
Musiplectics: Computational Assessment
of the Complexity of Music Scores

Ethan Holder
Software Innovations Lab

Virginia Tech
eholder0@vt.edu

Eli Tilevich
Software Innovations Lab

Virginia Tech
tilevich@cs.vt.edu

Amy Gillick
Department of Music

Virginia Tech
agillick@vt.edu

Abstract
In the Western classical tradition, musicians play music
from notated sheet music, called a score. When playing
music from a score, a musician translates its visual sym-
bols into sequences of instrument-specific physical motions.
Hence, a music score’s overall complexity represents a sum
of the cognitive and mechanical acuity required for its per-
formance. For a given instrument, different notes, intervals,
articulations, dynamics, key signatures, and tempo represent
dissimilar levels of difficulty, which vary depending on the
performer’s proficiency. Individual musicians embrace this
tenet, but may disagree about the degrees of difficulty.

This paper introduces musiplectics1, a systematic and ob-
jective approach to computational assessment of the com-
plexity of a music score for any instrument. Musiplectics
defines computing paradigms for automatically and accu-
rately calculating the complexity of playing a music score
on a given instrument. The core concept codifies a two-phase
process. First, music experts rank the relative difficulty of in-
dividual musical components (e.g., notes, intervals, dynam-
ics, etc.) for different playing proficiencies and instruments.
Second, a computing engine automatically applies this rank-
ing to music scores and calculates their respective complex-
ity. As a proof of concept of musiplectics, we present an au-
tomated, Web-based application called Musical Complexity
Scoring (MCS) for music educators and performers. Musi-
plectics can engender the creation of practical computing
tools for objective and expeditious assessment of a music
score’s suitability for the abilities of intended performers.

1 musiplectics = music + plectics, Greek for the study of complexity

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ONWARD ’15, October 25–30, 2015, Pittsburgh, Pennsylvania, USA.
Copyright is held by the owner/author(s).
ACM 978-1-4503-1995-9/13/10.
http://dx.doi.org/10.1145/2508075.2514879

Keywords Music Scores; Music Complexity Assessment;
Novel Computing Domains; MusicXML

1. Introduction
Which piano concerto is more difficult: Rachmaninoff’s Sec-
ond or Third? A newly appointed band director wonders if
this new orchestral score is appropriate for a high school
band, given that the clarinet and bassoon sections are quite
advanced, while the flute and oboe sections are more novice.
Music educators working on pedagogical guidelines for K-
12 students are trying to decide whether a given piece be-
longs in the N or N+1 curricular level. A publisher won-
ders which audience to target when marketing new works,
while the publisher’s customers face great uncertainty when
determining whether unfamiliar music matches their playing
ability. Performers, band directors, educators, and publishers
encounter these non-trivial questions throughout their pro-
fessional careers.

Unfortunately, determining the relative complexity of
music is a non-trivial cognitive task. Additionally, meth-
ods in the current state of the art depend solely on individual
opinions, a process influenced by personal biases and lack-
ing common criteria. In other words, the only way to answer
these questions in a viable way is to carefully analyze music
scores by hand, a tedious, error-prone, and time-consuming
process. The stakeholders at hand would rather spend their
precious time on more creative pursuits.

Can computing help decode these persistent and chal-
lenging questions? Is it possible to provide such technol-
ogy in a ubiquitous and user-friendly way, accessible to
any interested musician? To answer these questions, this pa-
per presents musiplectics, a new computational paradigm,
that systematically evaluates the relative difficulty of music
scores, thus benefiting educators and performers. Two in-
sights provide a foundation behind musiplectics. First, cer-
tain notes and other musical components, including inter-
vals, dynamics, and articulations, are harder to play than the
others. Second, automated computer processing can trans-
form a prohibitively tedious, error-prone, and subjective pro-
cess into a practical and pragmatic solution if exposed via an

intuitive user interface. Hence, musiplectics fuses commonly
accepted music tenets and novel computing paradigms, to
objectively answer the questions above.

Musiplectics draws its inspiration from computational
thinking [35]. The problem of estimating the expected per-
formance efficiency of a given program has been studied in
great detail. We have computational approaches that can pre-
dict the amount of computational resources that will be re-
quired to execute a program. By tallying the costs of individ-
ual instructions, one can estimate the overall cost of execut-
ing a program on a given platform. Analogously, individual
musical components also have agreed upon costs, defined in
terms of the difficulty they present to performers. By decom-
posing a music score into its individual musical components,
one can use their unit costs to compute the total complexity
of executing a score on a given instrument.

Figure 1. The process of decomposing code and music to
extrapolate a conclusion.

Although one can draw various analogies between music
and computing, the intricacy of determining the complexity
of music scores is most similar to estimating program perfor-
mance on different computing devices. While the same com-
piled program can be executed on any computing device of a
given architecture, the device’s processing power ultimately
determines the efficiency of the resulting execution, which
can vary widely. The same applies to the complexity expe-
rienced by musicians with dissimilar levels of proficiency
when performing the same piece on a given instrument. Al-
though all musicians read a piece of sheet music and under-
stand it similarly, the complexity of playing that piece is de-
termined by a performer’s proficiency. Musiplectics aspires
to blaze a trail toward objectively assessing these complex-
ities by creating a practical computational framework that
can capture the subtle nuances of musical complexity.

The solutions presented herein are instrument agnostic.
Nevertheless, to realize the concept of musiplectics, our ref-
erence implementation of the computational framework tar-
gets the B[Clarinet. This exclusive focus on clarinet is re-
flective of our own music performance expertise, rather than
of any limitations of the presented concepts.

1.1 Research Contributions
By presenting our work, this paper makes the following
contributions:

1. Musiplectics, a new application of computing that en-
compasses automated assessment of the complexity of
music scores.

2. A computational model for music complexity; it assigns
base levels of difficulty to an instrument’s notes and in-
tervals, with dynamics, articulations, key signatures, and
note duration serving as multipliers that increase or re-
duce the base difficulty.

3. Musical Complexity Scoring or MCS, a concrete realiza-
tion of the musiplectics-based model above, made pub-
licly available online for teaching and experimentation.

4. A preliminary evaluation of our model’s realization,
which compares MCS to commonly accepted educational
level guidelines for repertoire pieces.

5. An evaluation of music Optical Character Recognition
(OCR) software as a means of converting sheet music
into a computer-readable MusicXML format.

1.2 Paper Roadmap
The remainder of this paper is structured as follows. First,
Section 2 presents background information on music to pro-
vide a base line for readers. Then, Section 3 highlights re-
lated work in this field. Next, Section 4 explains our basic
model for determining music complexity. Using that model,
Section 5 demonstrates a complexity score manually tabu-
lated from a simple example piece. Afterwards, Section 6
explains the proof of concept’s design and details. This leads
into the evaluation Section 7 which shows how we have
tested this system and what preliminary results we have un-
covered. Section 8 interprets the results and discusses how
our system compares to the state of the practice. Afterwards,
Section 9 gives directions for future work. Finally, Section
10 presents our conclusions for this project.

2. Background
This research is concerned with evaluating musical complex-
ity. Music is a very specialized domain with its own unique
set of concepts, terms, and conventions. Hence, for the ben-
efit of the reader not familiar with Western music, we next
present a brief refresher of the standard elements of music.
The reader well-versed in this art can safely skip this Sec-
tion. Although, we have striven to adhere to the standard def-
initions of the common musical elements, this Section dis-
tills music theory down to the core concepts for the sake of
brevity.

The fundamental building block of music is the note.
Notes in music are similar to words in spoken language or
tokens in code. The characteristics expressed by a sound
require multiple types of visual symbols to express a note. In

written music, the most important characteristics of notes are
pitch, duration, dynamics, and articulation. In sheet music,
notes are depicted as ovals, both with and without a line
(stem) and flag attached to them.

Notes are placed into measures. A measure is a uniform
unit of time that breaks up a music piece into smaller seg-
ments. These smaller segments endow the piece with a re-
peating rhythmic emphasis, analogous to meter in poetry.

Pitch is the most salient characteristic of any note. It is
the frequency of the sound wave the note produces, or how
high or low a note sounds to the listener. Pitches are not
continuous, but rather fall on specific discrete steps or half
steps within the range of audible frequencies.

An interval is the difference in pitch between two notes.
Each interval’s name encodes the distance between pitches
with different levels of gradation. For example, a minor
third, a perfect fourth, a major sixth, etc.

The pitch of a note can be determined from the note’s
vertical placement on the staff (the five horizontal lines and
four spaces in between), the clef (the range of notes possible
to represent on the staff), and the key signature (the pitches
to be altered up or down a half step). Accidentals can also
similarly alter the pitch of a note up or down by half steps;
but accidentals are not applied to the entire piece, only one
specific measure at a time. Both accidentals and key signa-
tures are represented by symbols called sharps or], which
raise the pitch a half step, flats or [, which lower the pitch a
half step, and naturals or \, which undo the effect of the pre-
viously applied pitch modification. Web designers can draw
an analogy from key signatures and accidentals in music to
global and inline cascading style sheets (CSS) in web page
rendering.

Another central characteristic of a note is its duration.
Duration is simply the length of time a note is sustained.
Although written music does not explicitly specify duration,
it is inferred from the note’s value (a fraction expressed by
the note’s stem and flags), the time signature (how many
beats are in a measure and what fraction of a whole note
gets a beat), and the tempo (how many beats are played in a
given time frame).

For example, the value of a quarter note is 1/4th that of
a whole note. In three four time, the first number says there
are three beats in a measure, and the second number says that
a quarter note receives one beat in a measure. If the tempo
is 120 bpm (beats per minute), then this example measure
would last exactly 1.5 seconds (3 beats in a measure / (120
beats per minute / 60 seconds/minute)).

Dynamics refers to the volume of notes. Dynamics are
specified with different Italian words, such as piano (quiet),
forte (loud), and mezzo (medium), expressed by letter p,
f, and m, respectively. Composer combine these letters to
express a wide variety of dynamic levels, typically rang-
ing from ppp (pianississimo, meaning very, very quiet)
to fff (fortississimo, meaning very, very loud). There are

also markings for gradually changing dynamics to louder
(crescendo) or softer (decrescendo or alternatively dimin-
uendo) that look like elongated greater than or less than
symbols below the staff.

Articulation is how a note is played and linked to subse-
quent notes. The simplest analogy for articulations are how
different letters or sounds are formed and connected in spo-
ken language. For example, speaking “ta” and “la” have the
same “a” sound once held out, but their initial articulations
are different because the “t” and “l” sounds are uttered dif-
ferently. There are many different articulations, but the main
ones utilized in this work are as follows:

• Accent or >, which means to play the note louder than
those around it.

• Staccato or ·, which means to play the note shorter than
its full value, cutting it off early.

• Tenuto or – , which means to play the note slightly longer
than its full value, in a connected manner to the following
note.

• Marcato (a strong accent) or ∧, which means to play
the note much louder than those around it, more than an
accent.

• Slur or ^, which means to separate only the first note,
connecting all the following notes together.

Although musical notation possesses additional advanced
characteristics, including timbre, further articulations, and
elaborate music markings, we did not find these advanced
symbols as common enough to be useful to consider in a
general complexity model. When writing music, composers
combine the concepts above to express the desired artistic
impression the composition is intended to make on the lis-
tener. Hence, it is hard to distinguish which notational con-
cept is more important than the other for artistic expression.
Nevertheless, we have found the subset presented above as
absolutely essential to realizing the ideas behind musiplec-
tics.

3. Related Work
Multiple prior research efforts study various facets of music.
Although relatively few works concretely focus on analyz-
ing music complexity 3.1, tangential studies into scanning
and searching music 3.2 as well as classifying music 3.3 rep-
resent related research efforts. Each has tangible ties to this
work’s objectives, albeit some at a more abstract level than
others.

3.1 Complexity Analysis
The most relevant works to musiplectics are those that also
seek to analyze the complexity of music in some way. A
representative example is presented in reference [11]. This
work seeks to automatically generate or predict the diffi-
culty of a piano music piece. The authors apply regression

theory over a set of features (playing speed, pitch entropy,
distinct stroke rate, hand displacement rate, hand stretch, fin-
gering complexity, polyphony rate, and altered note rate) that
cause difficulties for that specific instrument. Musiplectics
leverages similar musical concepts to build up an aggregate
measure of difficulty or complexity. However, our approach
has a wider range of applicability, both in terms of musical
instruments and playing proficiency, as well as portability,
by embracing uniform types of complexity parameters. In
other words complexity parameters in musiplectics encom-
pass the cognitive and mechanical complexities for a given
instrument, but the parameter types are agnostic to any basic
instrument, rather than specific to piano. So all instruments
under musiplectics have the same types of complexity pa-
rameters, which may take upon vastly different values.

Similar to [11], [15] studies the complexity of playing
guitar. Their work extracts features that determine difficulty
when playing guitar. However, their focus lies more on the
mechanical difficulties specifically associated with guitar
(hand position, hand reposition, and finger span), rather than
broad-ranging complexities of playing music on any instru-
ment. Musiplectics also takes into account the playing profi-
ciency of the player at hand.

Another related approach to ours is [20]. The authors an-
alyze the complexity of the rhythmic components of various
pieces of music. They utilize the L-system to breakdown the
rhythm of a piece into a tree structure and then apply tree
analysis algorithms to generate a score. Although musiplec-
tics avoids complex algorithms for examining the rhythmic
structure of a piece, it considers a full array of the elements
of music scores including rhythm, along with intervals, dy-
namics, and other parameters rather than rhythm alone.

State organizations, such as [33] in Virginia and [25] in
New York as well as others, similarly analyze music scores
by hand, an activity which we hope to automate. These or-
ganizations govern K-12 schools in their respective states.
They also list music pieces and their respective difficulty
grades for district, regional, or state competitions for each K-
12 grade level. Other organizations, such as the Royal Con-
servatory Music Development Program [29], offer similar
pieces and respective grades as part of their level require-
ments and assessment regulations. Unlike state organiza-
tions, Royal Conservatory publishes their pieces and scores
to the public, a provision that enables us to leverage them in
evaluating our work.

The difficulty grading schemes in both types of organi-
zations are analogous to the complexity of the piece, except
that in these organizations pieces are graded subjectively by
a group of people rather than a uniform algorithm. Addition-
ally, the grades are typically listed as integer values between
1 and 10, thus lacking a sufficient level of granularity to ex-
press nuanced differences between musical pieces.

3.2 Music Scan & Search
One area of research tangential to analyzing music complex-
ity is scanning and searching for music. The overlap lies
chiefly in the end use cases in both areas of research. Ed-
ucators, performers, and other stakeholders, all find them-
selves needing to efficiently locate musical pieces that meet
their respective requirements. Providing a complexity score
is one means to improve the efficiency of searching for new
music, since users can see complexity at a glance or even
search by complexity to find a piece to prepare. [7] gives
many reasons for why this is necessary, but there is a whole
body of research related to music information retrieval that
deals with similar problems.

Another area of overlap between musiplectics and mu-
sic scanning is in translation. From a high-level, reading in
any form of music and writing out a related, different form
is essentially translation. There are many research efforts to
translate forms of music into other languages or versions.
An especially interesting effort in this regard is [1]. The au-
thors work to convert polyphonic music (music with several
simultaneous notes on one or several instruments, such as a
band playing together in harmony or one person playing pi-
ano or guitar for instance) into equivalent monophonic mu-
sic. Their end goal is to reduce a large, expressive format
to a more simple one for comparing pieces during a lookup.
The reduction in complexity of chords down to single notes
represents an interesting approach that could be leveraged
with musiplectics, so as to generate a potentially less com-
plex version of a given piece.

3.3 Music Classification
Music classification presents another area of potential re-
search overlap. Much research has previously dealt with us-
ing computers to understand music and thus classify into var-
ious genres. While the efforts of music classification are not
the same as determining complexity, the approaches taken
to classify certain pieces via machine learning and statisti-
cal methods are important, because they present means of
automatically analyzing music. At some point musiplectics
could potentially apply similar machine learning concepts to
interpret what makes music complex and generate our own
model (rather than decomposing music scores into individ-
ual elements and calculating their summary complexity) as
well as leverage genre classification as another source of po-
tential complexity. For now however, we focus on building
our own model so as to first prove the viability of this ap-
proach and leave improving its accuracy as future work.

Cuthbert, Friza, and Friedland [13] for example focused
heavily on using machine learning to classify different types
of music. The authors can extract multiple features from a
variety of input types and apply their theorem to successfully
classify the genre of several inputs.

Similarly, [9] proposes an approach to classifying music
files in MIDI format specifically. The authors form an ap-

proximation of the Kolmogorov distance using the normal-
ized compression distance between approximate string rep-
resentations. They use this approximation as the main fea-
ture to classify numerous music files.

4. Computational Model for Music
Complexity

In Section 2 above, we discussed several fundamental music
concepts. These concepts serve as the baseline elements that
factor into the complexity score.

The most straightforward approach to calculating an
overall score is to assign whole number weights to each
element perceived to be especially important (i.e., notes,
intervals, dynamics, articulations, key signatures, and note
durations) and add all the weights up. This scheme, however
viable, fails to adequately reflect the experience of playing
music. At their core, notes and intervals present distinct dif-
ficulties on their own, whereas dynamics, articulations, key
signatures, and note durations only modify those difficulties.
For instance, a small interval may seem easy on its own, but
with changing dynamics, with differing articulations, in a
strange key, or at a high tempo, that interval could become
much more difficult.

Hence, a more authentic approach to calculating an over-
all score is to only assign whole numbers weights to notes
and intervals. These are still counted and summed up into
a final score. However, dynamics, articulations, key signa-
tures, and note durations become multipliers onto notes and
intervals. Each dynamic, articulation, and key signature thus
receives a multiplier weight that is a decimal (typically be-
tween 0 and 2). Those multipliers are applied to every oc-
currence of a note or interval. An example of this process in
action can be found in Section 5.

Note duration is factored into the score as an average over
all notes. The total amount of notes and associated duration
in seconds is calculated at the end and applied as its own
multiplier. The more notes in a given span of time, the higher
the multiplier becomes.

This scheme captures the concept we envisioned that
makes duration complex, except in the extreme case of play-
ing excessively long notes. In cases of wind instruments,
such as our main target of B[Clarinet, holding notes out
for long durations may possess its own difficulty in provid-
ing adequate breath support, rather than the difficulties of
changing finger positions and embouchure quickly.

Thus, our model adapts the note duration multiplier to
be a multiplicative or fractional difference from one. If the
average of notes per second in the piece is 1.5, then the
multiplier remains 1.5. However, in the case of many long
notes, the average of notes per second might be something
closer to 0.5. In this case (when the average is less than 1),
the fraction becomes its reciprocal, 2 in the example.

Users cannot directly change this parameter as it is built
into the model. However, they can still influence the degree

Figure 2. Twinkle Twinkle Little Star as an example piece
for obtaining a complexity score.

to which this parameter affects the overall score. To that end,
the user can parameterize note durations with a multiplier
value that increases or reduces the impact of the note dura-
tion parameter. For the cases when the user is content with
the built-in setting, the model applies the default value of 1.

The length of a piece can test the performer’s endurance
boundaries, particularly for wind instruments, and as such,
serves as an integral component of the overall complexity. If
however, the length is to be disregarded, one can simply di-
vide the complexity score by the music piece’s length, thus
reporting the average complexity. There can be value in re-
porting both the overall and average complexity, a proposi-
tion to be verified by future research.

5. Use Case
To concretely illustrate how one can apply the computational
model for music complexity described in Section 4, we next
work through a well-known and recognized example piece,
Twinkle Twinkle Little Star, to generate its complexity score.
The piece’s musical score appears in Figure 2. The majority
of music educators would agree that this piece is straightfor-
ward to play on B[Clarinet, even for beginners. Hence, we
will use the beginner complexity parameters, defined later in
Section 7.1, to calculate the piece’s complexity.

As step one, we determine the difficulty weights for notes.
This piece comprises the following notes: C4, D4, E4, F4,
G4, and A4. Based on the beginner settings, all notes but A4
are weighted as 1. A4 is weighted as 2, since its range is
higher than that of the other notes.

The next step is to multiply these weights by each reg-
ular multiplier, which are articulations, key signature, and
dynamics. Since there are no articulations for any notes in
this piece, and the no articulation multiplier is 1, the cumu-
lative note weights remain the same. Similarly, since the key
signature is C (no sharps or flats), the multiplier is 1, and
once again the cumulative note weights remain unchanged.

Since no dynamics are specified, the model assumes
that it must have encountered a dynamic not previously ac-
counted for (such as potentially fff). Thus, the multiplier for
unknown dynamics is 1.5 across all notes. Now all notes but

A4 have a cumulative weight of 1.5. A4 now has a cumula-
tive weight of 3.

The piece contains 38 notes with cumulative weight of
1.5 (C4-G4) and 4 notes with cumulative weight 3 (A4).
Thus, the total score for notes is (38 ∗ 1.5) + (4 ∗ 3) =
69. Next, we determine the difficulty weights for intervals.

Interval weights are more complex, since they are not
only based on the distance between notes, but also in which
range of pitches that interval occurs. Ignoring gradations,
this piece presents the following intervals on the first line:
1, 5, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2. The second line presents
slightly different intervals as follows: 5, 1, 2, 1, 2, 1, 2, 4,
1, 2, 1, 2, 1, 2. Finally, the last line follows the same pattern
as the first, with a 2 joining the second line to the last line.
Based on where each interval occurs and the weights for
beginner settings, all but 4 intervals receive weights identical
to their distance. The 4 which do not receive this weight are
major seconds to and from the note A4 on the first and last
lines. These receive weights of 8, once again since A4 is in
a higher range than the rest.

Following the same steps as above, the articulation and
key signature multipliers have no effect on the intervals.
The dynamics multiplier increases each interval’s cumula-
tive weight by a factor of 1.5. Adding these up yields a total
score for intervals of 148.5.

Finally, the totals from notes (69) and intervals (148.5)
must be modified by the note duration multiplier. The note
duration multiplier represents the amount of notes played
per second. It is calculated by dividing the total amount of
notes (42) by the total amount of beats (48) and multiplying
that total by the beats per second (2). In this case the note
duration multiplier is 1.75. Thus, the total score from notes
is 69 ∗ 1.75 = 120.75, and the total score from intervals
is 148.5 ∗ 1.75 = 259.875. The overall complexity score is
simply their sum, 120.75 + 259.875 = 380.625 or simply
380, as shown in the online reference implementation.

As mentioned before, one way to compute a complexity
metric that is independent of the piece’s length is to express
the total complexity as an average over its length. For exam-
ple, one may want to know the average complexity per sec-
ond. In this piece, calculating this average would require di-
viding 380.625 by 24 seconds (48 beats / 2 beats per second
= 24 seconds), yielding 15.859375 or simply 16. Whether
such average complexity provides meaningful insights re-
mains to be investigated as a future research direction.

6. Proof of Concept
In 6.1, we outline the basic software design of our proof of
concept and its extensible architecture. Then, we describe
the implementation choices we have made while realizing
our design in 6.2.

6.1 Design Overview
The complexity model presented above outlines the basic
functionality of our approach. Nevertheless, the implementa-
tion’s complete control flow involves several steps. The com-
plete control flow can be seen in Figure 3.

Figure 3. The overall control flow from a user’s perspective.

From the top left, one can see the inputs to our a musi-
plectics system are Notation Apps and Pieces in PDF for-
mat. Many common notation applications, such as Finale
Notepad [21] and Sibelius [4], support a universal format
called MusicXML [22] [14]. MusicXML files can be im-
ported, edited, and output back to MusicXML or other pro-
prietary formats. MusicXML is the underlying representa-
tion on which our reference implementation operates.

Alternatively, the system can be extended to work directly
with music pieces in PDF format. It can accept PDF files
and transform them into their MusicXML representation, by
means of music OCR (Optical Character Recognition) soft-
ware. Our reference implementation relies on free software
from Audiveris [5] currently, but it could equivalently utilize
other off-the-shelf OCR applications.

Once the MusicXML representation of the piece is ob-
tained, the automated processor then takes it as an input. The
processor computes the complexity score by going through
a sequence of steps. First, it parses the piece to extract in-
dividual music elements to be analyzed. Then, it looks up
the weights for each element as specified by the complexity
parameterization.

Recall that our system can be parameterized with differ-
ent complexity weights to reflect dissimilar levels of per-
instrument playing proficiency. Currently, these weights are
specified in an xml file to facilitate tool integration. Because
the weights are meant to be decided on by music experts,
our design foresees the creation of visual editors to specify
this information. These editors can easily save their inputs in
some xml format. In our proof of concept, we experimented
with 5 different sets of weights, which represent proficiency

levels that range from that of a beginner up to a trained pro-
fessional.

Using the specified weights, the system calculates the
complexity by tallying up the difficulty values of each in-
dividual type of element, computed separately during a sin-
gle pass over the structure. The final piece of functionality
presents the calculated complexity in a user friendly fash-
ion. To that end the system uses a web-based interface with
specialized javascript libraries.

One key design feature is ease of extendability at each
level. Any application that generates valid MusicXML files
can feasibly provide input to our system. Furthermore, the
overall process can be extended if other applications can
generate the piece of music in PDF form or some intermedi-
ate that can be represented in PDF or MusicXML.

The system itself can be extended to operate only on spe-
cific selections of pieces or on batches of multiple pieces
if necessary (thus showing the complexity of an entire per-
formance). Finally, the parameters that determine complex-
ity can easily be changed on the fly. This provision enables
individual performers or groups to set their own complex-
ity levels to find a score even more relevant to their playing
style.

6.2 Implementation Details
The reference implementation spans several different code
bases, most notably the automated processor backend and
the web UI frontend. Both are publicly available on GitHub
[16] along with instructions as to how to set them up and
links to the current deployed version.2

The backend code is written in Java with some limited
PHP to facilitate server communication. We’ve utilized the
Apache Xerces 2.11.0 library for parsing xml files [2] and
the JSON Simple 1.1.1 library [17] for constructing JSON to
pass along to the frontend. The backend utilizes the visitor
pattern heavily so as to ease the handling of the intricacies
and redundancies of processing MusicXML.

The frontend code is written in Javascript, HTML, and
CSS. To minimize the amount of hand-written code, our
implementation makes use of numerous libraries, includ-
ing jQuery 2.1.0 [32], Bootstrap 3.3.4 [26], Datafs 1.10.5
[30], D3 3.5.5 [6], and VexFlow 1.2.27 [10]. These libraries
greatly facilitate various standard facets of system imple-
mentation, making it possible for us to focus on the novel,
research-related issues of musiplectics.

7. Evaluation
The goal of our evaluation is to demonstrate that the ref-
erence implementation of musiplectics can become a useful
tool for music educators. To that end, we ran our system with
different parameterizations on a set of music scores, used in
educational settings. Music educators have also ranked these
same scores by hand, producing a baseline for comparison.

2 The current version is deployed at http://mickey.cs.vt.edu/

As expected, even though the general trends reported by our
tool corresponds to that provided by music educators, we
have also observed some outliers. Some pieces turned out
to have been much more complex on the relative scale than
the pieces immediately preceding and following them in the
rankings. These discrepancies can be explained either by im-
maturities of our implementation or by inaccuracies of rank-
ing of music scores by hand. It is easy to overlook some
really complex parts in the middle of a score when trying to
assess its suitability for a given playing proficiency. While
an automated tool analyzes scores in their entirety, produc-
ing the results based on an exhaustive analysis of each and
every element.

We first specify the complexity parameters used in the ex-
periments in 7.1. Then, we unveil the strategies one can fol-
low to obtain the settings that represent a consensus among
musicians in 7.2. Next, we describe the test pieces selected
in 7.3. Additionally, we discuss the accuracy of the OCR
program tested for suitability in musiplectics as an appendix
in A.

7.1 Clarinet Complexity Parameterization
Section 4 above explains the rationale behind complexity
parameters. In particular, it differentiates between parame-
ters, expressed as whole number weights and those which
are decimal number multipliers. In that presentation, we did
not link the parameters to any particular instrument. By con-
trast, in this Section, we discuss their specific application for
a specific instrument, the B[Clarinet.

We decided to focus specifically on the clarinet, because
it exhibits many forms of complexity and relates to many
similar woodwind and brass instruments. Additionally, our
own musical expertise favors this instrument above all oth-
ers, making it possible for us to define our own complexity
parameters with confidence and not requiring external con-
firmation. We provide these parameters simply as an exam-
ple used to realize our proof-of-concept, thus allowing us
to begin initial testing with the overall system. Moving for-
ward, we plan to parameterize our system with the param-
eters derived from surveying experts, as discussed in more
detail in sections 7.2 and 9.1.

The initial complexity settings for B[Clarinet were for
beginners. Based on these values, complexity settings for
other levels of B[Clarinet were later adapted, but those lev-
els largely changed only the associated weights. It would be
trivial enough to test with all our levels, but for the sake of
brevity we only utilized the beginner level and only B[Clar-
inet in our tests. Section 9.1 discusses areas of future work
with more settings and more instruments. Additionally, the
online reference implementation features music pieces with
multiple instruments and the ability to generate complexity
scores for each level to further showcase this possibility.

Note complexities were broken up into the ranges and as-
signed weights, as shown in Table 1. Intervals were similarly

http://mickey.cs.vt.edu/

Note Range Weight
G3-G]4 1
A4 2
B[4-C5 5
≥ C]5 10

Table 1. Note ranges and weights for beginner B[Clarinet.

Interval Low Range High Range Weight
Unison Anywhere Anywhere 1
Second G3-G]4 G3-G]4 2
Third G3-G]4 G3-G]4 3
Fourth G3-G]4 G3-G]4 4
Fifth G3-G]4 G3-G]4 5
Any G3-G]4 A4-C5 8
Any A4-C5 ≥ C]5 10
Sixth Anywhere Anywhere 9
Seventh Anywhere Anywhere 9
Octave Anywhere Anywhere 9
> Octave Anywhere Anywhere 10

Table 2. Intervals, note ranges, and weights for beginner B[
Clarinet.

Dynamic Abbreviation Weight
mezzo forte mf 1.0
mezzo piano mp 1.0
forte f 1.1
fortissimo ff 1.2
piano p 1.3
pianissimo pp 1.5

Table 3. Dynamics and weights for beginner B[Clarinet.

Articulation Weight
Slur 0.5
Normal/None 1.0
Accent 1.1
Staccato 1.2
Tenuto 1.2
Marcato (Strong Accent) 1.4

Table 4. Articulations and weights for beginner B[Clarinet.

broken up further and assigned weights, as shown in Table
2.

Dynamics and articulations were specified for those spe-
cific types mentioned previously in Section 2. Their weights
can be found in Tables 3 and 4, respectively. Unlike dynam-
ics and articulations, all possible major key signatures are
specified with weights and shown in Table 5. Finally, the
note duration modifier is kept at 1.0, so the note duration
modifier works exactly as specified in 4.

Key Signature Sharps/Flats Weight
C None 1.0
G F] 1.1
D F], C] 1.1
A F], C], G] 1.2
E F], C], G], D] 1.3
B F], C], G], D], A] 1.4
F] F], C], G], D], A], E] 1.5
C] F], C], G], D], A], E], B] 1.6
F B[1.1
B[B[, E[1.1
E[B[, E[, A[1.2
A[B[, E[, A[, D[1.3
D[B[, E[, A[, D[, G[1.4
G[B[, E[, A[, D[, G[, C[1.5
C[B[, E[, A[, D[, G[, C[, F[1.6

Table 5. The major key signatures and weights for beginner
B[Clarinet.

7.2 External Survey
Although the complexity parameterization presented in 7.1
may be accurate, one would not be able to validate them
empirically, as they reflect one’s subjective personal experi-
ences and beliefs. However, musiplectics embraces this sub-
jectivity, enabling individual musicians to specify the param-
eterizations that reflect their own individual understanding of
their own or their students’ proficiency.

As a logical consequence of the previous observation,
it would be equally impossible to empirically validate the
“correctness” of the computed complexity score of an ana-
lyzed piece. However, if stakeholders in a score can gener-
ally agree on its relative complexity, the resulting consensus
can serve as a viable form of validation.

Based on this assumption, experts, musicians, and edu-
cators seem to have a vested stake in the results of these
complexity scores. Therefore, we’ve begun to survey those
related to B[Clarinet in an effort to ascertain their opinions.
In the survey we ask simple questions about the complex-
ity parameters already established, both how the parameters
are implemented and the weights assigned to each. Once a
statistically significant consensus has been reached or some
threshold of responses have been given, the results of the
survey will become the new complexity parameters. At the
time of writing, neither condition has been met so our own
parameters are in use, but it is important to note that we are
striving to find an amicable means of determining these pa-
rameters.

7.3 Graded Music Pieces for Comparison
Based on the 2014 syllabus for B[Clarinet available from
Royal Conservatory [29], we selected 2-4 pieces for each
grade, 1-10. The pieces were chosen based on availability,
so as to minimize the amount of companion book or sub-

scription purchases required. In whole 32 pieces are used for
the main comparison: 10 from Standard of Excellence [27],
7 from Clarinet Solos [3], 4 from Concert and Contest Col-
lection [34], and 11 publicly available on IMSLP [28]. Each
of these is listed with its author and grade in Table 6. These
pieces are translated into MusicXML using the OCR process
and subsequently passed through MCS to obtain a complex-
ity score for each.

Gr. Title Composer
1 Bingo S.o.E.
1 Eerie Canal Capers S.o.E.
1 Go for Excellence no. 61 S.o.E.
2 Alouette S.o.E.
2 Grandfather’s Whiskers S.o.E.
2 Ming Court S.o.E.
3 Just Fine S.o.E.
3 Variations on a Theme Mozart
3 Loch Lomond S.o.E.
3 Theme from Symphony 9 Beethoven
4 Minuet in G Beethoven
4 Gavotte Gossec
4 Song without Words Tschaikowsky
5 Humoresque Dvorak
5 The Dancing Doll Poldini
5 Hymn to the Sun Korsakoff
6 Serenade Drdla
6 Promenade Delmas
6 Scherzo Koepke
6 Nocturne Bassi
7 Sonata Mvmt. 2 Hindemith
7 Scene and Air Bergsen
8 Canzonetta Pierné
8 Concerto Opus 36 Mvmt. 1 Krommer
8 Sonata Mvmt. 1 Saint-Saëns
9 Sonata Mvmts. 3 and 4 Hindemith
9 Sonata Mvmts. 2, 3, and 4 Saint-Saëns
9 Solo de Concours Rabaud
10 Concerto no. 3 Mvmts. 1 and 2 Crussell
10 Concerto no. 3 Mvmts. 2 and 3 Crussell
10 Solo de Concours Messager
10 Sonata no. 2 Mvmt. 1 Stanford

Table 6. The works from Royal Conservatory chosen for
comparison along with their grade and composer (or book
reference if no composer information was available).

Figure 4 displays the complexity score of each piece
by associated grade. The pieces are in the same order as
previously listed in Table 6, but are displayed here by grade
for readability. Please note that pieces in all grades do have
a complexity score, but those in grades 1-3 are less than
1000 and are not discernible in the graphic. Similarly, Figure
5 shows the average complexity of pieces by grade from

Figure 4. The complexity score of pieces by grade from
Royal Conservatory. Everything to the right of a grade in-
cluding that number represents a piece with that grade.

Figure 5. The average complexity score of pieces by grade
from Royal Conservatory along with standard deviations.

Royal Conservatory. Again, scores for pieces in grades 1-3
are present, but are barely visible due to scale.3

8. Discussion
We discuss our findings as follows: Subsection 8.1 covers
our results from assessing previously graded pieces from
Royal Conservatory and Subsection 8.2 discusses our find-
ings with regards to the website’s usability.

8.1 Manually Graded Pieces and Their Calculated
Complexity Scores

Figures 4 presents the results of applying our reference
implementation on 32 scores, which have been manually
ranked by music educators as belonging to levels between 1
and 10. One would naturally expect the lowest and highest
complexity scores to come from grade 1 and grade 10 pieces,

3 For more information, the full set of data can be found on our GitHub [16]
under Documents/Data/.

respectively. Although the lowest score piece was a higher
grade than expected, the second lowest score was indeed
for a grade 1 piece, “Bingo”, and the highest score was for a
grade 10 piece, “Concerto no. 3,” 2nd and 3rd Movements by
Crussell. This outcome shows in one respect, that our results
generally correlate with the expectation. Other discrepancies
and outliers are to be expected given the subjective nature of
grading pieces.

The graph reveals that even though the automatically cal-
culated complexity scores follow the overall trend set by
their manual rankings, there is a lot of noise in the calcu-
lated scores. This noise reflects the discrepancies between
the manual (baseline) and automated (evaluated) rankings.
Some outliers are worth examining in detail. In particular,
the lowest computed complexity score of 514.19 was for
“Variations on a Theme” by Mozart, a grade 3 piece, while
the highest one of 202214.85 was for “Concerto no. 3,” 2nd
and 3rd Movements by Crussell, a grade 10 piece. Musicians
would argue that music by Mozart is known to be decep-
tively simple. Hence, the low mechanical difficulty calcu-
lated by our tool may not truly represent how human experts
see this piece by Mozart, which is a well-understood excep-
tion in classical music. The Concerto looks deceptively hard
due to the presence of a free-form cadenza that uses the very
unusual 17/4 time signature and numerous consecutive tu-
plets, including both common 16th and 32nd note groups
as well as unusual 6-tuplets. It is possible that performers
would find this piece much less daunting once they make
sense of these rhythms.

To further illustrate how our calculation results correlate
with the expectation, Figure 5 shows the average complexity
score of pieces by grade along with the standard deviation.
In general, the complexity scores match what one would ex-
pect, with some minor exceptions. The average complexity
scores roughly increase and are within one standard devia-
tion of consistently increasing. Specifically, by applying lin-
ear regression on the data presented in Figure 5, we found
a slope of 7630, an intercept of -17910, and an R-squared
value of 0.7903. There are still outliers present, including
grade 6 pieces having a smaller average complexity than
grade 5 or 4 pieces, and grade 8 pieces having larger average
complexity than those of grade 9. However, all of this evi-
dence is a testament to the subjective nature of complexity
assessment. Perhaps some experts presented with our auto-
mated results would consider revising their ranking recom-
mendations.

8.2 Website Usability
We do not provide any empirical data so far on the perfor-
mance of our deployed implementation, but it is publicly
available for general use. In our informal discussions with
potential users, we uncovered many points of design that we
discuss here.

First, the website must provide access to the matched
PDF file as well as the complexity score from the Mu-

sicXML representation. The PDF file is made available so
that there is no confusion about exactly what the piece of
music is that is generating the score.

Second, we found that many users especially wanted to
see what the most complex measure is in the piece as a
means of determining whether the complexity score was due
to one very difficult spot or a collection of many less difficult
areas. Thus, we determine the complexity score for each
individual measure in the pieces available. We not only show
the measure number and associated score however, we also
utilize VexFlow [10] to graphically represent this measure to
further accommodate users.

Finally, the website also features the ability to run on
music pieces with multiple parts or instruments. The rele-
vant data for each part or instrument is extracted and even
graphed against one another through D3 [6]. This compari-
son is not necessarily correct, given that each part or instru-
ment is assigned a complexity score based off of parameters
for B[Clarinet. Yet, it is still a valuable design point to show
the general applicability of this approach to works that are
not only for instruments besides B[Clarinet, but also for en-
tire ensemble or orchestral pieces.

9. Future Work
The following Subsections address planned future work in
a number of different directions, including expanding com-
plexity parameters in 9.1, mapping parts and instruments
in 9.2, understanding complexity scores in 9.3, integrating
scores with sources in 9.4, including more input formats in
9.5, and measuring complexity from physiology in 9.6.

9.1 Expanding Instrument Complexity Parameters
As mentioned in 7.2, the current complexity parameters lack
validation. One way to improve their accuracy is thus to
gather a consensus from those with a stake in this complexity
measurement, such as experts, performers, and educators.
We have already begun the process of surveying these people
for their opinions on complexity parameters for B[Clarinet.
However, a notable direction for future work is to expand
this survey and indeed the viability of the overall complexity
score out to other instruments.

Our reference implementation in its current state can run
effectively for any instrument, and any complexity param-
eters can be utilized. In this way it is currently agnostic to
what instruments are being played in the piece. We do not
attempt here to generate complexity parameters for other in-
struments (besides B[Clarinet) both for brevity and for ac-
curacy. If the approach of surveying stakeholders is practical
and viable, then we must expand to utilize it further. If sur-
veying will not work, then we must find another approach to
validate complexity parameters.

The alternative to this arranged validation is to allow
users to supply their own parameters each time without any
set standard. Although this workaround would seem neces-

sary to get customized complexity scores for a given playing
level of multiple instruments, it requires potentially specify-
ing all the parameters for an entire orchestra. It is unclear at
this point how necessary this feature is compared to a more
streamlined process for using the program.

9.2 Mapping Separate Parts and Instruments
A related tangential point of future work to gathering more
instrument complexity parameters is to separate out differ-
ent parts and instruments so that each can have its own com-
plexity parameters applied. As mentioned before, our ref-
erence implementation does not currently differentiate one
part from another. Each part in a musical piece has the com-
plexity parameters applied to it equally (as if each part in the
piece was for the same instrument and playing level). It is
simple enough to separate out these parts, but the problem
becomes matching them to standard complexity parameters.

Within an orchestral or similar piece, the different parts
can be named a variety of ways by referencing instruments,
players, sections, etc. These can be specific or vague, such
as “1st Chair B[Clarinet” and “High Brass”, respectively.
There is no widely accepted, practical standard for how these
are specified.

However, we can still attempt to perform this matching.
One trivial approach would be to simply keep track of all
possible part names our reference implementation ever en-
counters and periodically update a table that matches the part
name in the piece to a set of complexity parameters. A more
elegant approach could be to apply some natural language
processing techniques to attempt to automatically match the
two or, at worst, provide a small subset of alternatives that a
user could choose from when running the tool. Yet another
alternative could simply be to allow the user to choose ex-
actly which complexity parameters to use for each part at ev-
ery run. Each of these has its drawbacks in efficiency, usabil-
ity, and expressiveness. Nonetheless, this problem looms as
we move towards more complexity parameters and remains
an open area of research that we plan to address.

9.3 Understanding Complexity Scores
One potential issue users face is that to understand a com-
plexity score requires referencing other complexity scores.
For instance, the score of 1000 for some piece (or part equiv-
alently) X cannot be meaningfully interpreted without know-
ing what that piece is, such as a Mozart symphony, or know-
ing other scores of pieces, such as a Beethoven symphony
scoring only 500 so piece X is twice as complex.

One possible solution for this problem is to track the
names of pieces (and parts) along with their complexity
score in a database. Then, upon scoring some piece, the ref-
erence implementation can also output the closest scores of
well-known pieces, thus providing a reference point. While
keeping track of these scores in a database may also help
speed up computation by not repeatedly calculating the score
for the same piece over and over, this introduces much more

overhead if users are allowed to input any complexity pa-
rameters.

Another solution to this problem would be to scale the
score down to some range of numbers, such as 0 to 100.
Scaling would mean that no piece could have a complexity
score greater than 100 or less than 0. While this may not
directly solve the problem of understanding the complexity
score, it does bound the possible scores and thus provide its
own reference point.

This approach may be more useful for competition rank-
ings so that the complexity score can be easily factored into
the score for a performance. However, there is no simple way
to scale all complexity scores down without knowing what
would receive the highest possible score. We are neverthe-
less investigating this currently to see how we could at least
limit scores to some arbitrarily high value and scale based
on that.

9.4 Integrating Complexity Scores with Sources
To make musiplectics more accessible, one direction for fu-
ture work lies in integrating the complexity score into var-
ious music applications. For instance, we envision notation
applications, such as Finale Notepad [21] or Sibelius [4], dis-
playing the complexity score of a piece as it is being writ-
ten so composers can readily see exactly how complex their
piece is numerically. Similarly, we would like to partner with
music sharing websites, such as International Music Score
Library Project [28], that allow users to search, view, and
download pieces of music. We envision the complexity score
of a piece being available before downloading, or more im-
portantly purchasing, the piece so as to give users some reas-
surance of what they are getting. This could also lead to users
being able to search pieces by their complexity score (if they
were pre-computed and stored somewhere) should the user
need to find a piece to match his or her playing level.

9.5 Including More Input Formats
Yet another direction for future work is the expansion of the
formats that can be input in general. At the moment Mu-
sicXML files are of course supported, and PDF files can be
manually translated to MusicXML via OCR. As mentioned
above, this process is not yet mature enough to be run au-
tomatically, but OCR in general can operate on many other
formats, such as PNG, TIFF, and BMP images, so it would
be trivial to expand to allow those inputs.

Beyond what OCR can handle, even more inputs can be
translated into MusicXML. Software, such as NotationSoft
[24], can translate event-driven MIDI files into MusicXML.
This type of translation could bring a wealth more of input
since a large amount of music literature is stored in this
fashion. In fact, efforts such as [12] are already taking place
to digitize a large amount of publicly available music into
MIDI. An extension to incorporate translated MIDI files
would greatly expand the applicability of musiplectics.

9.6 Measuring Complexity From Physiological Signals
Some prior work has focused on measuring physiological
characteristics, especially in the field of human-computer in-
teraction. Often these measurements have been used as in-
dicators of emotional state [18]. In relation to music, these
measurements have been used both to gauge an audience’s
reaction to a piece of music as well as a means for people
to play their own music [19] [31]. We would like to leverage
these types of works to incorporate physiological measure-
ments and biofeedback as a means of forming or validating
complexity scores. The knowledge of a performer’s relative
playing proficiency combined with their basic physiological
traits while playing a piece could form a model for extrap-
olating the cognitive load or mental complexity being en-
dured. This method can become a reliable means of param-
eterizing our system for individual players.

10. Conclusions
This paper presented musiplectics, a new computational
paradigm, that systematically evaluates the relative difficulty
of music scores, thus benefiting educators and performers.
Our hope is that musiplectics can improve the landscape
of assessment of music scores. The work presented here
unveils our first steps towards an objective and automatic
approach to computing the complexity of music pieces. The
contributions of this paper include our model for computing
complexity scores and its concrete realization in our ref-
erence implementation. The automatically computed com-
plexity scores of many well-known pieces and their respec-
tive manual grades demonstrate the promise of musiplectics
to alleviate the burden of music complexity rankings, free-
ing musicians for more creative pursuits. In addition, future
work directions present many exciting opportunities to apply
computing to solve important problem in music arts.

Acknowledgments
We would like to express our gratitude to the members of the
Interdisciplinary Research Honor Society at Virginia Tech
for their feedback during the early stages of this project. This
project is supported in part by funding from a Virginia Tech
ICAT SEED grant.

References
[1] J. Allali, P. Ferraro, P. Hanna, C. Iliopoulos, and M. Robine.

Toward a general framework for polyphonic comparison.
Fundam. Inf., 97(3):331–346, Aug. 2009.

[2] Apache Xerces. The apache xerces project. http://xerces.
apache.org/index.html, 1 2013.

[3] J. Arnold. Clarinet Solos. Amsco Music Pub. Co, New York,
1939.

[4] Avid Technology Inc. Sibelius. http://www.avid.com/US/
products/sibelius, 3 2015.

[5] H. Bitteur. Audiveris. https://audiveris.kenai.com/, 1
2013.

[6] M. Bostock. D3 data-driven documents. http://d3js.

org/, 2013.

[7] D. Byrd. Music-notation searching and digital libraries. In
Proceedings of the 1st ACM/IEEE-CS Joint Conference on
Digital Libraries, JCDL ’01, pages 239–246, New York, NY,
USA, 2001. ACM.

[8] D. Byrd and M. Schindele. Prospects for improving omr with
multiple recognizers. In ISMIR, pages 41–46, 2006.

[9] Z. Cataltepe, Y. Yaslan, and A. Sonmez. Music genre clas-
sification using midi and audio features. EURASIP J. Appl.
Signal Process., 2007(1):150–150, Jan. 2007.

[10] M. M. Cheppudira. vexflow. https://github.com/0xfe/
vexflow, 2010.

[11] S.-C. Chiu and M.-S. Chen. A study on difficulty level recog-
nition of piano sheet music. In Proceedings of the 2012 IEEE
International Symposium on Multimedia, ISM ’12, pages 17–
23, Washington, DC, USA, 2012. IEEE Computer Society.

[12] G. S. Choudhury, M. Droetboom, T. DiLauro, I. Fujinaga, and
B. Harrington. Optical music recognition system within a
large-scale digitization project. In ISMIR, 2000.

[13] M. S. Cuthbert, C. Ariza, and L. Friedland. Feature extraction
and machine learning on symbolic music using the music21
toolkit. In ISMIR, pages 387–392, 2011.

[14] M. Good et al. MusicXML: An internet-friendly format for
sheet music. In XML Conference and Expo, pages 03–04.
Citeseer, 2001.

[15] H. Heijink and R. Meulenbroek. On the complexity of classi-
cal guitar playing: Functional adaptations to task constraints.
Journal of motor behavior, 34(4):339–351, 2002.

[16] E. Holder. Musicscoring. https://github.com/

xwsxethan/MusicScoring, 2 2015.

[17] JSON Simple. json-simple. https://code.google.com/

p/json-simple/, 2 2012.

[18] R. Knapp, J. Kim, and E. Andr. Physiological signals and
their use in augmenting emotion recognition for humanma-
chine interaction. In R. Cowie, C. Pelachaud, and P. Petta,
editors, Emotion-Oriented Systems, Cognitive Technologies,
pages 133–159. Springer Berlin Heidelberg, 2011.

[19] R. B. Knapp and H. S. Lusted. A bioelectric controller
for computer music applications. Computer Music Journal,
14(1):pp. 42–47, 1990.

[20] C.-Y. Liou, T.-H. Wu, and C.-Y. Lee. Modeling complexity in
musical rhythm. Complex., 15(4):19–30, Mar. 2010.

[21] Makemusic Inc. Finale notepad. http://www.

finalemusic.com/products/finale-notepad/, 3
2015.

[22] Makemusic Inc. MusicXML. http://www.musicxml.

com/, 3 2015.

[23] MuseScore BVBA. Musescore share your sheet music.
https://musescore.com/, 2015.

[24] Notation Software Germany. Notation composer. http:

//www.notation.com/NotationComposer.php, 2014.

http://xerces.apache.org/index.html
http://xerces.apache.org/index.html
http://www.avid.com/US/products/sibelius
http://www.avid.com/US/products/sibelius
https://audiveris.kenai.com/
http://d3js.org/
http://d3js.org/
https://github.com/0xfe/vexflow
https://github.com/0xfe/vexflow
https://github.com/xwsxethan/MusicScoring
https://github.com/xwsxethan/MusicScoring
https://code.google.com/p/json-simple/
https://code.google.com/p/json-simple/
http://www.finalemusic.com/products/finale-notepad/
http://www.finalemusic.com/products/finale-notepad/
http://www.musicxml.com/
http://www.musicxml.com/
https://musescore.com/
http://www.notation.com/NotationComposer.php
http://www.notation.com/NotationComposer.php

[25] NYSSMA New York State School Music Association.
Nyssma new york state school music association. http:

//www.nyssma.org/, 2015.

[26] Otto and Thornton. Bootstrap. http://getbootstrap.

com/, 2015.

[27] B. Pearson. Standard of excellence : comprehensive band
method, B clarinet. Neil A. Kjos Music Co, San Diego, Calif,
1993.

[28] Project Petrucci LLC. International music score library
project. http://imslp.org/, 2015.

[29] Royal Conservatory Music Development Program. Clarinet
syllabus. https://www.musicdevelopmentprogram.

org/sites/default/files/files/S42_Clarinet%

20Syl_MDP_2014_online_SECURED.pdf, 2014.

[30] SpryMedia Ltd. Datatables table plug-in for jQuery. https:
//www.datatables.net/, 2015.

[31] A. Tanaka and R. B. Knapp. Multimodal interaction in mu-
sic using the electromyogram and relative position sensing.
In Proceedings of the 2002 Conference on New Interfaces for
Musical Expression, NIME ’02, pages 1–6, Singapore, Singa-
pore, 2002. National University of Singapore.

[32] The jQuery Foundation. jQuery. https://jquery.com/,
2015.

[33] Virginia Band and Orchestra Directors Association. Vir-
ginia band and orchestra directors association. http://www.
vboda.org/, 2015.

[34] H. Voxman. Concert and Contest Collection for Bb Clarinet:
Solo Part. Rubank Publications, Chicago, Illinois, 1992.

[35] J. M. Wing. Computational thinking. Communications of the
ACM, 49(3):33–35, 2006.

http://www.nyssma.org/
http://www.nyssma.org/
http://getbootstrap.com/
http://getbootstrap.com/
http://imslp.org/
https://www.musicdevelopmentprogram.org/sites/default/files/files/S42_Clarinet%20Syl_MDP_2014_online_SECURED.pdf
https://www.musicdevelopmentprogram.org/sites/default/files/files/S42_Clarinet%20Syl_MDP_2014_online_SECURED.pdf
https://www.musicdevelopmentprogram.org/sites/default/files/files/S42_Clarinet%20Syl_MDP_2014_online_SECURED.pdf
https://www.datatables.net/
https://www.datatables.net/
https://jquery.com/
http://www.vboda.org/
http://www.vboda.org/

A. Evaluating the Accuracy of Music Optical
Character Recognition (OCR) Software

The ability to use music scores in PDF format would greatly
enhance the usability of our reference implementation. How-
ever, this ability hinges on the accuracy of the music OCR
software that can translate PDF into MusicXML. Hence, we
empirically evaluated the accuracy of a widely used music
OCR application separately from our evaluation of the sys-
tem as a whole to assess OCR’s suitability and reliability for
our system.

In our experiments, we used freely available music OCR
software from Audiveris [5]. We evaluated the reliability of
this process as follows: find pre-matched PDF files with
the correct MusicXML, convert the PDF files into a new
MusicXML, and finally compare the correct and converted
MusicXML to each other.

The pre-matched PDF and MusicXML files we used are
all from MuseScore [23] and are listed in Table 7. They were
selected randomly from the list of single part pieces for clar-
inet. The MusicXML files came in .mxl (compressed Mu-
sicXML) format from MuseScore, and they were uniformly
imported into Finale Notepad 2012 [21] to then export the
uncompressed format for comparison. For this test we use
only Audiveris for conversion.

Title Comp./Arr.
Dancing Clarinet KRM
Mi Razon De Ser Banda Central
Rudy Jerry Goldsmith
The Hobbit: The Desolation of Smaug Howard Shore
The Rose Dan White

Table 7. The works with matched PDF and MusicXML files
from MuseScore chosen for testing OCR reliability along
with their composer or arranger.

1 sdiff -B -b -s Original.xml OCR.xml | wc

Figure 6. The comparison command for MusicXML files.

We make use of a file differencing tool with counts of
words, lines, and characters as shown in Figure 6, as well as
a comparison of complexity scores to highlight the potential
effects of the OCR process. We show the difference mea-
surements for select pieces in Figure 7. We also present the
average across pieces for each difference in the same figure.
Figure 8 shows the difference expressed as the percentage
of change from the values of the original MusicXML file. It
also presents the average across pieces in the same figure.

Another possible explanation for the discrepancies high-
lighted between graded pieces could be the inaccuracies of
our toolchain, specifically music OCR. During our tests, we
largely utilized Audiveris [5] for its simplicity and speed in
generating MusicXML as well as its plethora of options for

input image formats. However, some files were simply too
poor of image quality for it to initially accept. With some
manual effort to change image formats and attempts to im-
prove the resolution of scanned images, Audiveris was fi-
nally able to catch the remainder of cases.

The process of converting PDF’s to MusicXML is admit-
tedly an imperfect means of generating accurate MusicXML
representations. As Figure 7 shows, there were large differ-
ences between our test bed of matched and OCR generated
MusicXML files. The difference in characters is the most
alarming, however that could be explained by the limited
features OCR is able to analyze with respect to the entire
set encoded into the matched MusicXML. Nevertheless, the
end result of the file differences leads to the associated dif-
ferences in complexity scores.

Figure 8 underscores this difference by showing it as a
percentage of the original measure of words, lines, charac-
ters, and complexity. While the piece “Dancing Clarinet”
has only a 6.68% difference from the original complexity
score, the piece “The Rose” has over 100% difference from
the original complexity score. Both of these show over 20%
difference in words and over 60% difference in lines and
characters. Interestingly, the pieces “Rudy” and “The Hob-
bit: The Desolation of Smaug” both show over 110% dif-
ference in lines and characters, yet the change in underlying
MusicXML only causes about 63% and 25% difference in
complexity for these pieces, respectively.

Therefore, it would seem that the process of using OCR
to generate MusicXML from PDF files of music scores is
simply not yet mature enough to handle the demands of
complex music scores. This conclusion is strengthened by
both outside research [8] and our experience with acquiring
such software. Our original intention was to deploy such
OCR software at the beginning of our control flow from a
web UI to allow users to easily upload PDF files without
performing a manual conversion on their own. However, of

Figure 7. The difference between matched and OCR gen-
erated MusicXML files in words, lines, and characters via
sdiff as well as the positive difference in complexity score.

the 5 different OCR packages we experimented with and
nearly purchased, most did not even offer an option for batch
execution. Those that did offer this option could not operate
in this mode consistently or with a measure of reliability.

While this process is obviously imperfect, its speed and
automation allow us much more flexibility in generating
MusicXML even outside of batch mode. This process is
still absolutely necessary for comparing complexity scores
of well-known works, since so many have not previously
been rewritten into MusicXML. At this point there is no
clear substitute for music OCR, but it is our hope that future
efforts will strive to improve both the accuracy and reliability
of this process so more research can be performed with sheet
music.

Figure 8. The percentage difference between matched and
OCR generated MusicXML files in words, lines, and char-
acters via sdiff as well as the positive percentage difference
in complexity score.

	Introduction
	Research Contributions
	Paper Roadmap

	Background
	Related Work
	Complexity Analysis
	Music Scan & Search
	Music Classification

	Computational Model for Music Complexity
	Use Case
	Proof of Concept
	Design Overview
	Implementation Details

	Evaluation
	Clarinet Complexity Parameterization
	External Survey
	Graded Music Pieces for Comparison

	Discussion
	Manually Graded Pieces and Their Calculated Complexity Scores
	Website Usability

	Future Work
	Expanding Instrument Complexity Parameters
	Mapping Separate Parts and Instruments
	Understanding Complexity Scores
	Integrating Complexity Scores with Sources
	Including More Input Formats
	Measuring Complexity From Physiological Signals

	Conclusions
	Evaluating the Accuracy of Music Optical Character Recognition (OCR) Software

