
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 1

NRMI: Natural and Efficient Middleware
Eli Tilevich, Member, IEEE,and Yannis Smaragdakis,Senior Member, IEEE

Abstract— We present Natural Remote Method Invocation
(NRMI): a middleware mechanism that provides a fully-general
implementation of call-by-copy-restore semantics for arbitrary
linked data structures, used as parameters in remote procedure
calls. Call-by-copy-restore offers a more natural programming
model for distributed systems than traditional call-by-copy mid-
dleware, enabling remote calls to behave much like local calls. We
discuss in depth the effects of calling semantics for middleware,
describe when and why NRMI is more convenient to use than
standard middleware, and present three implementations of
NRMI in distinct settings, showing the generality of the approach.

Index Terms— Middleware, RPC, Java, call-by-copy-restore,
programming model.

I. I NTRODUCTION

REMOTE Procedure Call (RPC) is one of the most
widespread paradigms for distributed middleware. The goal

of RPC middleware is to provide an interface for remote services
that is as convenient to use as local calls. RPC middleware
with call-by-copy-restoresemantics has been often advocated
in the literature, as it offers a good approximation of local
execution (call-by-reference) semantics, without sacrificing per-
formance. Nevertheless, current call-by-copy-restore middleware
cannot handle arbitrary linked data structures, such as lists,
graphs, trees, hash tables, or even non-recursive structures such
as a “customer” object with pointers to separate “address” and
“company” objects. This is a serious restriction and one that has
often been identified. The recent (2002) Tanenbaum and van Steen
“Distributed Systems” textbook [2] summarizes the problemand
(most) past approaches:

... Although [call-by-copy-restore] is not always identi-
cal [to call-by-reference], it frequently is good enough.
... [I]t is worth noting that although we can now handle
pointers to simple arrays and structures, we still cannot
handle the most general case of a pointer to an arbitrary
data structure such as a complex graph. Some systems
attempt to deal with this case by actually passing the
pointer to the server stub and generating special code
in the server procedure for using pointers. For example,
a request may be sent back to the client to provide the
referenced data.

This article addresses exactly the problem outlined in the above
passage. We describe an algorithm for implementing call-by-
copy-restore middleware that fully supports arbitrary linked struc-
tures. The technique is very efficient (comparable to regular call-
by-copymiddleware) and incurs none of the overheads suggested
by Tanenbaum and van Steen. Specifically, a pointer dereference
by the server does not generate requests to the client. (This

E. Tilevich is with the Department of Computer Science, Virginia Tech.
Y. Smaragdakis is with the Department of Computer and Information

Science, University of Oregon.
This article is an extended version of [1].

would be dramatically less efficient than our approach, as our
measurements show.) Our approach does not “generate special
code in the server” for using pointers: the server code can proceed
at full speed—not even the overhead of a local read or write
barrier is necessary.

Our algorithm has been implemented in the form of Natural Re-
mote Method Invocation (NRMI): a middleware facility with three
different implementations. The first is a drop-in replacement for
Java RMI; the second is in the context of the J2EE platform; and
the third introduces call-by-copy-restore by employing bytecode
engineering to retrofit application classes that use the standard
RMI API. In all these implementations, the programmer can
select call-by-copy-restore semantics for object types inremote
calls as an alternative to the standard call-by-copy semantics
of Java RMI. (For primitive Java types the default Java call-
by-copy semantics is used.) All the implementations of NRMI
call-by-copy-restore are fully general, with respect to linked data
structures, but also with respect to arguments that share structure.
The resulting advantage is that NRMI offers a much more natural
distributed programming model than standard Java RMI: in most
cases, programming with NRMI is identical to non-distributed
Java programming. In fact, call-by-copy-restore is guaranteed to
offer identical semantics to call-by-reference in the important case
of single-threaded clients and stateless servers (i.e., when the
server cannot maintain state reachable from the arguments of a
call after the end of the call). Since statelessness is a desirable
property for distributed systems, NRMI often offers behavior
practically indistinguishable from local calls.

Other middleware services (most notably the DCE RPC stan-
dard) have attempted to approximate call-by-copy-restoreseman-
tics, with implementation techniques similar to ours. Nevertheless,
DCE RPC stops short of full call-by-copy-restore semantics, as
we discuss in Section IV-B.

In summary, this article makes the following contributions:
• We give a clear exposition of different calling semantics,

as these pertain to RPC middleware. There is confusion
in the literature regarding calling semantics with respectto
pointers. This confusion is apparent in the specification and
popular implementations of existing middleware (especially
DCE RPC, due to its semantic complexity).

• We present an algorithm for implementing call-by-copy-
restore middleware simply and efficiently. This is the first
algorithm to implement full call-by-copy-restore for arbitrary
linked data structures.

• We make a case for the advantages of using call-by-
copy-restore semantics in actual middleware. We argue that
call-by-copy-restore results in a more natural programming
model that significantly simplifies programming tasks when
data passed to a remote call are reachable through multiple
pointers. This simplicity does not sacrifice the efficiency of
the remote procedure call mechanism.

• We demonstrate an applied result in the form of three
concrete implementations of NRMI. NRMI is a mature and

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2

a
l
i
a
s
2

t

a
l
i
a
s
1

Fig. 1. A tree data structure and two aliasing references to its internal nodes.

efficient middleware mechanism that Java programmers can
adopt on a per case basis as a transparent enhancement
of Java RMI. The results of NRMI (call-by-copy-restore
even for arbitrary linked structures) can be simulated with
RMI (call-by-copy), but this task is complicated, inefficient,
and application-specific. In simple benchmark programs,
NRMI saves up to 100 lines of code per remote call. More
importantly, this code cannot be written without complete
understanding of the applications aliasing behavior (i.e.,
what pointer points where on the heap). NRMI eliminates
all such complexity, allowing remote calls to be used almost
as conveniently as local calls.

II. BACKGROUND AND MOTIVATION

Remote calls in RPC middleware cannot efficiently support the
same semantics as local calls for data accessed through memory
pointers (referencesin Java—we will use the two terms inter-
changeably). The reason is that efficiently sharing data through
pointers (call-by-reference) relies on the existence of a shared
address space. The problem is significant because most common
data structures in existence (trees, graphs, linked lists,hash tables,
and so forth) are heap-based and use pointers to refer to the stored
data.

A simple example demonstrates the issues. This will be our
main running example throughout the article. We will use Java
as our demonstration language and Java RMI as the main point
of reference in the middleware space. Nevertheless, both Java
and Java RMI are highly representative of languages that support
pointers and RPC middleware mechanisms, respectively. Consider
a simple linked data structure: a binary tree,t, storing integer
numbers. Every tree node will have three fields,data, left,
and right. Consider also that some of the subtrees are also
pointed to by non-tree pointers (akaaliases). Figure1 shows an
instance of such a tree.

When treet is passed to a local method that modifies some
of its nodes, the modifications affect the data reachable from
t, alias1, andalias2. For instance, consider the following
method:

void alterTree(Tree tree) {
tree.left.data = 0;
tree.right.data = 9;
tree.right.right.data = 8;
tree.left = null;
Tree temp = new Tree(2, tree.right.right,

null);
tree.right.right = null;
tree.right = temp;

}

a
l
i
a
s
1 a

l
i
a
s
2

t tree

Fig. 2. A local call can affect all reachable data.

a
l
i
a
s
1 a

l
i
a
s
2

t tree

Fig. 3. Call-by-reference semantics can be maintained withremote refer-
ences.

Figure 2 shows the results on the data structure after performing
a call alterTree(t) locally. (New number values shown
in bold and italic, new nodes and references are dashed. Null
references are not shown.)

In general, a local call can change all data reachable from
a memory reference. Furthermore, all changes will be visible
to aliasing references. The reason is that Java hascall-by-value
semantics for all values, including references, resultinginto call-
by-referencesemantics for the data pointed to by these references.
(From a programming languages standpoint, the Java calling
semantics is more accurately calledcall-by-reference-value. In
this article, we follow the convention of the Distributed Sys-
tems community and talk about “call-by-reference” semantics,
although references themselves are passed by value.) The call
alterTree(t) proceeds by creating a copy,tree, of the
reference valuet. Then every modification of data reachable from
tree will also modify data reachable fromt, astree and t
operate on the same memory space. This behavior is standard in
the vast majority of programming languages with pointers.

Consider now what happens whenalterTree is a remote
method, implemented by a server on a different machine. An
obvious solution would be to maintain call-by-reference se-
mantics by introducing “remote references” that can point to
data in a different address space, as shown in Figure 3. Most
object-oriented middleware support remote references, which are
remotely-accessible objects with unique identifiers; references to
them can be passed around similarly to regular local references.
For instance, Java RMI allows the use of remote references for
subclasses of theUnicastRemoteObject class. All instances
of the subclass are remotely accessible throughout the network
through a Java interface.

Nevertheless, this solution is extremely inefficient. It means that
every pointer dereference has to generate network traffic. There-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 3

fore, the usual semantics for reference data in RMI calls (and
the vast majority of other middleware) iscall-by-copy. (“Call-
by-copy” is really the name used in the Distributed Systems
community forcall-by-value, when the values are complex data
structures.) When a reference parameter is passed as an argument
to a remote routine, all data reachable from the reference are
deep-copied to the server side. The server then operates on the
copy. Any changes made to the deep copy of the argument-
reachable data are not propagated back to the client, unlessthe
user explicitly arranges to do so (e.g., by passing the data back
as part of the return value).

A well-studied alternative of call-by-copy in middleware is call-
by-copy-restore. Call-by-copy-restore is a parameter passing se-
mantics that is usually defined informally as “having the variable
copied to the stack by the caller ... and then copied back after
the call, overwriting the callers original value” [2]. A more strict
(yet still informal) definition of call-by-copy-restore is:

Making accessible to the callee a copy of all data
reachable by the caller-supplied arguments. After the
call, all modifications to the copied data are reproduced
on the original data, overwriting the original data values
in-place.

Often, existing middleware (notably CORBA implementations
throughinout parameters) support call-by-copy-restore but not
for pointer data. Here we discuss what is needed for a fully-
general implementation of call-by-copy-restore, per the above
definition. Under call-by-copy-restore, the results of executing a
remote call to the previously described functionalterTree will
be those of Figure 2. That is, as far as the client is concerned,
the call-by-copy-restore semantics is indistinguishablefrom a
call-by-reference semantics for this example. (As we discuss in
Section IV, in a single-threaded setting, the two semanticshave
differences only when the server maintains state that outlives the
remote call.)

Supporting the call-by-copy-restore semantics for pointer-
based data presents several complications. Our example function
alterTree illustrates them:

• Call-by-copy-restore has to “overwrite” the original data
objects (e.g.,t.right.data in our example), not just link
new objects in the structure reachable from the reference
argument of the remote call (t in our example). The reason
is that at the client site the objects may be reachable through
other references (alias2 in our example) and the changes
should be visible to them as well.

• Some data objects (e.g., nodet.left before the call) may
become unreachable from the reference argument (t in our
example) because of the remote call. Nevertheless, the new
values of such objects should be visible to the client, because
at the client site the object may be reachable through other
references (alias1 in our example).

• As a result of the remote call, new data objects may be
created (t.right after the call in our example), and they
may be the only way to reach some of the originally
reachable objects (t.right.left after the call, in our
example).

The above complications have to do with aliasing references,
i.e., multiple paths for reaching the same data. Example reasons to
have such aliases include multiple indexing (e.g., the datamay be
indexed in one way using a tree and in another way using a linked
list), and caching (storing some recent results for fast retrieval). In

1) Create a linear map of all objects reachable from the remote
call reference argument. Keep a reference to it.

2) Send a deep copy of the linear map to the server site (this
will also copy all the data reachable from the argument,
as it is itself reachable from the map). Execute the remote
procedure on the server.

3) Send a deep copy of the linear map (or a “delta” structure—
see Section V) back to the client site. This will copy back
all the “interesting” objects, even if they have become
unreachable from the original remote call argument data.

4) Match up the two linear maps so that “new” objects (i.e., ob-
jects allocated by the remote routine) can be distinguished
from “old” objects (i.e., objects that existed before the
remote call, even if their data have changed as a result).
Old objects have two versions: original and modified.

5) For each old object, overwrite in-place its original version
data with its modified version data. Pointers to modified old
objects should be converted to pointers to the corresponding
original old objects.

6) For each new object, convert its pointers to modified old
objects to pointers to the corresponding original old objects.

Fig. 4. NRMI Algorithm

general, aliasing is very common for heap-based data, and, thus,
supporting it correctly for remote calls is important.

III. SUPPORTINGCOPY-RESTORE

Having introduced the complications of copy-restore middle-
ware, we now discuss an algorithm that addresses them. The
algorithm appears in pseudo-code in Figure 4 and is illustrated
on our running example in Figures 5 to 8.

The above algorithm reproduces the modifications introduced
by the server routine on the client data structures. The intuition
behind the algorithm is that correct call-by-copy-restorebehavior
requires restoringall changes to data that are reachable (after
the execution of the remote call) from any data that used to be
reachable (before the execution of the remote call) from anyof
the arguments of the remote call. Thus, the interesting part of the
algorithm is the automatically keeping track (on the server) of all
objects initially reachable by the arguments of a remote method,
as well as their mapping back to objects in client memory. The
advantage of the algorithm is that it does not impose overhead on
the execution of the remote routine: although there is an overhead
in setting up the argument data, the remote code itself proceeds at
full speed. In particular, the algorithm eliminates the need to trap
either the read or the write operations performed by the remote
routine by introducing a read or write barrier. Similarly, no data
are transmitted over the network during execution of the remote
routine. Furthermore, note that supporting call-by-copy-restore
only requires transmitting all data reachable from parameters
during the remote call (just like call-by-copy) and sendingit back
after the call ends. This is already quite efficient and will only
become more so in the future, when network bandwidth will be
much less of a concern than network latency.

IV. D ISCUSSION

A. Copy-Restore vs. Call-by-Reference

Call-by-copy-restore is a desirable semantics for RPC middle-
ware. Because all mutations performed on the server are restored

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 4

alias1 a
l
i
a
s
2

t tree

Fig. 5. State after steps 1 and 2 of the algorithm. Remote procedurealterTree has performed modifications to the server version of the data.

alias1 a
l
i
a
s
2

t

Fig. 6. State after steps 3 and 4 of the algorithm. The modifiedobjects (even the ones no longer reachable throughtree) are copied back to the client.
The two linear representations are “matched”—i.e., used tocreate a map from modified to original versions of old objects.

alias1 a
l
i
a
s
2

t

Fig. 7. State after step 5 of the algorithm. All original versions of old objects are updated to reflect the modified versions.

alias1 a
l
i
a
s
2

t

Fig. 8. State after step 6 of the algorithm. All new objects are updated to point to the original versions of old objects instead of their modified versions. All
modified old objects and their linear representation can nowbe deallocated. The result is identical to Figure 2.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 5

on the client site, call-by-copy-restore closely approximates local
execution. In fact, we can simply observe that (for a single-
threaded client) call-by-copy-restore semantics is identical to call-
by-reference if the remote routine is stateless—i.e., keeps no
aliases to the input data that outlive the remote call. Otherwise,
if the remote routine keeps references to its input data across
executions, then the two copies of the data (on the client and
server) can become inconsistent after the “restore” action: call-
by-copy-restore middleware only “synchronizes” the client and
server data at the point of a remote call return. In this case,call-
by-copy-restore will behave differently from call-by-reference,
since the latter only shares one copy of the data between client
and server. Interestingly, statelessness is a desirable (for many
even indispensable) property for distributed services dueto fault
tolerance considerations. Thus, a call-by-copy-restore semantics
achievesnetwork transparencyfor the important case of stateless
routines: the routine can be executed either locally or remotely
with identical results.

The above discussion only considers single-threaded programs.
In the case of a multi-threaded client, call-by-copy-restore mid-
dleware does not preserve network transparency. Consider aclient
process with two threads: one passing data to a remote routine,
while another is modifying the same data. The remote routineacts
as a potential mutator of all data reachable by its parameters. Yet
when the changes are replayed on the client site, they will not be
done by following the synchronization protocol of the data,and,
thus, may conflict with the concurrent local changes. For instance,
if the data passed to the remote routine is a list with each node
protected by its own mutex, the remote routine will make changes
without contention: it is the only mutator of these data on the
server site. Yet when the changes are replayed on the client site,
they will be made all at once by the middleware system and not
through code that takes the appropriate synchronization actions.
Therefore, the changes may conflict with those of other client-
side threads. The programmer needs to be aware that the call
is remote and that a call-by-copy-restore semantics is used. For
instance, remote calls may need to execute in mutual exclusion
with calls that read/write the same data. If the order of updating
matters, call-by-copy-restore probably can not be used at all: the
programmer needs to write code by hand to perform the updates
in the right order. (Of course, the consideration is for the case of
multi-threaded clients—servers can always be multi-threaded and
accept requests from multiple client machines without sacrificing
network transparency.)

Another issue regarding call-by-copy-restore concerns the use
of parameters that share structure. For instance, considerpassing
the same parameter twice to a remote procedure. Should two
distinct copies be created on the remote site or should the sharing
of structure be detected and only one copy be created? This
issue is not specific to call-by-copy-restore, however. In fact,
regular call-by-copy middleware has to answer the same question.
Creating multiple copies can be avoided using exactly the same
techniques as in call-by-copy middleware (e.g., Java RMI):the
middleware implementation can notice the sharing of structure
and replicate the sharing in the copy. Unfortunately, therehas
been confusion on this issue. Based on existing implementations
of call-by-copy-restore for primitive (non-pointer) types, an often
repeated mistaken assertion is that call-by-copy-restoresemantics
implies that shared structure results in multiple copies [2]–[4].

a
l
i
a
s
1 a

l
i
a
s
2

t tree

Fig. 9. Under DCE RPC, changes to data that became unreachable from t
are not restored on the client.

B. DCE RPC

The DCE RPC specification [5] is the foremost example of
a middleware design that tries to enable distributed program-
ming in a way that is as natural as local programming. The
most widespread DCE RPC implementation nowadays is that
of Microsoft RPC, forming the base of middleware for the
Microsoft operating systems. Readers familiar with DCE RPC
may have already wondered if the specification for pointer passing
in DCE RPC is not identical to call-by-copy-restore. The DCE
RPC specification stops one step short of call-by-copy-restore
semantics, however.

DCE RPC supports three different kinds of pointers, only one
of which (full pointers) supports aliasing. DCE RPC full pointers,
declared with theptr attribute, can be safely aliased and changed
by the callee of a remote call. The changes will be visible to the
caller, even through aliases to existing structure. Nevertheless,
DCE RPC only guarantees correct updates of aliased data for
aliases that are declared in the parameter lists of a remote call.1

In other words, for pointers that are not reachable from the
parameters of a remote call, there is no guarantee of correct
update.

In practical terms, the lack of full alias support in the DCE
RPC specification means that DCE RPC implementations do not
support call-by-copy-restore semantics for linked data structures.
In Microsoft RPC, for instance, the calling semantics differs
from call-by-copy-restore when data become unreachable from
parameters after the execution of a remote call. Consider again
our example from Section II. The remote call that operates on
argumentt, changes the data so that the former objectst.left
and t.right are no longer reachable fromt. Under call-by-
copy-restore semantics, the changes to these objects should still
be restored on the caller site (and thus made visible toalias1
and alias2). This does not occur under DCE RPC, however.
The effects of statements

tree.left.data = 0;
tree.right.data = 9;
tree.right.right = null;

would be disregarded on the caller site. Figure 9 shows the actual
results for DCE RPC.

C. Usability: Copy-Restore vs Call-by-Copy

Compared to call-by-copy, call-by-copy-restore semantics of-
fers better usability, since it simulates the local execution seman-

1The specification reads “For both out and in, out parameters, when full
pointers are aliases, according to the rules specified in Aliasing in Parameter
Lists [these rules read:If two pointer parameters in a parameter list point at
the same data item], the stubs maintain the pointed-to objects such that any
changes made by the server are reflected to the client for all aliases.”

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 6

tics very closely, as discussed in Section IV-A. Clearly, call-by-
copy-restore semantics can be achieved by using call-by-copy and
adding application-specific code to register and re-perform any
updates necessary. Nevertheless, taking this approach hasseveral
disadvantages:

• The programmer has to be aware of all aliases in order be
able to update the values changed during the remote call,
even if the changes are to data that became unreachable from
the original parameters.

• The programmer needs to write extra code to perform the
update. This code can be long for complex updates (e.g., up
to 100 lines per remote call for the microbenchmarks we
discuss in Section VI-C).

• The programmer cannot perform the updates without full
knowledge of what changes the server code made. That is,
the changes to the data have to be part of the protocol
between the server programmer and the client programmer.
This complicates the remote interfaces and specifications.

As we discussed in SectionII, a call-by-copy-restore semantics
is most valuable in the presence of aliased data. Aliasing occurs
as a result of several common implementation techniques in
mainstream programming languages. All of these techniques
produce code that is more convenient to write using call-by-copy-
restore middleware than using call-by-copy middleware. Specific
examples include:

• Multiple indexing. Most applications in imperative program-
ming languages create some multiple indexing scheme for
their data. For example, a business application may keep a
list of the most recent transactions performed. Each trans-
action, however, is likely to also be retrievable through a
reference stored in a customers record, through a reference
from the daily tax record object, and so forth. Similarly,
every customer may be retrievable from a data structure
ordered by zip code and from a second data structure ordered
by name. All of these references are aliases to the same data
(i.e., customers, business transactions). NRMI allows such
references to be updated correctly as a result of a remote
call (e.g., an update of purchase records from a different
location or a retrieval of a customers address from a central
database), in much the same way as they would be updated
if the call were local.

• Common GUI patterns such as model-view-controller. Most
GUI toolkits register multiple views, all of which correspond
to a single model object. That is, all views alias the same
model object. An update to the model should result in an
update to all of the views. Such an update can be the result
of a remote call. A variant of this pattern occurs when
GUI elements (e.g., menus, toolbars) hold aliases to program
data that can be modified. The reason for multiple aliasing
is that the same data may be visible in multiple toolbars,
menus, and so forth or that the data may need to be modified
programmatically with the changes reflected in the menu or
toolbar.
As an illustration, we distribute with NRMI a modified
version of one of the Swing API example applications. We
changed the application to be able to display its text strings
in multiple languages. The change of language is performed
by calling a remote translation server when the user chooses
a different language from a drop-down box. (That is, the
remote call is made in the event dispatching thread, conform-

TranslationService ts =
new TranslationService();

Translatable trans =
new Translatable(srcLang, destLang, _tokens);

ts.translate (trans);
srcLang = destLang;
redraw ();

Fig. 10. Code Fragment of Local Version of Translation Code

String url = host + "/transl_service";
TranslationServiceInterface t =
(TranslationServiceInterface)lookup (url);

Translatable trans =
new Translatable(srcLang, destLang, _tokens);

t.translate (trans);
srcLang = destLang;
redraw ();

Fig. 11. Code Fragment of NRMI Version of Translation Code

ing to Swing thread programming conventions.) The remote
server accepts a vector of words (strings) used throughout
the graphical interface of the application and translates them
between English, German, and French. The updated list is
restored on the client site transparently, and the GUI is
updated to show the translated words in its menus, labels,
and so on. The NRMI distributed version code has only two
tiny changes compared to local code: a single class needs to
implementjava.rmi.Restorable (the NRMI marker
interface, discussed in detail later) and a method has to be
looked up using a remote lookup mechanism before getting
called. In contrast, the version of the application that uses
regular Java RMI has to use a more complex remote interface
for getting back the changed data and the programmer has
to write code in order to perform the update. Figures 10-12
show the different versions of the code context containing
the key remote call of this application. The complexity of
the special-purpose RMI update code is evident in Figure 12.

String url = host + "/transl_service";
TranslationServiceInterface t =
(TranslationServiceInterface)lookup (url);

Translatable trans =
new Translatable(srcLang, destLang, _tokens);

Vector temp = t.translate (trans);
for (int i = 0; i < temp.size (); ++i) {
Token newToken = (Token)temp.elementAt (i);
String str = newToken.getString ();
int j = 0;
Token token = null;
for (; j < _tokens.size(); j++) {
token = (Token)_tokens.elementAt (j);
if (token.getString().equals(str)) break;

}//for j
if (j < _tokens.size())
token.setString(newToken.getTranslation());

}//for i
srcLang = destLang;
redraw ();

Fig. 12. Code Fragment of RMI Version of Translation Code

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 7

V. NRMI I MPLEMENTATIONS

NRMI currently has three implementations, each applicable
to different programming environments and scenarios. Our first
implementation is in the form of a full, drop-in replacement
for Java RMI. This demonstrates how a mainstream middleware
mechanism for the Java language can be transparently enhanced
with call-by-copy-restore capacities. However, introducing a new
feature into the implementation of a standard library of a
mainstream programming language is a significant undertaking,
requiring multiple stakeholders in the Java technology to reach a
consensus. Therefore, our other two implementations provide Java
programmers with call-by-copy-restore capacities without having
to change any of the standard Java libraries. One implementation
takes advantage of the extensible application server architecture
offered by JBoss [6] to introduce NRMI as a pair of client/server
interceptors. Another introduces NRMI by retrofitting the byte-
codes of application classes that use the standard RMI API.
Having to work around the inability to change the RMI runtime
libraries, these latter two solutions are not always as efficient as
the drop-in replacement one but offer interesting insightson how
new middleware features can be introduced transparently.

A. A Drop-in Replacement of Java RMI

1) Programming Interface:Our drop-in replacement for Java
RMI supports a strict superset of the RMI functionality by
providing call-by-copy-restore as an additional parameter passing
semantics to the programmer. This implementation follows the
design principles of RMI in having the programmer decide the
calling semantics for object parameters on a per-type basis. In
brief, indistinguishably from RMI, NRMI passes instances of
subclasses ofjava.rmi.server.UnicastRemoteObject
by-reference and instances of types that implement
java.io.Serializable by-copy. Values of primitive
types are passed by-copy. That is, just like in regular RMI,
the following definition makes instances of classA be passed
by-copy to remote methods.

//Instances will be passed by-copy by NRMI
class A implements java.io.Serializable {...}

Our NRMI implementation introduces a marker interface
java.rmi.Restorable which allows the programmer to
choose the by-copy-restore semantics on a per-type basis. For
example:

//Instances passed by-copy-restore by NRMI
class A implements java.rmi.Restorable {...}

Restorable extendsSerializable, reflecting the fact
that call-by-copy-restore is an extension of call-by-copy. In par-
ticular, “restorable” classes have to adhere to the same setof
requirements as if they were to be passed by-copy—i.e., they
have to be serializeable by Java Serialization.

In the case of JDK classes, which cannot be modified,
Restorable can be implemented by a subclass:

//Instances passed by-copy-restore by NRMI
class RestorableHashMap
extends java.util.HashMap
implements java.rmi.Restorable {...}

In those cases when subclassing is not possible, a delegation-
based approach can be used, where a class that implements
Restorable serves as a proxy, forwarding calls to a JDK class.

Declaring a class to implementRestorable is all that is
required from the programmer: NRMI will pass all instances of
such classes by-copy-restore whenever they are used in remote
method calls. The restore phase of the algorithm is hidden from
the programmer, being handled completely by the NRMI runtime.
This saves lines of tedious and error-prone code as we discuss in
Section VI-B.

In order to make NRMI easily applicable to existing types
(e.g., arrays) that cannot be changed to implementRestorable,
we adopted the policy that a serializable object is passed by-
copy-restore, if it is referenced by an object that implements
Restorable. Thus, if a parameter is of a “restorable” type,
everything reachable from it will be passed by-copy-restore, if in
regular Java RMI it would have been passed by-copy.

2) Implementation Insights:We next discuss how our im-
plementation handles each of the major steps of the algorithm
presented in Section III.

Creating a linear map: The linear map of all objects
reachable from the reference parameter is obtained by tapping into
the Java Serialization mechanism. The advantage of this approach
is that we get a linear map almost for free. The parameters passed
by-copy-restore have to be serialized anyway, and the process
involves an exhaustive traversal of all the objects reachable from
these parameters. The linear map that we need is just a data
structure storing references to all such objects in the serialization
traversal order. We get this data structure with a tiny change to
the serialization code. The overhead is minuscule and only present
for call-by-copy-restore parameters.

Performing remote calls:On the remote site, a remote
method invocation proceeds exactly as in regular RMI. Af-
ter the method completes, we marshall back linear map rep-
resentations of all those parameters whose types implement
java.rmi.Restorable along with the return value, if there
is any.

Updating original objects:Correctly updating original ref-
erence parameters on the client site includes matching up the new
and old linear maps and performing a traversal of the new linear
map. Both step 5 and step 6 of the algorithm are performed in
a single depth-first traversal by just performing the right update
actions when an object is first visited and last visited (i.e., after
all its descendants have been traversed).

Optimizations:The following two optimizations can be ap-
plied to an implementation of NRMI in order to trade processing
time for reduced bandwidth consumption. First, instead of sending
the linear map over the network, we can reconstruct it during
the un-serialization phase on the server site of the remote call.
Second, instead of returning the new values for all objects to
the caller site, we can send just a “delta” structure, encoding
the difference between the original data and the data after the
execution of the remote routine. In this way, the cost of passing an
object by-copy-restore and not making any changes to it is almost
identical to the cost of passing it by-copy. Our implementation
applies the first optimization, while the second is possiblefuture
work.

B. NRMI in the J2EE Application Server Environment

A J2EE [7] application server is a complex standards-
conforming middleware platform for development and deploy-
ment of component-based Java enterprise applications. These
applications consist of business components called Enterprise

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 8

JavaBeans (EJBs). Application servers provide an execution en-
vironment and standard means of accessing EJBs by both local
and remote clients.

We have implemented NRMI in the application server environ-
ment of the JBoss open-source J2EE server, taking advantageof
its extensible architecture [6]. JBoss is an extensible, open-ended,
and dynamically-reconfigurable server. It employs the Interceptor
pattern [8] (a common extensibility-enhancing mechanism in
complex software systems) to enable transparent addition and
automatic triggering of services. Informally, a JBoss interceptor
is a piece of functionality that gets inserted into the client-
server communication path. Both the clients requests to theserver
and the servers replies can be intercepted. JBoss interceptors
intercept a remote call with the purpose of examining and, in
some cases, modifying its parameters or return value and come in
two varieties: client and server, specifying their actual deployment
and execution locations. JBoss provides flexible mechanisms for
creating and deploying interceptors and uses them to implement
a large part of its core functionality such as security and transac-
tions.

Our support for NRMI in JBoss consists of a program-
ming interface, enabling the programmer to choose call-by-
copy-restore semantics on a per method basis, and an im-
plementation, consisting of a pair of client/server interceptors.
Because this implementation works on top of regular RMI, it
cannot introduce a new marker interface for copy-restore pa-
rameters. We introduced instead a new XDoclet [9] annotation
“method-parameters copy-restore”, specifying that all
reference parameters of a remote method are to be passed
by copy-restore. The following code example shows how the
programmer can use this annotation.

/**
* @ejb:interface-method view-type="remote"
* @jboss:method-parameters copy-restore="true"
*/

public void foo (Reference1 ref1, int i,
Reference2 ref2)

{ ... }
//ref1 and ref2 will be passed by-copy-restore

Note that, in this implementation, it is not possible to let the
programmer specify call-by-copy-restore semantics for individual
parameters: the copy-restore is a per-method annotation and
applies to all reference parameters of a remote method.

To implement NRMI in JBoss, we had to create special inter-
ceptor classes for the client and the server portions of the code.
The interceptors are invoked only for those methods specified
as having call-by-copy-restore semantics. Both interceptors are
implemented in about 100 lines of Java code. (This number
excludes the actual NRMI algorithm implementation, which is
another 700 lines of code.) This is a data point arguing that
call-by-copy-restore can be implemented very simply even in a
commercial quality middleware platform.

C. Introducing NRMI through Bytecode Engineering

In some development environments, the programmer could find
beneficial the ability to use the call-by-copy-restore semantics
on top of a standard unmodified middleware implementation that
supports only the standard call-by-copy semantics. Furthermore,
that environment might not provide any built-in facilitiesfor flexi-
ble functionality enhancement such as interceptors. For example,

our J-Orchestra automatic partitioning system [10], has asone
of its primary design objectives the ability to execute partitioned
programs using a standard RMI middleware implementation. By
default, J-Orchestra uses the RMI call-by-reference semantics
(remote reference) to emulate a shared address space for thepar-
titioned programs. However, as we have argued earlier, access to
a remote object through a remote reference incurs heavy network
overhead. Therefore, a program partitioned with J-Orchestra can
derive substantial performance benefits by using the call-by-copy-
restore semantics in some of its remote calls. It is exactly for these
kind of scenarios that we developed our approach for introducing
NRMI by retrofitting the bytecodes of application classes that use
the standard RMI API.

Prior research has employed bytecode engineering for modi-
fying the default Java RMI semantics with the goal of correctly
maintaining thread identity over the network [11], [12]. Inour
implementation, we follow a similar approach that transparently
enables the call-by-copy-restore semantics for remote calls that
use regular Java RMI. A small runtime system, consisting of code
that implements the NRMI algorithm, is bundled with the original
program, and the target classes are rewritten to invoke the NRMI
functionality appropriately during remote calls.

Specifically, we offer a GUI-enabled tool called NRMIzer that
takes as input two application classes that use the Java RMI API:
a remote class (i.e., implementing a remote interface) and its
RMI stub. An RMI stub is a client site class that serves as a
proxy for its corresponding remote class. Under Suns JDK, stubs
are generated in binary form by running the rmic tool againsta
remote class. The reason why the user has to specify the names
of both a remote class and its RMI stub is the possibility of
polymorphism in the presence of incomplete program knowledge.
Since a stub might be used to invoke methods on a subclass of
the remote class from which it was generated, the appropriate
transformations must be made to all possible invocations ofthe
remote method through any of the stubs. NRMIzer shows a list of
all methods implemented by a selected class, displayed together
with their JVM signatures. For each method, the tool also shows
a list of its reference parameters. The programmer then selects
these parameters individually, conveying to the tool that they are
to be passed by-copy-restore.

The backend engine of NRMIzer retrofits the bytecode of a
remote class and its RMI stub to enable any reference parameter
of a remote method to be passed by-copy-restore. To accomplish
the by-copy-restore semantics on top of regular RMI, the tool adds
code to both the remote class and its stub for each remote method
that has any by-copy-restore parameters. Consider the following
remote methodfoo taking as parameter anint and aRef and
returning afloat.

public float foo(int i, Ref r)
throws RemoteException{...}

If we want to pass theRef parameter by copy-restore, the
transformations performed on the stub code are as follows:

//change foo as follows (slightly simplified)
public float foo (int i, Ref r)
throws RemoteException

{
Object[] linearMap= NRMI.computeLinearMap(r);
NRMIReturn ret = foo__nrmi (i, r);

//invoke foo__nrmi remotely
// NRMIReturn encapsulates both linear maps

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 9

// and the return value of foo
Object[]newLinearMap = ret.getLinearMap();
NRMI.performRestore(linearMap, newLinearMap);
//extract the original return value
return

((Float)ret.getReturnValue()).floatValue();
}

On the server side, the methodfoo__nrmi computes a linear
map for theRef parameter, invokes the original methodfoo, and
packs both the returnfloat value offoo and the linear map into
a holder object of typeNRMIReturn. The classNRMIReturn
encapsulates the original return value of a remote method along
with the linear representations of copy-restore parameters. All
special-purpose NRMI methods that NRMIzer adds to the remote
and stub classes useNRMIReturn as their return type.

VI. PERFORMANCE AND CASE STUDIES

Before presenting the results of NRMI performance experi-
ments, we describe the performance optimizations that we applied
to the RMI-replacement implementation of NRMI.

A. NRMI Low-Level Optimizations

In principle, the only significant overhead of call-by-copy-
restore middleware over call-by-copy middleware is the cost of
transferring the data back to the client after the remote routine
execution. In practice, middleware implementations suffer several
overheads related to processing the data, so that processing
time often becomes as significant as network transfer time. Java
RMI has been particularly criticized for inefficiencies, asit is
implemented as a high level layer on top of several general
purpose (and thus slow) facilities—RMI often has to suffer the
overheads of security checks, Java serialization, indirect access
through mechanisms offered by the Java Virtual Machine, andso
forth. NRMI has to suffer the same and even higher overheads,
since it has to perform an extra traversal and copying over object
structures.

Our implementation of NRMI as a full replacement of Java
RMI has two versions: a “portable”, high-level one and an
“optimized” one. Theportable version makes use of high-level
features such as Java reflection for traversing and copying object
structures. Although NRMI is currently tied to Suns JDK, the
portable version works with JDK 1.3, 1.4, and 1.5 on all supported
platforms and should be easy to port to other implementations.
The portability means loss of performance: Java reflection is a
slow way to examine and update unknown objects. Nevertheless,
our implementation minimizes the overhead by caching reflection
information aggressively. Additionally, the portable version uses
JNI native code for reading and updating object fields without
suffering the penalty of a security check for every field. These
two optimizations give a ¿200% speedup to the portable version,
but still do not achieve the optimized versions performance.

Theoptimizedversion of NRMI only works with Suns JDK 1.4
and 1.5 to take advantage of special low-level features exported by
the JVM in order to achieve better performance. The performance
of regular Java RMI improved significantly between versions1.3
and 1.4 of the JDK. The main reason was the flattening of the
layers of abstraction in the implementation. Specifically,object
serialization was optimized through non-portable direct access to
objects in memory through an “Unsafe” class exported by the Java
VM. The optimized version of NRMI also uses this facility to

quickly inspect and change objects. We use the optimized NRMI
version (also supporting the optimization discussed in Section V-
A) in our experiments.

B. Description of Experiments

In order to see how our implementation of call-by-copy-restore
measures up against the standard implementation of RMI, we
created multiple micro-benchmarks. Our benchmarks test NRMI
with arrays, binary trees holding small objects, and binarytrees
holding arrays of multiple objects in each node. All data andtheir
linking structure are randomly generated and passed to a remote
method. The remote method performs random changes to its input
data. We have considered different scenarios of parameter use for
each data structure:

• For arrays, we consider the case of updating their contents,
without changing the reference to the array itself (labeled
“Array Benchmark 1 (Keep Reference)” in our plots) and
the case of updating the entire array on the server (labeled
“Array Benchmark 2 (Reset Reference)”).

• For binary trees of simple objects, as well as for binary
trees of medium-size arrays, we used three scenarios (labeled
“...Case 1 (No aliases, data and structure changes)”, “...Case
2 (Structure doesn’t change, but data does)”, and “...Case
3 (Structure changes, aliases present)”, respectively) ofin-
creasing complexity. In the first scenario, there is no aliasing
on the client site of data passed as parameters to the remote
call. In the second scenario, the remote call makes changes
to data aliased on the client, but the linking structure of the
data (i.e., the shape of the tree) does not change. In the
third scenario, both the data and the tree structure change
randomly and client aliases need to see these changes.

The invariant maintained is that all changes are visible to
the caller. In other words, the resulting execution semantics is
as if both the caller and the callee were executing within the
same address space. With NRMI or distributed call-by-reference
(through remote pointers, as in Figure 3) this is done automati-
cally. For call-by-copy, we need to simulate this behavior by hand.
We made a best-effort attempt to emulate what a programmer
would actually do. We assumed that the programmer has full
knowledge of the aliases on the client site, but no knowledgeof
what (random) changes were performed on the server site. (To
be more exact, in scenario 2 for the binary tree benchmarks, the
code assumes that thelocation of changes is known. In scenario
3, this is impossible, however, as the structure of the tree itself
has changed.) Although we believe that our call-by-copy RMI
code reflects what a real programmer would do, it may be viewed
as pessimistic: it includes overhead for establishing general data
structures that the server code uses to register its performed
changes and the client code uses to restore them. In practice, the
programmer may be able to do better by exploiting knowledge
about the server-induced changes. In all our benchmarks, wealso
show the cost of RMI without any restoring logic, to establish a
lower bound of the best results achievable.

For all benchmarks, the NRMI version of the distributed
code is quite similar to the local version, with the exception of
remote method lookup and declaring a class to beRestorable.
The same changes have to be made in the regular Java RMI
call-by-copy version. Several additional lines of code have to
be added/modified in the RMI call-by-copy case, however. For

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 10

instance, in the case of binary trees, all three benchmark scenarios
required about 45 extra lines of code in order to define return
types. For scenarios 2 and 3, an extra 16 lines of code were
needed to perform the updating traversal. For scenario 3, about
35 more lines of code were needed for registering the changed
data.

C. Experimental Results

We measured the performance of call-by-copy (RMI), call-by-
copy-restore (NRMI), and call-by-reference implemented using
remote pointers (RMI). (Of course, NRMI can also be used
just like regular RMI with identical performance. In this section
when we talk of “NRMI” we mean “under call-by-copy-restore
semantics”.) Our binary trees hold small objects (13 words in
serialized form). Arrays have 100 slots and store integers.We
performed our measurements with Sun’s JDK (build 1.5.009-
b03). Our environment consists of two Pentium D 3.GHz (dual
core) machines, each with 2GB of RAM on a 100Mbps network.
We tried to ensure (by “warming” the JVM) that all measured
programs had been dynamically compiled before the measure-
ments. To establish the baseline communication startup cost, we
measured the time taken for a remote call to a routine with no
arguments (foo()), as well as a routine being passed anull
object reference (foo(null)). Both calls took about 0.2ms on
average (0.205ms and 0.207ms, respectively), which is a small
percentage of the execution cost of most of our benchmarks.

The results of our experiments are shown in Figure 13.
The graphs show log-log plots of average execution time (over
10,000 iterations) of each benchmark. Across all benchmarks,
NRMI performed quite similarly to the hand-written RMI call-
by-copy version, while dramatically outperforming the RMIcall-
by-reference version.

The results hold over data structures with quite different
behaviors and balances of communication and computation. As
can be seen, serializing arrays and transferring them over the
network is quite efficient—a relatively large percentage ofthe
time is spent in communication overheads (compare the baseline
foo(null) cost, above). In contrast, we see a much higher
serialization cost for linked data structures. For all benchmarks,
NRMI performance is quite close to the call-by-copy RMI version
with hand-coded restore code. For simpler benchmark scenarios,
the hand-coded solution performs up to 35% better, although
typically the difference is in the 10-15% range. For more complex
scenarios (i.e., “keep reference” for arrays, or scenario 3of
both binary trees and binary-tree-with-arrays) NRMI performs
practically identically to the hand-coded RMI solution—the plot
lines are almost completely overlapping. The one-way (no restore)
RMI baseline is consistently at roughly half the execution time,
indicating that the main overheads are due to the restore process.
Finally, RMI with remote pointers (call-by-reference) is consis-
tently orders of magnitude slower than any other solution. In fact,
RMI with remote pointers failed to complete for large inputsof
the linked structures examples, because it exhausted the heap.
The reason for the memory leak is that RMI only has reference
counting for distributed garbage collection and, hence, cannot
reclaim data in cyclical reference patterns over the network.

Overall, our experiments show that NRMI is the only alter-
native efficient enough for real use that does not burden the
programmer with writing specialized “restore” code for server-
modified data. NRMI performs close (from 5% faster to about

Fig. 14. Effect of recomputing linear map instead of serializing it.

35% slower) to regular (call-by-copy) RMI while offering a
more natural programming model, which eliminates conceptual
complexity and saves many lines of code per remote call. The
only alternative that achieves the same code simplicity is the much
less efficient call-by-reference through RMI remote pointers.

Additionally, we measured the impact of the optimization
described in Section V-A: re-creating the linear map duringde-
serialization of the remote call arguments, instead of passing it
over the network. This takes advantage of fast CPUs to minimize
network traffic. We show the effect of the optimization on our
array benchmark in Figure 14. As can be seen, the optimized
version of NRMI is about 5% faster than the unoptimized version.
Thus, this optimization does not yield tremendous benefit, but
helps remove some of the inherent overhead of NRMI over a
plain RMI solution, especially for smaller inputs.

VII. R ELATED WORK

A. Performance and Scalability Improvement Work

Several efforts aim at providing a more efficient implementation
of the facilities offered by standard RMI [13]. Krishnaswamy
et al. [14] achieve RMI performance improvements by replacing
TCP with UDP and by utilizing object caching. Upon receiving
a remote call, a remote object is transferred to and cached onthe
caller site. In order for the runtime to implement a consistency
protocol, the programmer must identify whether a remote method
is read-only (e.g., will only read the object state) or not, by
including the throwing of “read” or “write” exceptions. That is,
instead of transferring the data to a read-only remote method, the
server object is moved to the data instead, which results in better
performance in some cases.

Several systems improve the performance of RMI by using
a more efficient serialization mechanism. KaRMI [15] uses a
serialization implementation based on explicit routines for writing
and reading instance variables along with more efficient buffer
management.

Maassen et al.’s work [16], [17] takes an alternative approach
by using native code compilation to support compile and run time
generation of marshalling code. It is interesting to observe that
most of the optimizations aimed at improving the performance of

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 11

Fig. 13. Performance Comparison: RMI call-by-copy, NRMI call-by-copy-restore, RMI call-by-reference (remote pointers).

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 12

the standard RMI and call-by-copy can be successfully applied to
NRMI and call-by-copy-restore. Furthermore, such optimizations
would be even more beneficial to NRMI due to its heavier use of
serialization and networking.

B. Usability Improvement Work

Thiruvathukal et al. [18] propose an alternative approach to
implementing a remote procedure call mechanism call for Java
based on reflection. The approach employs the reflective capa-
bilities of the Java language to invoke methods remotely. This
simplifies the programming model since a class does not have to
be declaredRemote for its instances to receive remote calls.

While CORBA does not currently support object serialization,
the OMG has been reviewing the possibilities of making such
support available in some future version of IIOP [19]. If object
serialization becomes standardized, both call-by-copy and call-
by-copy-restore can be implemented enabling [in] and [in out]
parameter passing semantics for objects.

The systems research literature identifies Distributed Shared
Memory (DSM) systems as a primary research direction aimed at
making distributed computing easier. Traditional DSM approaches
create the illusion of a shared address space, when the data
are really distributed across different machines. ExampleDSM
systems include Munin [20], Orca [21], and, in the Java world,
cJVM [22], DISK [23], and Java/DSM [24]. DSM systems can
be viewed as sophisticated implementations of call-by-reference
semantics, to be contrasted with the naive “remote pointer”
approach shown in Figure 3. Nevertheless, the focus of DSM
systems is very different than that of middleware. DSMs are used
when distributed computing is a means to achieve parallelism.
Thus, they have concentrated on providing correct and efficient
semantics for multi-threaded execution. To achieve performance,
DSM systems create complex memory consistency models and
require the programmer to implicitly specify the sharing prop-
erties of data. In practice, the applicability of DSMs has been
restricted to high-performance parallel applications, mainly in a
research setting. In contrast, NRMI attempts to support natural
semantics to straightforward middleware, which is always under
the control of the programmer. That is, NRMI does not attemptto
offer distribution transparency, but instead achieves a more natural
programming model that is still explicit. NRMI (and all other
middleware) do not try to support “distribution for parallelism”
but instead facilitate distributed computing in the case where
an applications data and input are naturally far away from the
computation that needs them.

A special kind of tools that attempt to bridge the gap between
DSMs and middleware areautomatic partitioning tools. Such
tools split centralized programs into distinct parts that can run on
different network sites. Thus, automatic partitioning systems try
to offer DSM-like behavior but with emphasis on automation and
not performance: Automatically partitioned applicationsrun on
existing infrastructure (e.g., DCOM or regular unmodified JVMs)
but relieve the programmer from the burden of dealing with the
idiosyncrasies of various middleware mechanisms. At the same
time, this reduces the field of application to programs where
locality patterns are very clear cut—otherwise performance can
suffer greatly. In the Java world, the J-Orchestra [10], Addistant
[25] and Pangaea [26] systems can be classified as automatic
partitioning tools.

The JavaParty system [27], [28] works much like an automatic
partitioning tool, but gives a little more programmatic control
to the user. JavaParty is designed to ease distributed cluster
programming in Java. It extends the Java language with the
keyword remote to mark those classes that can be called
remotely. The JavaParty compiler then generates the required RMI
code to enable remote access. Compared to NRMI, JavaParty is
much closer to a DSM system, as it incurs similar overheads and
employs similar mechanisms for exploiting locality.

Doorastha [29] represents another piece of work on making
distributed programming more natural. Doorastha allows the user
to annotate a centralized program to turn it into a distributed
application. Although Doorastha allows fine-grained control with-
out needing to write complex serialization routines, the choice of
remote calling semantics is limited to call-by-copy and call-by-
reference implemented through RMI remote pointers or object
mobility. Call-by-copy-restore can be introduced orthogonally in
a framework like Doorastha. In practice, we expect that call-by-
copy-restore will often be sufficient instead of the costlier, DSM-
like call-by-reference semantics.

Finally, we should mention that approaches that hide the fact
that a network is present have often been criticized (e.g., see
the well-known Waldo et al. “manifesto” on the subject [30]).
The main point of criticism has been that distributed systems
fundamentally differ from centralized systems because of the
possibility of partial failure, which needs to be handled differently
for each application. The “network transparency” offered by
NRMI does not violate this principle in any way. Identicallyto
regular RMI, NRMI remote methods throw remote exceptions that
the programmer is responsible for catching. Thus, programmers
are always aware of the network’s existence, but with NRMI they
often do not need to program differently, except to concentrate
on the important parts of distributed computing such as handling
partial failure.

VIII. C ONCLUSION

Distributed computing has moved from an era of “distribution
for parallelism” to an era of “data-driven distribution”: the data
sources of an application are naturally remote to each otheror to
the computation. In this setting, call-by-copy-restore isa very
useful middleware semantics, as it closely approximates local
execution. In this article we described the implementationand
benefits of call-by-copy-restore middleware for arbitrarylinked
data structures. We discussed the effects of calling semantics for
middleware, explained how our algorithm works, and described
three different implementations of call-by-copy-restoremiddle-
ware. We also presented detailed performance measurementsof
our drop-in RMI replacement implementation, proving that NRMI
can be implemented efficiently enough for real world use. We
believe that NRMI is a valuable tool for Java distributed pro-
grammers and that the same ideas can be applied to middleware
design and implementation for other languages.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation
under Grant No. CCR-0238289.

REFERENCES

[1] E. Tilevich and Y. Smaragdakis, “NRMI: Natural and efficient middle-
ware,” in International Conference on Distributed Computer Systems
(ICDCS), 2003, pp. 252–261.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 13

[2] A. S. Tanenbaum and M. van Steen,Distributed Systems: Principles and
Paradigms. Prentice-Hall, 2002.

[3] A. S. Tanenbaum,Distributed Operating Systems. Prentice-Hall, 1995.
[4] Unknown, “Distributed computing systems course notes,”

http://www.cs.wpi.edu/∼cs4513/b01/week3-comm/week3-comm.html,
accessed Apr. 2007.

[5] Open Group, “DCE 1.1 RPC specification,”
http://www.opengroup.org/onlinepubs/009629399/, 1997, accessed
Apr. 2007.

[6] F. Reverbel and M. Fleury, “The JBoss extensible server,” in Proc. ACM
Middleware Conference, 2003.

[7] Sun Microsystems, “Java 2 enterprise edition,” http://java.sun.com/j2ee/,
accessed Apr. 2007.

[8] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann,Pattern-Oriented
Software Architecture: Patterns for Concurrent and Networked Objects.
Wiley, 2000.

[9] A. Stevenset al., “Xdoclet,” http://xdoclet.sourceforge.net/, accessed
Apr. 2007.

[10] E. Tilevich and Y. Smaragdakis, “J-Orchestra: Automatic Java applica-
tion partitioning,” inProceedings of the European Conference on Object-
Oriented Programming (ECOOP). Springer-Verlag, LNCS 2374, 2002,
pp. 178–204.

[11] ——, “Portable and efficient distributed threads for Java,” in ACM
Middleware Conference. Springer-Verlag, Oct. 2004, pp. 478–492.

[12] D. Weyns, E. Truyen, and P. Verbaeten, “Distributed threads in Java,” in
Proc. International Symposium on Distributed and ParallelComputing
(ISDPC), 2002.

[13] Sun Microsystems, “Remote method invocation specification,”
http://java.sun.com/products/jdk/rmi/, 1997, accessedApr. 2007.

[14] V. Krishnaswamy, D. Walther, S. Bhola, E. Bommaiah, G. Riley,
B. Topol, and M. Ahamad, “Efficient implementations of Java remote
method invocation (RMI),” inProc. of Usenix Conference on Object-
Oriented Technologies and Systems (COOTS98), 1998.

[15] M. Philippsen, B. Haumacher, and C. Nester, “More efficient serializa-
tion and RMI for Java,”Concurrency: Practice and Experience, vol. 12,
no. 7, pp. 495–518, May 2000.

[16] J. Maassen, R. van Nieuwpoort, R. Veldema, H. E. Bal, andA. Plaat, “An
efficient implementation of Java’s remote method invocation,” in Proc. of
ACM Symposium on Principles and Practice of Parallel Programming,
May 1999.

[17] J. Maassen, R. van Nieuwpoort, R. Veldema, H. E. Bal, T. Kielmann,
C. Jacobs, and R. Hofman, “Efficient Java RMI for parallel program-
ming,” ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 23, no. 6, pp. 747–775, Nov. 2001.

[18] G. K. Thiruvathukal, L. S. Thomas, and A. T. Korczynski,“Reflective
remote method invocation,”Concurrency: Practice and Experience,
vol. 10, no. 11-13, pp. 911–926, Sep.-Nov. 1998.

[19] Object Management Group, “Objects by value specification,”
http://www.omg.org/cgi-bin/doc?orbos/98-01-18.pdf, Jan. 1998,
accessed Apr. 2007.

[20] J. B. Carter, J. K. Bennett, and W. Zwaenepoel, “Implementation and
performance of Munin,” inProc. 13th ACM Symposium on Operating
Systems Principles, Oct. 1991, pp. 152–164.

[21] H. E. Bal, R. Bhoedjang, R. Hofman, C. Jacobs, K. Langendoen, T. Ruhl,
and M. F. Kaashoek, “Performance evaluation of the Orca shared-object
system,”ACM Trans. on Computer Systems, vol. 16, no. 1, pp. 1–40,
Feb. 1998.

[22] Y. Aridor, M. Factor, and A. Teperman, “cJVM: a single system image
of a JVM on a cluster,” inProc. International Conference on Parallel
Programming (ICPP), 1999.

[23] M. Surdeanu and D. I. Moldovan, “Design and performanceof a
distributed Java virtual machine,”IEEE Transactions on Parallel and
Distributed Systems, vol. 13, no. 6, pp. 611–627, Jun. 2002.

[24] W. Yu and A. Cox, “Java/DSM: A platform for heterogeneous comput-
ing,” Concurrency: Practice and Experience, vol. 9, no. 11, pp. 1213–
1224, 1997.

[25] M. Tatsubori, T. Sasaki, S. Chiba, and K. Itano, “A bytecode translator
for distributed execution of legacy Java software,” inProc. European
Conference on Object-Oriented Programming (ECOOP), Jun. 2001.

[26] A. Spiegel, “Automatic distribution of object-oriented programs,” Ph.D.
dissertation, FU Berlin, FB Mathematik und Informatik, Dec. 2002.

[27] B. Haumacher, J. Reuter, and M. Philippsen, “JavaParty: A distributed
companion to java,” http://wwwipd.ira.uka.de/JavaParty/, accessed Apr.
2007.

[28] M. Philippsen and M. Zenger, “JavaParty—transparent remote objects in
Java,”Concurrency: Practice and Experience, vol. 9, no. 11, pp. 1125–
1242, 1997.

[29] M. Dahm, “Doorastha—a step towards distribution transparency,” in
Proc. Java Informations Tage (JIT)/Net.ObjectDays 2000, 2000.

[30] J. Waldo, G. Wyant, A. Wollrath, and S. Kendall, “A note on distributed
computing,” Technical Report, Sun Microsystems Laboratories, SMLI
TR-94-29, Nov. 1994.

Eli Tilevich is an Assistant Professor in the Com-
puter Science Department at Virginia Tech. He
earned his B.A. degree from Pace University, M.S.
from New York University, and Ph.D. from Georgia
Tech. He is a member of the IEEE, and his research
interests are in the systems and languages end of
software engineering, spanning software technology,
object-oriented programming, and distributed sys-
tems.

Yannis Smaragdakis is an Associate Professor of
Computer Science at the University of Oregon. He
earned his B.Sc. degree from the University of Crete
and his Ph.D. from the University of Texas at Austin.
He is a senior member of the IEEE and his interests
are in the programming languages and systems side
of software engineering.

