloading. We advocate a programming model that enables
programmers to implement customizable cloud offloading
optimizations as well as to express how the runtime system
should be tailored for given end-user preferences.

III. REUSABLE BUILDING BLOCKS FOR ADAPTIVE
ENERGY OPTIMIZATION

The key contribution of this work is the analysis and
identification of the engineering issues that arise when re-
alizing adaptive cloud offloading mechanisms, which have
become increasingly prevalent in the mobile energy optimiza-
tion design space. In this section, we present our system
architecture that offers reusable building blocks that can be
used to construct adaptive cloud offloading optimizations. We
start by giving an overview of the general system architecture
and then describe its major implementation blocks, with a
particular emphasis on the programming model. We discuss
the approach’s applicability and limitations in Section VI.

A. System Architecture

Figure 2 gives an overview of our system architecture. Our
primary design intent is to simplify the implementation of
adaptive cloud offloading energy consumption optimizations.
Since there is a great variety of offloading schemes, the
architecture provides reusable implementation blocks that can
be accessed through a convenient programming interface.
When implementing their cloud offloading optimizations, pro-
grammers are free to choose any offloading strategies and
algorithms. One design assumption is that the offloading will
be performed at a method-level, even though the number
of offloaded methods at a time is flexible. Our architecture
provides reusable blocks to monitor and estimate the amount
of energy consumed and execution time taken by a given
method or a set of methods. Another set of blocks provides

Energy
Efficiency
Module

Performance
Efficiency
Module

State
Synchronizer

Module

Adaptive Runtime System
Mobile App Cloud Offloading

Capable App

Programming Abstraction

Offloading
Module

Fig. 2. Overview of the system architecture.

reusable functionality to synchronize program state between
the client memory space and that of the offloading server.

B. Programming Model

The programming model described in Figure 3 fea-
tures five Java classes (four concrete and one ab-
stract) and two interfaces. The EnergyConsumptionInfo and
PerformanceEfficiencyInfo classes provide functionality to
measure and estimate energy consumption and performance
efficiency for a given method, respectively. To reduce overhead
and to avoid conflicts with accessing OS-level resources, these
classes are implemented as singletons—not more than one
object of each type ever instantiated per a mobile application.

Class StateSynchronizer reconciles program states after an
offloading operation is completed. It uses the copy-restore
semantics [11], which efficiently updates object graphs while
preserving their aliasing semantics (i.e., referring to an updated
object using multiple references). To use the services of class
StateSynchronizer, object graphs have to be represented as
State objects.

The abstract class OffloadingRuntime should be implemented
by the programmer by providing the functionality of method
offload. Because mobile applications are known to use a
variety of communication mechanisms, our design leaves this
method entirely to the programmer’s purview. Whether an
offloading operation completes successfully or experiences a
failure, the concrete implementations of the class call meth-
ods offloadingCompleted or offloadingFailed, respectively. By
extending class Observable, OffloadingRuntime implements the
Observer/Observable design pattern [5], so that any object
whose class implements JDK interface Observer can register
to have its method update invoked. If the offloading succeeds,
the method’s parameter will be the updated State object; if it
fails, the parameter will be an Exception object describing the
failure’s reason.

Having introduced the programming model of our system
architecture for adaptive cloud offloading, we next provide the
implementation details of our system infrastructure exposed
through this model.

public class EnergyConsumptionInfo {
public static EnergyConsumptionInfo create() {...}
public void startEnergyMeasurement(Method m) {...}
public double endEnergyMeasurement(Method m) {...}
public double estimateEnergy(Method m, Object[] p, URI h) {...}
public void addListener(IEnergyListener l, long time) {...}
}

public interface IEnergyListener {
public void notifyConsumedEnergy(double energy) ;
}

(a) Energy efficiency API and interface.

public class PerformanceEfficiencyInfo {
public static PerformanceEfficiencyInfo create() {...}
public void startPerfMeasurement(Method m) {...}
public long endPerfMeasurement(Method m) {...}
public long estimateExecTime(

Method m, Object[] params, URI host) {...}
public int[] checkDelays(Set<URI> hosts) {...}
public void addListener(IPerfListener l, long time) {...} }

public interface IPerfListener {
public void notifyTakenTime(long time) ;
}

(b) Performance efficiency API and and interface.

public class StateSynchronizer {
public void synchronize(State newState, State oldState)
{...}
}

public class State {
...
public void addObject(String key, Object obj) {...}
public void removeObject(String key, Object obj) {...}
public Object getObject(String key) {...}
}

(c) State synchronization API.

/∗∗ To be notified when an offloading completes successfully or fails ;
classes can implement and add themselves as Observer for this class . ∗/

public abstract class OffloadingRuntime extends Observable {
public abstract void offload(State toServer);

public void offloadingCompleted(State fromServer) {
notifyObservers(fromServer);
}
public void offloadingFailed(Exception e) {
notifyObservers(e);
} }

(d) Observable offloading runtime class.

Fig. 3. Programming model and provided interfaces.

C. Runtime Implementation

1) Energy and Performance Efficiency: As explained
above, an important piece of functionality of our system
architecture is estimating the amount of energy that would be
consumed if a given method is to be offloaded. To that end,
when the estimateEnergymethod in class EnergyConsumptionInfo
is invoked, the runtime system computes the results as follows:

E = {Σ(P act
cpu@f × T

(u+s)
cpu) + (P act

net × T act
net) + (P idle

net × T idle
net)}

where P act
cpu@f is the power that the CPU consumes at a

given clock speed. Modern CPUs provide speed-step, an OS
facility to dynamically change the processor’s clock speed,
in which each clock speed leads to different levels of power
consumption.

Tu
cpu and T s

cpu are process-specific user and system times,
respectively. P act

net and P idle
net are the required power by the net-

work processor during the active and idle phases, respectively.
T act
net and T idle

net are the active and idle portions of the remote
communication, respectively.

The runtime system uses the same parameters when com-
puting the result for the estimateExecTime method in class
PerformanceEfficiencyInfo as follows:

T exptd
net = Avg(ΣT idle

net) + T exptd
net act

where T exptd
net —the future execution time averages the idling

time and the expected communication time periods during a
given measurement window; the bigger the window, the more
accurate the estimate.

Figure 4 shows how we measure the delay and each time
taken during the idling, sending and receiving phases. These
times are averaged in a given measurement window to estimate
the expected communication time. The estimates are cached

to be used to predict the communication time and execution
time.

Our energy prediction takes into account the CPU and
network energy consumptions. The CPU energy consumption
is predicted by averaging previous executions. The network
energy consumption is predicted by extrapolating the average
between the last two measured energy consumption values as
depicted in Fig 5. To that end, the runtime system uses the
cached execution parameters (e.g., delay, communication time,
transferred data size, total execution time, etc.) and the current
execution parameters to predict the expected communication
time period during a given measurement window as follows:

T exptd
net act = {T [i− 1] + T [i− 1]× ∆L(i,i+1)

∆L(i−1,i+1)} ×
∆D(i,i+1)

∆D(i−1,i+1)

where T , L, and D denote the size of the program state to be
transferred for each remote execution, the current network de-
lay, the cached communication time, respectively. Because pre-
dicting future energy consumption levels and execution time
utilizes prior execution history, these device- and execution-
specific values are cached to compute the amount of energy
to be consumed and the time to be taken during potential
offloading operations.

2) State Synchronization: Another important functionality
of our system architecture is synchronizing the program state
across different address spaces. The program state is synchro-
nized by means of copy-restore, an advanced semantics for
passing linked data structure as parameters to remote methods
(e.g., linked lists, trees, and maps) [11]. The copy-restore
semantics copies all reachable parameter state to the server
and then overwrites the client’s state with the server modified
data in-place, so that all the client-side aliases are preserved.

3) Implementing Offloading Optimizations: Since offload-
ing strategies come in great varieties, it is hard to design

Delay

Sending
Time

Idle
Time

Mobile Device Remote Server

Syn. for Distributed Execution

Ack

Syn. for Execution Result

Ack

Ack

Receiving
Time

Request Distributed Execution

Execution Result

Execution
Time

Ack

Fig. 4. Measuring communication time.

Tr
an

sm
is

si
o

n
 T

im
e

Data Size II

Delay

Data Size II

P
re

d
ic

te
d

Tr
a

n
sm

is
si

o
n

 T
im

e

Fig. 5. Estimating communication time.

reusable implementation blocks that can benefit all of them.
In particular, application-level offloading strategies differ in
terms of the middleware they use to communicate between
the mobile device and the server (e.g., sockets, messaging,
synchronous/asynchronous remote calls, etc). Irrespective of
the communication middleware used, the programmer may
also choose to run the offloading task as a separate execution
thread, enabling the user to continue interacting with the
mobile application while an offloading is in progress.

The only two common pieces of functionality for different
offloading mechanisms is that an offloading needs to start,
passing some program state to the server, and then to complete,
receiving some program state from the server. The passed
program state can then be integrated with the existing state.
An offloading can also fail, a condition reported by the Java
runtime system by throwing an object whose class is derived

Runtime System

Annotation

Configuration

Validation
State

Selection

Program
Transformation

Configuration Processing

Deployment

Environment
Monitor

Offloading
Unit Manager

Fig. 6. Workflow to implement adaptive cloud offloading.

from Exception.
To support both synchronous and asynchronous offloading

strategies, our system architecture uses the Observer/Observ-
able design pattern to notify any relevant objects when an
offloading either completes successfully or fails. For example,
both the state synchronization component and the monitoring
component may need to be notified when an offloading is
successfully completed to synchronize the received state and
to update the execution state, respectively. This pattern enables
a loose coupling between the runtime object and its observer
objects, thus making it possible to support a wide variety of
offloading strategies.

IV. CASE STUDY

In this section, we describe a case study of applying
the system architecture and programming model described
above to implement a state-of-the-art adaptive offloading
mechanisms. The purpose of this case study is to validate
whether our architecture and model can be used effectively
to engineer a practical adaptive cloud offloading mechanism.
The mechanism implemented here introduces cloud offloading
with the ability to configure the offloading mechanism with
user-specific preferences for energy and performance. The
mechanism implemented here extends our prior work on cloud
offloading [6] with the ability to configure the offloading
mechanism with user-specific preferences for energy and per-
formance.

A. Development Process

Figure 6 shows the workflow we followed to implement an
adaptive cloud offloading strategy that leverages the system
architecture described in Section III. The programmer first
specifies the methods that were found to be energy hotspots.
This information can be easily obtained by energy profiling the
application, a development phase that is orthogonal to our im-
plementation. The programmer also provides a configuration
file that parameterizes our runtime system with the criteria
that should be optimized when making offloading decisions.
The user input is verified and the program’s source code is
automatically enhanced to generate checkpoints saving the
necessary program state for offloading any portion of the
specified energy hotspots. Due to its application specificity,
this program transformation cannot be made into a reusable
component.

hotspot=[methodName]
host=[url]+
mode=[plain|adaptive]
criteria=[energy|performance|epr]
strategy=[name]

Fig. 7. Configuration file syntax.

For this implementation, we needed an adaptive runtime
system that satisfies the following set of requirements. Multi-
ple offloading servers connected to the device with mobile
networks with different latency/bandwidth characteristics; a
configuration file that specifies whether energy or performance
should be favored when planning offloadings.

To make the runtime system configurable, the implementa-
tion will provide a configuration file that can be used to specify
user preferences with respect to the offloading optimizations.
Figure 7 shows the syntax that must be followed by the
configuration files used with this runtime system.

A configuration file contains a set of key/value pairs,
with the keys of hotspot, host, mode, and criteria. The
hotspot key points to the method identified as an energy
hotspot. The host key points to the locations of the available
offloading servers. The mode key points to the value specifying
whether the offloading should be plain (i.e., always offload
the specified hotspot method) or adaptive (i.e., decide whether
to offload at runtime based on the conditions in place). The
criteria key defines which notion of effectiveness should
be used with a given offloading. The criteria value of
energy indicates the effectiveness to reduce energy consump-
tion, while that of performance to speed up performance.
The value of epr indicates the effectiveness to increase
the energy/performance ratio that correlates performance and
energy consumption values so as to maximize the resulting
correlation. The strategy key points to well-known energy
optimization techniques, including data compression, reducing
image quality, and redirecting to an easier-to-reach remote
server.

Adaptive Cloud Offloading Runtime System

Adaptation Module

Plan Plan

Config.
Handler

Adaptation Algorithm

Reusable Building Blocks

Estimated
Energy Consumption

Estimated
Execution Time

Parser

Configuration
Manager

State
Synchronization

Network
Module

Network Channel
Factory

Network Channel

Energy Efficiency Performance Efficiency State Synchronization

Fig. 8. Adaptive cloud offloading runtime system.

Based on the requirements for the cloud offloading imple-
mentation explained above, a runtime system satisfying them
can be implemented using our system architecture as shown
in the component diagram in Figure 8. The main components
of the runtime system are the configuration handler, the
adaptation module, and the network module. The configuration
handler instantiates offloading plans as specified in the config-
uration files it parses. The adaptation module makes offloading
decisions; it makes use of the reusable energy efficiency and
performance efficiency building blocks. The network module
communicates with the offloading servers; it makes use of the
reusable state synchronization building block.

The purpose of this case study is to determine whether the
reusable blocks of our system architecture provide sufficient
functionality to implement a runtime system that can support
a non-trivial adaptive cloud offloading mechanism.

B. Supporting Configurability

Figure 9 shows a flowchart of the implemented adaptive
runtime system and corresponding pseudo code. The figure
shows how the API of our programming model can be used to
implement the runtime logic of this particular offloading mech-
anism. To identify the most suitable offloading server (i.e., the
one fitting the specified user preferences), the runtime system
obtains the expected energy consumption and execution time
for each available server using the provided APIs. In the
end, the runtime system selects the server offloading to which
would yield either (1) the lowest energy consumption, (2) the
shortest execution time, or (3) the highest energy/performance
ratio, as specified by a given configuration file (i.e., the
criteria options of energy, performance, and epr).

Since mobile applications are known to use different ver-
sions of communication mechanisms to exchange data with
remote servers, our system architecture does not provide any
communication building blocks. However, it does provide a
fine-tuned implementation of an algorithm that synchronizes
objects graphs in place [11]. By simply calling a provided
API method with the original and updated program states, the
programmer can efficiently replay the changes made to the
updated state on the original state, while keeping all the aliases
pointing to the objects of the original state intact. This hard-
to-implement functionality is essential, when implementing
offloading mechanisms for applications written in modern
managed languages such as Java and C#.

V. EVALUATION

We have evaluated the effectiveness of the cloud offloading
mechanism constructed in the case study in Section IV by
applying it to third-party Android applications. In our im-
plementation, we deliberately avoided putting in place any
fine-grained performance optimizations, thus focusing on the
architectural effectiveness of our programming model.

A. Programmability

First, we evaluated the software engineering benefits of
programming model. To that end, we compared two different

Send localState to offloadingServer

Synchronize localState and remoteState

Yes

Yes

No

No

Get localState

Get Energy@local & Time@local,
(estimate local energy consumption & time)

Get Energy@URI & Time@URI,
(estimate remote energy consumption & time)

Is Energy & Time@URI
“Better” than @local?

Get next URI

offloadingServer := @URI

More servers?

Receive remoteState from offloadingServer

Succeeded?

Yes

Handle FailureNo

Fig. 9. Flowchart of the case study.

FOREACH uri ∈ ∀server DO
CASE Energy
Eexptd ← estimateEnergy(..., uri)
IF Eexptd is the smallest THEN server ← uri END IF
CASE Performance
Texptd ← estimateExecTime(..., uri)
IF Texptd is the smallest THEN server ← uri END IF
CASE EPR
Eexptd ← estimateEnergy(..., uri)
Texptd ← estimateExecTime(..., uri)
epr ← getEPR(Eexptd, Texpted)
IF epr is the smallest THEN server ← uri END IF

END FOREACH

/∗∗ send toServer state to server, the selected server ∗/
sendToServer(server, toServer)

/∗∗ receive fromServer state or exception and
notify it all registered observers ∗/

CASE Succeed
fromServer ← offloadingCompleted()
update(fromServer)
/∗∗ synchronize the remote and local program states ∗/
synchronize(fromServer, toServer)
CASE Fail
exception← offloadingFailed()
update(exception)

Fig. 10. Pseudo code of the case study.

implementations of the same adaptive offloading mechanism:
original with all the functionality implemented from scratch
and framework-based with the major functionality provided
by our framework. In Table I, for each implementation, we
report the total lines of uncommented code (LOC) and the
code’s McCabe Cyclomatic Metric (MCC), a standard measure
of code complexity1.

TABLE I
EXPRESSIVENESS COMPARISON.

Approach LOC Max. MCC
Original Impl. 14,089 89

Framework-Based Impl. 189 6

As expected, it takes an order of magnitude fewer lines of
code to implement the mechanism using our framework than
coding all the required functionality from scratch. Similarly,
the programming effort as measured by the MCC metrics
is also much lower for the framework-based implementation.
Although reducing the programming effort is the raison d’être
of programming libraries and frameworks, it is still important
to quantify the software engineering benefits afforded by our
framework.

B. Experimental Setup

The experimental setup includes a mobile device (1.5GHz
dual-core CPU, 2GB RAM, 802.11n) and a remote server
(3.0GHz quad-core CPU, 8GB RAM). The network types are
two emulated networks: high-end (WiFi network: 20ms round
trip time (RTT) and 50Mbps bandwidth) and low-end (4G
mobile network: 70ms RTT and 1Mbps bandwidth) 2. Table II
shows the device-specific values that parameterize the runtime
systems of the mobile device under test.

TABLE II
MANUFACTURER PROVIDED ENERGY PROFILE.

CPU

1512.0 MHz: 577 mA WiFi 96 mA
1209.6 MHz: 408 mA 0.3 mA
907.2 MHz: 249 mA Mobile 250 mA
604.8 MHz: 148 mA 3.4 mA
302.4 MHz: 55 mA

C. Third Party Applications

To determine if the implemented runtime can improve
the energy efficiency of real-world mobile applications, we
experimented with open source projects as our experimental
subjects. JJIL3 is a face recognition application; its recognition
functionality executes remotely in class DetectHaarParam. Mez-
zofanti4 is a text recognition application; its OCR functionality
executes remotely in class OCR.

1We used Metric 1.3.6 http://metrics.sourceforge.net/ for the measurements.
2We used Network Emulator for Windows Toolkit (NEWT) version 2.1.
3http://code.google.com/p/jjil/
4https://code.google.com/p/mezzofanti

hotspot=DetectHaarParam...()
host=genesis.cs.vt.edu:9999
mode=plain

hotspot=DetectHaarParam...()
host=genesis.cs.vt.edu:9999
mode=adaptive
criteria=energy
strategy=Compression

(a) Configuration files for the face recognition app.

hotspot=OCR.ImgOCRAndFilter()
host=genesis.cs.vt.edu:9999
mode=plain

hotspot=OCR.ImgOCRAndFilter()
host=genesis.cs.vt.edu:9999
mode=adaptive
criteria=energy
strategy=Compression

(b) Configuration files for the OCR app.

Fig. 11. Configuration files for the case study apps.

Furthermore, to achieve additional energy savings, we en-
hanced our runtime system with a module that compresses
the transferred program state. This change did not require any
other modifications to the implementation. Data compression
can reduce network transfer, but will be more computationally
intensive, thus requiring additional CPU processing. Transmit-
ting raw data increases network transfer, but requires less CPU
processing. Which of the strategies will consume less energy
depends on the runtime conditions in place.

For each subject, we measured the amount of the energy
consumed or the execution time by typical, simple use cases.
Specifically, for the face recognition application, we examined
one image file for the presence of human faces. For the OCR
application, we examined one image file containing about
200 characters. The use cases were executed under three
optimization modes: (1) original application, (2) plain cloud

public class Compression extends Strategy {
public Pointcut getPointcut() { return Pointcut.Around; }

public Object invoke(Invocation invocation) {
Object[] params = invocation.getParams();
/∗∗ compress parameters ∗/
loop { // compress each parameter
ByteArrayOutputStream baos = ... ;
GZIPOutputStream gzipOut = ... ;
ObjectOutputStream objectOut = ... ;

objectOut.writeObject(params[i]);
params[i] = baos.toByteArray();
}
point.setParams(params)

/∗∗ Carry out the remote invocation , blocking for result ∗/
Object result = invocation.proceed(Proxy.MODE_BLOCK);

return result ;
}
}

Fig. 12. Compression strategy implementation.

offloading, (3) adaptive cloud offloading. Figure 11 shows the
configurations used in this case study, and Figure 12 shows
code snippet of the compression strategy.

Figure 13 shows how the implemented runtime system
helped reduce the amount of energy consumed by the face
recognition application. In this experiment, the runtime system
compresses the transferred state. The runtime system reduced
the amount of energy consumed by ∼44% as compared to its
local version and by ∼62% as compared to its plain offloading
version, respectively. In the low-end mobile network, the
plain cloud offloading optimization always consumes more
energy than its local version due to the network transmission
overhead. However, the amount of energy consumed by the
adaptive cloud offloading optimization does not exceed its
local version.

6.83
5.41

3.87

13.3

6.35

0

2

4

6

8

10

12

14

En
er

gy
 C

o
n

su
m

p
ti

o
n

 (
Jo

u
le

)
High-end Network Low-end Network

Fig. 13. Energy consumption of face recognition app on the high-end device.

Figure 14-(a) shows how the implemented adaptive runtime
system helped reduce the amount of energy consumed by
the OCR application in both high- and low-end networks.
Because in the high-end mobile network the compression
strategy incurs additional processing overhead (i.e., 4.5 times
larger than with plain cloud offloading), the runtime system
does not compress any state. In the other network condition,
the runtime system reduced the amount of energy consumed
by 15% through the compression strategy. However, as shown
in Figure 14-(b), the both adaptive and plain versions could not
reduce the total execution time taken by the OCR application
in the low-end network as compared to its their local version.
The performance overhead of a plain version is 266% while
the adaptive version spent 31% more time. If an application is
configured to favor performance over energy efficiency (e.g.,
performance), the runtime system will not initiate offloading
operations in the presence of poor network conditions.

VI. DISCUSSION

Next, we discuss the approach’s advantages and limitations.

A. Advantages

The presented approach to facilitating the implementation
of adaptive cloud offloading optimizations provides multiple
advantages, from both systems and software engineering per-
spectives. Among the specific benefits of using the described
system architecture featuring reusable blocks accessible via
an intuitive programming interface include expressiveness,

24.83

4.45 4.77

24.6

21.21

0

5

10

15

20

25

30
En

er
gy

 C
o

n
su

m
p

ti
o

n
 (

Jo
u

le
)

High-end Network Low-end Network

(a) Energy consumption.

15.42

7.55 7.85

56.52

20.3

0

10

20

30

40

50

60

Ex
e

cu
ti

o
n

 T
im

e
 (

Se
c.

)

High-end Network Low-end Network

(b) Execution time.

Fig. 14. Energy consumption and execution time of the OCR application.

generality, separation of concerns, and reusability. When im-
plementing their own adaptive cloud offloading optimizations,
the provided building blocks free the programmers to focus on
the algorithmic and system design aspects of their implemen-
tation. This approach is general in that it can be applied to
optimize the energy efficiency of a variety of existing mobile
applications. Finally, this approach enables a greater separation
of concerns in that it can change a mobile applications’s
energy/performance characteristics without affecting its core
business logic.

B. Limitations

Although our approach also has some limitations. Because
we estimate the energy consumption and performance effi-
ciency parameters at the software level model, the estima-
tion modules may not report the actual amounts of energy
consumed by mobile applications. In addition, our energy
model only takes CPU and network information, so that the
energy consumption of a method containing significant file
I/O or using sensors may turn inaccurate. Finally, while our
system architecture provides fine-tuned reusable implementa-
tion blocks, the quality of end-product runtime system still
remain highly dependent on the programmer’s skills. Overall,
we foresee that using our architecture effectively would still
require a certain degree of competency and expertise from the
programmer.

VII. RELATED WORK

The work presented here is related to other complementary
efforts to optimize the energy efficiency of mobile applica-
tions. Other related approaches have proposed programming

models to facilitate the development of complex computer
systems in different domains. Due to space limitations, we
next compare and contrast our work with only representative
samples of these complimentary efforts.

A. Energy Optimization Mechanisms

Cloud offloading has recently enjoyed a lot of attention
in the research literature with multiple competing approaches
being advocated. CloneCloud [12] offloads execution at the
thread level, while Cloudlet [13] offload at the VM level.
ThinkAir [7] provides a tool chain to offload energy intensive
methods to the cloud and scales up the resulting cloud-based
execution by running the offloaded methods in parallel on
dynamically allocated virtual machines. The purpose of this
work is to facilitate the implementation of cloud offloading
mechanisms such as ThinkAir. Our reusable building blocks
can be used to construct a runtime system similar to that of
ThinkAir. In addition to system-level solutions, programming-
level solutions (e.g., energy saving algorithms [14], design
patterns for energy efficient computing [15], software models
for energy efficient software [16], programming languages
for energy efficiency [17]) have also been advocated in the
literature. We see our approach as lying on the intersection of
system- and program-level solutions. Our system architecture
and programming model enable the creation of powerful
system-level cloud offloading optimization by providing con-
venient software abstractions exposed as a library.

B. Programming Models for Systems

Our approach follows a long tradition of creating system
architectures and programming models to facilitate the con-
struction of complex system solutions. In distributed sys-
tems, component-based programming frameworks have been
used successfully as a means of reducing the complexity of
constructing large-scale heterogeneous systems (e.g., CORBA
[18], enterprise messaging [19], Web services [20], etc.).

In addition to these general models for distributed systems,
specialized models have been proposed to express complex
distributed system functionalities. FarGo-DA [21] is a frame-
work that provides components with disconnection and re-
connection semantics to operate mobile applications in the
presence of network disconnection. To address the complexity,
heterogeneity and dynamism of grid environments, Accord
[22] provides autonomic components to enable programmers
to cleanly separate the concerns of grid management from
that of core computation. Mobile Fog [23] provides program-
ming abstractions for future Internet applications; it utilizes
cloud computing mechanisms to enable runtime scalability,
thus enabling programmers to construct applications that are
distributed, large-scale, and latency sensitive.

VIII. CONCLUSION

This research focuses on the problem of engineering adap-
tive cloud offloading optimizations to improve the energy
efficiency of mobile applications. Although cloud offloading
has been shown as an effective energy optimization technique,

its engineering remains a complex system construction un-
dertaking. To address this problem, we presented a system
architecture and a programming model that provide reusable
building blocks that can streamline the process of constructing
cloud offloading optimizations. The results of our case study
and energy efficiency evaluation indicate that our system archi-
tecture and programming model make it possible to implement
highly effective cloud offloading optimizations. By facilitating
the process of implementing cloud offloading optimizations,
we hope to be able to add the cloud offloading optimization
in the standard toolset of mobile application programmers.

ACKNOWLEDGMENTS

This research is supported by the National Science Founda-
tion through the Grant CCF-1116565.

REFERENCES

[1] Facebook Mobile, “Facebook for every phone,” July 2011.
[2] Y.-W. Kwon and E. Tilevich, “The impact of distributed programming

abstractions on application energy consumption,” Information and Soft-
ware Technology, vol. 55, no. 9, pp. 1602–1613, 2013.

[3] K. Yang, S. Ou, and H.-H. Chen, “On effective offloading services
for resource-constrained mobile devices running heavier mobile internet
applications,” Communications Magazine, IEEE, vol. 46, no. 1, pp. 56–
63, 2008.

[4] E. Tilevich and Y. Smaragdakis, “J-Orchestra: Enhancing Java programs
with distribution capabilities,” ACM Trans. Softw. Eng. Methodol.,
vol. 19, no. 1, pp. 1–40, 2009.

[5] R. Johnson, R. Helm, J. Vlissides, and E. Gamma, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley
Professional, 1995.

[6] Y.-W. Kwon and E. Tilevich, “Reducing the energy consumption of
mobile applications behind the scenes,” in Proceedings of the 29th IEEE
International Conference on Software Maintenance (ICSM), 2013.

[7] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “ThinkAir:
Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading,” in Proceedings of IEEE INFOCOM, 2012.

[8] Y.-W. Kwon and E. Tilevich, “Energy-efficient and fault-tolerant dis-
tributed mobile execution,” in Proceedings of the 32nd International
Conference on Distributed Computing Systems (ICDCS), 2012.

[9] J. Flinn and M. Satyanarayanan, “Energy-aware adaptation for mobile
applications,” ACM SIGOPS Operating Systems Review, vol. 33, no. 5,
pp. 48–63, 1999.

[10] S. Mohapatra, N. Dutt, A. Nicolau, and N. Venkatasubramanian, “DY-
NAMO: A cross-layer framework for end-to-end QoS and energy
optimization in mobile handheld devices,” IEEE Journal on Selected
Areas in Communications, vol. 25, no. 4, pp. 722 –737, 2007.

[11] E. Tilevich and Y. Smaragdakis, “NRMI: Natural and efficient middle-
ware,” IEEE Transactions on Parallel and Distributed Systems, vol. 19,
no. 2, pp. 174–187, 2008.

[12] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “CloneCloud:
elastic execution between mobile device and cloud,” in Proceedings of
the 6th ACM European Conference on Computer Systems, 2011.

[13] M. Satyanarayanan, V. Bahl, R. Caceres, and N. Davies, “The case for
VM-based cloudlets in mobile computing,” IEEE Pervasive Computing,
vol. 8, no. 4, pp. 14–23, 2009.

[14] A. Noureddine, A. Bourdon, R. Rouvoy, and L. Seinturier, “A prelimi-
nary study of the impact of software engineering on greenIT,” in Pro-
ceedings of the 1st International Workshop on Green and Sustainable
Software, 2012.

[15] Y. Liu, “Energy-efficient synchronization through program patterns,” in
Proceedings of the 1st International Workshop on Green and Sustain-
able Software, 2012.

[16] C. Thompson, H. Turner, J. White, and D. Schmidt, “Analyzing mobile
application software power consumption via model-driven engineering,”
in Proceedings of the 1st International Conference on Pervasive and
Embedded Computing and Communication Systems, 2011.

[17] M. Cohen, H. S. Zhu, S. E. Emgin, and Y. D. Liu, “Energy types,” in
Proceedings of the ACM International Conference on Object-Oriented
Programming Systems, Languages, and Applications, 2012.

[18] Object Management Group, “The CORBA component model specifica-
tion,” Object Management Group, Specification, 2006.

[19] R. Monson-Haefel and D. Chappell, Java Message Service. Sebastopol,
CA, USA: O’Reilly & Associates, Inc., 2000.

[20] G. Alonso, F. Casati, H. Kuno, and V. Machiraju, Web services.
Springer, 2004.

[21] Y. Weinsberg and I. Ben-Shaul, “A programming model and system
support for disconnected-aware applications on resource-constrained de-
vices,” in Proceedings of the 24rd International Conference on Software
Engineering (ICSE), 2002.

[22] H. Liu, M. Parashar, and S. Hariri, “A component-based programming
model for autonomic applications,” in Proceedings of the International
Conference on Autonomic Computing (ICAC), 2004.

[23] K. Hong, D. Lillethun, U. Ramachandran, B. Ottenwälder, and B. Kold-
ehofe, “Mobile fog: A programming model for large-scale applications
on the internet of things,” in Proceedings of the 2nd ACM SIGCOMM
Workshop on Mobile Cloud Computing, ser. MCC ’13, 2013.

