Querying Invisible Objects: Supporting Data-Driven,
Privacy-Preserving Distributed Applications

Yin Liu, Zheng Song, and Eli Tilevich
Software Innovations Lab
Virginia Tech
{yinliu,songz,tilevich} @cs.vt.edu

ABSTRACT

When transferring sensitive data to a non-trusted party, end-users
require that the data be kept private. Mobile and IoT application
developers want to leverage the sensitive data to provide better
user experience and intelligent services. Unfortunately, existing
programming abstractions make it impossible to reconcile these
two seemingly conflicting objectives. In this paper, we present a
novel programming mechanism for distributed managed execution
environments that hides sensitive user data, while enabling devel-
opers to build powerful and intelligent applications, driven by the
properties of the sensitive data. Specifically, the sensitive data is
never revealed to clients, being protected by the runtime system.
Our abstractions provide declarative and configurable data query
interfaces, enforced by a lightweight distributed runtime system.
Developers define when and how clients can query the sensitive
data’s properties (i.e., how long the data remains accessible, how
many times its properties can be queried, which data query meth-
ods apply, etc.). Based on our evaluation, we argue that integrating
our novel mechanism with the Java Virtual Machine (JVM) can
address some of the most pertinent privacy problems of IoT and
mobile applications.

KEYWORDS

Data Privacy, Data-Intensive Applications, Programming Abstrac-
tions, Virtual Machine Design

ACM Reference format:

Yin Liu, Zheng Song, and Eli Tilevich. 2017. Querying Invisible Objects:
Supporting Data-Driven, Privacy-Preserving Distributed Applications. In
Proceedings of MANLANG’17, Czech Republic, Sep. 25-29, 2017, Prague,
13 pages.

DOI: 10.475/123 4

1 INTRODUCTION

Mobile, 10T, and wearable devices continuously collect increasing
volumes of user data, much of it sensitive. Health monitors track
their owners’ vital signs; smart phones read sensory personal data,
including GPS location, velocity, direction, etc.; IoT devices obtain
their environmental information. When it comes to sensitive data,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MANLANG’17, Czech Republic

© 2017 ACM. 123-4567-24-567/08/06...$15.00

DOI: 10.475/123_4

there is a fundamental conflict between end-user requirements and
application developer aspirations. End-users want to make sure
that their sensitive data remains private, inaccessible to non-trusted
parties. Application developers want to leverage the sensitive data’s
properties to provide intelligent applications that provide person-
alized user experiences and intelligent, context-sensitive services.
These two objectives are seemingly irreconcilable.

Consider the following three examples of data-intensive applica-
tions that handle potentially sensitive data.

(I) Mobile navigation applications provide real-time traffic infor-
mation to their users, who also contribute this information when
using the applications. When providing navigation services, a navi-
gation application continuously uploads to the cloud its device’s
current GPS location and speed, which are then used to estimate
real-time traffic information. Although this information is uploaded
anonymously, given enough GPS data and speed, a non-trusted
party may be able to learn about the device owner’s daily routine
and abuse this information for nefarious purposes. Therefore, al-
though the contributors may be willing to help estimate real-time
traffic information, they would not want their GPS location revealed
and recorded.

(IT.) A group of friends is looking for a restaurant to dine together.
Their smartphones maintain their owners’ dining histories. Based
on the dining history of each individual, the edge server at a shop-
ping plaza can suggest which restaurants would be most suitable
for the entire group. However, the individuals may be unwilling to
share their raw dining histories with a non-trusted party.

(II1.) A smart building may adjust its temperatures and lighting
levels, as driven by the preferences of its current occupants. Users
wearing personal health trackers and equipped with smartphones
can report their owners’ vitals and building location. This informa-
tion is one of the key pieces that make a building “smart” However,
individuals may not want to reveal their vitals and current location
to a non-trusted party.

Please, notice that in all three examples above, intelligent ser-
vices can still be provided while keeping the users’ sensitive data
invisible. To calculate the average reported velocity, the traffic
monitoring system should not need to be aware of the actual veloc-
ity of each passing vehicle. This sensitive information can remain
hidden, and only its statistical average calculated and used in pre-
dicting current traffic conditions. To recommend a restaurant, the
edge server should not need to know which specific restaurants
the individuals involved have patronized in the past. Instead, it
can suggest a mutually acceptable restaurant, based on each indi-
vidual’s most favored cuisine, statistical information that can be
obtained by querying the dining histories. To intelligently adjust
its environmental settings, a smart building can remain unaware

MANLANG’17, Sep. 25-29, 2017, Prague, Czech Republic

of the building inhabitants’ actual vitals or exact locations. It only
needs the vital signs’ statistical averages, as reported by each of its
autonomous climate-controlled areas.

We posit that when developing data-intensive, privacy-preserving
applications, developers often need to keep the sensitive data in-
visible, while being able to query that data for various properties.
Both data privacy and the ability to query the data should be guar-
anteed by the runtime system. However, existing programming
mechanisms provide no explicit support for this type of privacy
preservation. In Object-Oriented programming, private fields can
only be accessed by the public methods in the same class. These
methods, however, are free to implement any access policy to sen-
sitive data and even return the values of privately declared fields to
the client. In addition, this method-level protection can be bypassed
via Reflection [7]. If a programming mechanism can guarantee that
the sensitive data will remain invisible, while providing a controlled
way to query the data, this mechanism can support the development
of emerging applications in the mobile and IoT domains, thereby
improving their data privacy.

In this paper, we present Object Expiration (OBEx), a novel pro-
gramming mechanism, supported by a lightweight, portable run-
time system, that possesses all the privacy preservation properties
described above. The key idea behind OBEx objects is that they se-
curely store some sensitive data, to which they never provide access
to their clients. In other words, the sensitive data remains hidden
in the system layer and never revealed to the application that uses
these objects. Although the sensitive data remains invisible, clients
can execute various pre-defined queries (e.g., testing for equality,
comparisons, membership in a range, etc.) against it. However, the
total number of queries and the time limit over which the queries
can be executed are limited by a declarative policy specified when
instantiating OBEx objects. The runtime system ensures that the
specified policy is preserved when OBEX objects are serialized and
transferred across the network. When deep-copying one OBEx
object to another by using serialization, the runtime keeps only
one version of the sensitive data, causing the copies to become
aliases to the same data. When transferring an OBEx object across
the network, the runtime system encrypts its sensitive data, and
starts the expiration timer as soon as the object is unserialized at
the destination site.

This paper makes the following contributions:

(1) We introduce OBEX objects, a programming mechanism
that supports the development of data-driven, privacy-
preserving distributed applications, common in the emerg-
ing mobile, wearable, and IoT domains.

(2) We empirically evaluate OBEx objects in terms of their us-
ability and efficiency with benchmarks and privacy threats.

(3) We present developer guidelines for using OBEx objects in
a given application scenario, as informed by our empirical
observations.

The remainder of this paper is structured as follows. Section 2
further explains how OBEX can be used. Section 3 provides the
technical background for this research. Section 4 details the OBEx
object programming model and the runtime system enabling it.
After discussing how developers can use OBEX in their applications
in Section 5, we describe how we evaluated the effectiveness and

Yin Liu, Zheng Song, and Eli Tilevich

efficiency of OBEx in Section 6. We then discuss related work in
Section 7. Section 8 presents conclusions and future work direc-
tions.

2 USAGE SCENARIO AND USE CASE

In this section, we first present a typical OBEx usage scenario.
Then, we show how using OBEx can effectively reconcile conflicting
requirements of data producers and consumers in a realistic use
case.

2.1 Typical Usage Scenario

Consider a scenario of collecting and making use of some sensitive
data. The data is sensitive in the sense that it contains some private
information that should not be revealed to outside parties. The
role of a data producer is to collect or generate some sensitive data.
The role of a data consumer is to make use of the sensitive data’s
properties (without having the ability to access the data) to provide
some intelligent services. As owners of sensitive data, producers
also determine which access policy should be applied to the data, so
as to preserve user privacy while permitting consumers to leverage
some properties of the sensitive data.

[] data dat:
- producer |:|I][]|][| csnasumer
2

1 j ¥
6
7
N—"
data\(_ 3 olicy 5
\ policy
4
ObE g8 recycle
X 2
ObEx object ‘\, ’.‘
object dataems? 9 ay

Figure 1: Typical Usage Scenario.

Data producers and data consumers operate in an environment
of mutual distrust. Producers would not share sensitive data with
consumers, both to preserve user privacy and to comply with pri-
vacy regulations. Consumers would not trust the results of any
operations performed by producers over the data. Consumers need
to be able to compute over the sensitive data on their own, as their
computational procedures constitute their intellectual property (IP),
which is not to be revealed to the producers.

Figure 1 shows a process of developing a distributed data-intensive
application that preserves data privacy by means of OBEx. The pro-
cess starts with the introduction of sensitive data into the system
(step 1). The data is then stored in an OBEx object. When instantiat-
ing the object, the access policy determined by the producer (step 2)
is passed as a parameter to the constructor (step 3). Then, the OBEx
runtime system serializes, encrypts, and transfers the OBEx object
to the data consumer, which is a non-trusted party that should be
unable to access the sensitive data (step 4). Serializing data into
a binary string, Step 4 can be easily embedded into the data mar-
shaling/unmarshaling processes of standard web services. When
the OBEx object arrives to the non-trusted party’s site, the OBEx
runtime decrypts and unserializes the transferred object, making

Querying Invisible Objects

it ready for client queries (step 5). The access policy dictates the
type of queries, their number, and the total time over which they
can be made. The runtime enforces the policy by keeping track of
the queries made and the time elapsed (step 7). Once either of the
thresholds is reached, the runtime reliably clears the sensitive data
associated with the OBEx object (step 8 and 9). Once the data is
cleared, all subsequent queries result in a runtime exception, raised
by the OBEx runtime.

2.2 Use Case

A recent sociological study analyzed the integration and behavioral
patterns of people who have recently moved to live in the city of
Shanghai [24]. For the study, China Telecom supplied anonymized
metadata from 698 million of traces of all its Shanghai customers.
In this demographic study, researchers analyzed the provided call
traces and concluded that city “locals” and “migrants” behaved dis-
similarly with respect to their daily itineraries and calling patterns.
It was surprising how many behavioral patterns the researchers
were able to infer, given that the provided metadata only included
the age, sex, and call traces of the phone customers. For example,
while the locals tend to communicate with people of their own age,
the migrants tend to communicate with people of various ages. As
a result, by analyzing the age of one’s contacts in the trace, one can
determine whether the subject is likely to be a migrant.

The study also raised some questions from civil libertarians,
which worry that by disclosing even anonymized data about phone
customers, phone companies enable third parties to learn sensitive
information about people’s lives, thus violating their privacy. Please,
notice, however, that the researchers, which were given access
to the anonymized metadata, can be considered a trusted party,
someone who would not exploit the sensitive data for nefarious
purposes. For these demographic researchers, the sensitive data is
only a tool that enables them to infer the integration patterns of
migrants moving to a new city.

However, commercial entities could leverage the age and sex
information to create useful and intelligent applications and ser-
vices, but additional care must be taken to preserve user privacy.
Companies developing IoT and mobile applications can target cer-
tain demographics, in which “possible migrants” would be a large
group with distinct interests and needs. For example, the mobile
ads delivered to this group can prominently feature ‘apartments
for rent’ information. Similarly, newcomers would appreciate more
detailed guidance from navigation applications.

How can one enable software developers to leverage the sensitive
data of the phone company’s customers, while ensuring that the
customers’ privacy is fully preserved? In other words, we want
developers to be able to infer which customers are likely migrants,
without being able to infer their other behavioral patterns. Next,
we show how using OBEX can reconcile the objectives of creating
intelligent mobile services and preserving user privacy.

As in the typical scenario described above, the telecoms oper-
ator is the data producer, while the third-party services for the
mobile devices of phone customers are data consumers. These
services can provide customized business intelligence to the con-
sumers’ mobile/IoT applications. To realize this requirement, the
data consumers should be able to analyze the age of the contacts of

MANLANG’17, Sep. 25-29, 2017, Prague, Czech Republic

a smartphone customer, while being unable to access their actual
age values, which can be used to infer sensitive information, such
as the smartphone customer’s own age. Instead, they should be able
to perform statistical analysis on a collection of ages, calculating
its count, average, median, mode, and standard deviation. Assume
that age is represented as an integer. Now, consider how one can
put the aforementioned policy in place by using OBEx. Next, we
describe the three main steps of the process: (1) data collection, (2)
data transfer, and (3) data analysis.

(1) Data Collection The data collection step wraps sensitive data
in OBEX objects and instructs the OBEx runtime system to transfer
the objects to the consumers. Recall that when creating an OBEx
object, an access policy must be given. In this case, the producer
can define an access policy with the following parameters (two
queries of any kind, 10,000 milliseconds lifetime, all query methods
permitted with the exception for sum). The access policy has to
be consistent with the needs of data consumers; otherwise, the
provided OBEX objects are of no use to the consumers. Section 4
provides details about the OBEx APIs and runtime design.

(2) Data Transfer The data transfer process is responsible for mov-
ing initialized OBEx objects across the network to the consumer
sites. To that end, the OBEx runtime encrypts and serializes the
sensitive data to a binary stream. The stream is transferred to the
destination site, at which the runtime unserializes, decrypts, and
reconstructs the stream into an OBEX object instance. The lifetime
timer starts immediately after an OBEx object is reconstructed.
Section 4 describes the OBEx distributed runtime.

(3) Data Analysis The data analysis process is concerned with
executing queries against the sensitive data protected by OBEx
objects. In this use case, the telecoms provides a collection of
OBEX objects containing the ages of a given customer’s contacts.
Recall that the access policy allows data consumers to invoke any
statistical method with the exception of sum, with only two queries
permitted. A mobile app can invoke the average and stdbeviation
methods to obtain the necessary information required to be able to
make a reasonable guess whether the customer is likely a migrant.
Notice, that OBEx provides the necessary information without
revealing the actual ages of the customer’s contacts. Furthermore,
the sensitive information becomes inaccessible after 10 seconds,
thus further preventing potential abuse by nefarious parties. Section
4 details the OBEx APIs, while Section 6 discusses the performance
characteristics of our reference implementation.

To sum up, the raison d’étre behind OBEx is to resolve the in-
herent conflict between the user’s privacy needs and the mobile
developer’s wishes when it comes to managing sensitive data. In
this use case, the OBEX protection ensures that the actual ages of
phone customers are never revealed to non-trusted parties, which
in this case are services supporting mobile applications. These ser-
vices can still obtain valuable business intelligence by querying
OBEX objects, without directly accessing the sensitive data. The
following sections discuss the technical details of the OBEx design,
implementation, and evaluation.

MANLANG’17, Sep. 25-29, 2017, Prague, Czech Republic

3 BACKGROUND

In this section, we briefly present several known risks to data pri-
vacy, which motivate our work. Then, we outline the most com-
monly known vulnerabilities of Java objects.

3.1 Risks to Data Privacy

Retaining and transferring the user’s sensitive data without a suit-
able protection mechanism gives rise to a large number of serious
privacy vulnerabilities. Among the top ten mobile security risks, as
per the 2016 report by the Open Web Application Security Project
(OWASP) 1, are data vulnerability, insecure communication and
unreliable authentication procedures. The Common Vulnerabilities
and Exposures (CVE) reports a lot of known relevant exploits. For
example, due to the man-in-the-middle attack, the Eview EV-07S
GPS Tracker exposes lots of sensitive data, such as the current GPS
location and IMEI numbers, when transmitting data over the Inter-
net 2. In the meantime, users’ location is disclosed on the website
because the Sleipnir Mobile application misapplies Geolocation API
and sends the sensitive data without gaining user permission 3.
What is worse is that, whether shared legitimately or inappropri-
ately, sensitive data can be stored persistently. Attackers can then
use that sensitive data to perpetrate a variety of subsequent privacy
exploits.

3.2 Exploits of Java Objects

Several known exploits can compromise Java objects containing
sensitive data. Malicious accesses to Java objects have threatened
a large number of applications 4 ® ©. The built-in Java language
protection mechanisms, such as object encapsulation and garbage
collection can be insufficient to defend against particularly elaborate
attacks, particularly in distributed environments.

3.2.1 Object Encapsulation. One of the fundamental concepts of
object-oriented programming (OOP) is encapsulation, which hides
the sensitive data and behavior from object clients. Moreover, Java
provides access modifiers to ensure data privacy. By applying the
keyword private to a field, programmers expect the field not to
be accessible from outside of its declaring class. The protection af-
forded by Java access modifiers can be bypassed by using reflection.
With the right permission, an attacker can use reflection to directly
access and modify private fields and invoke private methods.
To help prevent this attack, the security manager mechanism [10]
has been added to Java, but its effectiveness depends on all compo-
nents being properly configured, a requirement that can be hard
to fulfill in complex distributed systems. Proper configuration and
deployment practices can prevent these attacks, but they require a
universal adherence.

3.2.2 Object Life Cycle. When a programming object containing
sensitive data goes out of scope, it becomes available for garbage

10Open Web Application Security Project Mobile Top 10
https://www.owasp.org/index.php/Mobile_Top_10_2016-Top_10

2CVE-2017-5239 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5239
3CVE-2014-0806 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0806
4CVE-2009-1084 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1084
SCVE-2009-2747 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2747
©CVE-2012-0393 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0393

Yin Liu, Zheng Song, and Eli Tilevich

collection. The actual collection time and scope are, however, en-
tirely the prerogative of the collection policy in place. In some
cases, however, waiting for the garbage collector to clear sensitive
data may be insufficient. Instead, the sensitive data may need to
be reliably cleared after reaching a certain threshold, as defined by
the specified per-object access policy.

4 DESIGN AND IMPLEMENTATION

In this section, we first introduce key design ideas behind OBEx
objects, then we present the technical details of our implementation.

4.1 Design Overview

In the typical usage scenario described above, the inherent conflict
between data producers and consumers is that the former require
that their sensitive data be kept private, while the latter wish to
leverage some properties of the private data to provide better ser-
vices and build more intelligent applications. The OBEx mechanism
reconciles these conflicting requirements. It keeps the sensitive
data invisible, but enables non-trusted clients to query the data in
a controlled way. Once the number of queries or the time limit is
exceeded, the OBEx runtime clears the sensitive data, making it
inaccessible for any future operations.

4.1.1 Invisible Data. The OBEX architecture keeps its sensitive
data at the native layer, never passing it to the managed code (i.e.,
bytecode) layer. Hence, the sensitive data cannot be copied to regu-
lar Java objects. The OBEx API provides methods for serializing and
cloning OBEx objects. However, these methods’ implementation
keeps the sensitive data secure at the native layer. Application
clients can invoke any of the predefined OBEx query methods al-
lowed by the policy in place. However, the methods are native,
being executed in the native layer. In other words, although the data
is invisible, not being accessible to non-trusted consumers, they still
are able to obtain valuable insights about the data’s properties (e.g.,
perform statistical calculations) that can enrich the functionality
and user experience of applications and services.

4.1.2 Configurable Expiration Policy. How the sensitive data
can be accessed is dictated by a configurable expiration policy
that describes three interconnected limitations: max number of
accesses, time-to-expiration, and available query methods. The
first two limitations determine when the object and its sensitive
data should be cleared. The last limitation confirms which query
methods non-trusted clients are allowed to invoke.

In addition to query methods, the OBEx API includes meta-query
methods, through which the developer can discover what type of
data encapsulates a given OBEx object and which query methods
can be invoked on the object. In essence, the meta-query methods
return information about the access policy, whose restrictions have
to be expressed by the producer.

4.1.3 Enforceable Lifecycle. Figure 2 shows the enforceable life-
cycle of OBEx objects. In phase 1, although the sensitive data is
hidden in the native layer, non-trusted clients can query the data
from the managed layer. In phase 2, the object has cleared itself in
the native layer as driven by a given policy, nullifying the data and
disabling all future queries. In phase 3, the object has been com-
pletely garbage collected both in the runtime layer and the managed

Querying Invisible Objects

layer. Currently, our approach supports the lifecycle enforcement
in phases 1 and 2. However, in phase 3, the garbage collector only
collects the managed portion of OBEx objects; the native layer’s
sensitive data is cleared based only on the access policy in place.
Most likely the OBEx runtime would clear the sensitive data much
earlier than the managed code’s portion is garbage collected.

=
() (=) =

null
Phase 1 Phase 2 Phase 3
initialized cleared collected

Figure 2: Life Cycle of OBEx.

4.2 System Architecture

The OBEX system architecture comprises three interacting compo-
nents, as shown in Figure 3: Programming Interface, Local Runtime,
and Distributed Runtime. The Programming Interface provides con-
trolled programmatic access to OBEx objects. The Local Runtime
is a per-host native library responsible for safekeeping the sensi-
tive data, its lifecycle and operations. The Distributed Runtime
is responsible for transmitting OBEx objects across the network
securely, while also maintaining their specified access policies.

Programming Interface

Metadata API Statistical Query Methods

Distributed

++
Runtime Crypto

Local Runtime

Hiding Mechanism Serialization AES

Lifecycle

Enforcement SHA-256

Unserialization

Figure 3: Structure of OBEx.

4.2.1 Programming Interface. Both the sensitive data’s producer
and consumers interact with instances of OBEX objects via their
programming interface. The producer passes an instance of sensi-
tive data to the constructor of class OBEx alongside with its access
policy. Depending on the policy, consumers can invoke different
subsets of the API. These subsets expose various query methods

MANLANG’17, Sep. 25-29, 2017, Prague, Czech Republic

that include statistical and comparison operations. The sensitive
data remains invisible and inaccessible to consumers.

API Specifics. Figure 4 depicts the main structure of the OBEx
class, which reifies the access semantics specified by declarative
policies. OBEx provides methods for initializing, querying, deep-
copying, and statistical calculations. To control the deep-copying
and serialization behavior of OBEx objects, the class is declared
as Externalizable, taking full control of marshaling its instances.’
The class includes the private field mID, operation methods, and
native method declarations. mID uniquely identifies OBEx objects,
serving as the key that the API methods use when querying sensi-
tive data. To ensure the mID’s uniqueness, its value is the sensitive
data’s digital signature. Conversely, the query methods are sim-
ple wrappers around the native functions that interact with the
local runtime. Specifically, each private native function has a
corresponding public wrapper method.

We designed other classes to support the functionality provided
by OBEx. The abstract class AccessPolicy serves as the base class
for access policies. Figure 4) shows how the API facilitates the im-
plementation of policies via a subclass CustomPolicy. The Methods
enum defines the query methods consumers are permitted to invoke
on the invisible sensitive data. The data producer is also required
to specify the stored sensitive data’s type, which are currently con-
fined to built-in Java primitive types and String. This provision
is necessary to be able to execute all operations on sensitive data
within the native layer, without having to pass the sensitive data
to the managed layer.

’ Externalizable

ObEx AccessPolicy
-miD : String # mExpireTime : int
sint
+ObEx () # mMethodsControl : int

+ ObEx(AccessPolicy, Class, T)
+ clone() : ObEx

+ addMethod(Methods): void

+ deleteMethod(Methods): void
[<<enumeration>>

+ writeExternal(ObjectOutput) : void
+ readExternal(Objectinput) : void
Methods
+ maxQueriesPermitted():int
+ lifetimeSeconds():int Sum
+ isInvocable(Methods):boolean CustomPolicy Avg
Median

- nativeCreateObject(int, int, int, int, byte[]) : int

+ CustomPolicy(int, int, int) Stapcandberiaion

Figure 4: Class Diagram of OBEx.

Metadata API. The metadata API appears in Figure 5. The meta-
data provides information about the protection mechanisms of a
given OBEX object. The method names are self-documenting. The
getDescription return a textual representation of the sensitive data
represented by a given OBEx. In the presence of multiple sensitive
data feeds, this method can be invoked to differentiate between
them. maxQueriesPermitted returns an OBEX object’s maximum num-
ber of queries, while lifetimeSeconds returns its time-to-expiration.
The isInvocable method can be used to determine which query meth-
ods are permitted.

"Notice that custom serialization would not reveal the protected sensitive data, as it is
managed in the native layer, which is inaccessible to serialization libraries.

MANLANG’17, Sep. 25-29, 2017, Prague, Czech Republic

public native String getDescription()

public native int maxQueriesPermitted()
public native int lifetimeSeconds()

public native boolean isInvocable(Methods enm)

W N

Figure 5: Query Interface for Metadata.

Statistical Query Methods. OBEX supports two types of statistical
queries. The first one applies to a single OBEx object, while the
second applies to a collection of OBEx objects. Figure 6 shows
the query methods that can be invoked on a single OBEx instance.
The equals and greater methods can be invoked to compare some
consumer-provided data with the invisible data. For example, an
OBEX object can contain a secret verification code. The consumer
can invoke a limited number of equals method to confirm a user. If
the number of invocations or the specified lifetime is exceeded, the
actual verification code, the sensitive data in this case, will become
inaccessible. Consumers can also learn mathematical boundaries
of the hidden data by invoking the greater method.

public native boolean <T> equal(T data)
public native boolean <T> greater(T data)

Figure 6: Query Interface for a Single OBEx Object.

For statistical calculations over multiple objects, OBEx provides
a set of statistical methods. These methods are all implemented in
the native layer. Our design assumes that all the OBEx objects trans-
ferred to the same consumer are homogeneous, containing the same
type of data. The data-intensive application in place determines
what data it is (e.g., temperature readings, GPS locations, velocity,
etc.) These generic methods return the statistical calculations as
determined by the sensitive data on which they operate.

public static native <T> T sum()

public static native <T> T average()
public static native int count()

public static native <T> T median()
public static native <T> T[] mode()
public static native <T> T stdDeviation()

N U A W

Figure 7: Query Interface for Multiple OBEx Objects.

Figure 7 shows the query methods that can be invoked on col-
lections of OBEx objects. These methods provide basic statistical
functions, including sum, average, count, median, mode, and stan-
dard deviation. Some of the functions come in multiple flavors. For
example, consumers can both calculate the average of a collection
of invisible data, and also can do so with a given value range.

An important property of these queries is that they only include
unexpired OBEx objects. The expired objects are dynamically re-
moved from the examined collection. Hence, running the same
query in sequence may produce different results. This property can
be leveraged to monitor the currently provided and still available
sensitive data, protected by OBEx objects.

Yin Liu, Zheng Song, and Eli Tilevich

4.2.2 Local Runtime. The OBEX local runtime hides the sensitive
data, enforces the data’s lifecycle, and executes query operations.
Internally, the local runtime organizes the sensitive data by means
of two hash tables, which map ids to data and metadata (Figure 8).
Data consumers interact with OBEX objects by means of their oper-
ations, which are implemented at the native layer. The operations
include initialization, cloning, metadata querying, and statistic cal-
culations. Meanwhile, the execution of these operations is governed
by the OBEX object’s access policy; this policy enforces the object’s
lifecycle. To support all cryptographic functionality in OBEX, our
implementation integrates a third-party C++ library, Crypto++ 5.
For example, this library provides the SHA-256 [19] algorithm, used
to compute a digital signature that serves as a unique id for OBEx
objects. To sum up, it is the local runtime that keeps the sensitive
data invisible, while enabling consumers to query the data, thus
preserving user privacy.

Keys Indexes Values

0

4
2 Il \‘
1 1
. 7
Hashmap 1 - //)
: ;

, ;-7 .
12 —{ obExinfo | i
4 / struct ObExInfo {
y . : J BYTE* mByteArray = NULL;
,
Hashmap 2 52 | ObExInfo |/

int mMaxQueriesPermitted = -1;
int mLifetimeSeconds = 0;

int mByteArrayLen = -1;
A

\

70 | »[ovExinio |, |
.
N

Figure 8: Data Structure of OBEx (Hash Tables).

Privacy Preservation Mechanism. Figure 9 shows how OBEX pre-
serves user privacy by hiding sensitive data, while enabling con-
sumers to leverage the data’s properties. Data producers hand over
the sensitive data that needs privacy protection by creating an
instance of an OBEx object. The sensitive data is passed as a param-
eter to the OBEX constructor, with the OBEX runtime converting
the data to a binary buffer. Consumers can then request a data feed
of OBEx objects from the producer.

In response to receiving such a request, the producer initiates
a distributed communication, through which the OBEX runtime
securely transfers the sensitive data to the requesting consumer,
passing the sensitive data to its respective OBEx local runtime. The
local runtime maintains the sensitive data at the system level, with
all queries performed by means of native JNI methods. The OBEx
Java methods are simply wrappers over these native methods.
To sum up, this process ensures that the sensitive data guarded
by OBEx remains invisible at the bytecode level. In other words,
the producer’s sensitive data cannot be accessed directly by the
consumers, thus preserving user privacy.

8Crypto++ Library 5.6.5 https://www.cryptopp.com/wiki/Main_Page

Querying Invisible Objects

Constructor %

Queries

Native Functions

|
(U

Figure 9: Privacy Preservation Mechanism.

Lifecycle Enforcement. In addition to hiding sensitive data, the
OBEx runtime enforces the data’s lifecycle. That is, the sensitive
data remains queryable only for a specified time period; after this
period has been exceeded, the data becomes inaccessible for any
future queries. To support this lifecycle enforcement policy, the
OBEX runtime implements two different schemes, depending on
whether a given OBEX object guards a single sensitive data item or
a collection of them. These schemes are realized as follows.

(1) Figure 10 shows the lifecycle enforcement process for a single
sensitive data item. First, a data consumer initiates an operation on
an OBEx object (step 1). For example, the consumer wants to check
whether the data equals some value. The runtime then checks the
object’s access policy to determine if (a) the object’s lifetime has
not passed, (b) the operation is permitted, and (c) the max number
of operations has not been exceeded (step 2). If any of these three
conditions is unmet, the runtime nullifies the sensitive data (step
3). Finally, the runtime returns the operation’s result or raises an
exception (step 4).

(2) Figure 10 also shows the lifecycle enforcement process for
multiple sensitive data items. Different from the single item case,
after receiving an invocation (e.g., average) (step 1), the runtime
checks all the OBEx objects in the collection for the conditions
(a), (b), and (c) above (step 2). Then, the objects for which these
conditions are unmet have their sensitive data nullified (step 3).
Later, the operation’s result takes into account only the sensitive
data of unexpired objects; if no objects remain accessible, a runtime
exception is raised (step 4).

4.2.3 Distributed Runtime. The OBEX distributed runtime is re-
sponsible for transmitting OBEx objects across the network, while
also maintaining their specified access policies. Figure 11 shows the
entire data transfer procedure. For the data consumers’ perspective,
the behavior of OBEx object is similar to a regular Java object. The
process has the following steps: (1) serialize the object to a binary
stream, (2) transfer it to the non-trusted parties via standard web
services over the network, (3) unserialize the binary stream and

MANLANG’17, Sep. 25-29, 2017, Prague, Czech Republic

a@ Recycle

Figure 10: OBEx Lifecycle Enforcement Process.

reconstruct the object. However, the OBEx distributed runtime is
responsible for serializing / unserializing the objects.

(1) During the serialization, the runtime converts the sensitive
data and the metadata into a binary stream. After encrypting it via
AES algorithm, it returns the result, which can be integrated with
the rest of the serialization process in the managed layer.

(2) During the unserialization, the runtime decrypts the arrived
binary stream. Then, it recalculates the sensitive data’s digital
signature, comparing it with the original object’s id, so as to verify
the integrity and correctness of the OBEx object. Next, hash tables
are set up for efficient lookups. Finally, the runtime restarts the
expiration timer, thus making the reconstructed object available
for queries.

To sum up, the distributed runtime takes charge of the construc-
tion/reconstruction, encryption/decryption, and verification for
OBEX objects. These objects can be transferred alongside regular
Java objects, while securing their sensitive data and corresponding
access policy.

Figure 11: Data Transfer Procedure.

5 DEVELOPING DATA-INTENSIVE,
PRIVACY-PRESERVING APPLICATIONS

To develop an effective application that ensures sensitive data pri-
vacy, the data producer must determine (1) how long the sensitive
data should remain queryable? (2) how many queries should it per-
mit? (3) which queries should be allowed? Obviously the answers to

MANLANG’17, Sep. 25-29, 2017, Prague, Czech Republic

these questions are application-specific. We discuss each question,
demonstrating the issues involved with a concrete example.

5.1 Time-to-Expiration

To define a reasonable lifetime value for sensitive data, a data pro-
ducer must consider: (1) whether the sensitive data should be ob-
served in real-time, and (2) for how long the access to the data
should be granted to consumers. As an example demonstrating
the first questions, consider intelligent navigation applications, in
which the GPS data should be updated in time to compute current
traffic information. In other words, only the latest data is valuable,
while the outdated data should be excluded from the statistical
calculations. Meanwhile, the frequency of real-time data arrival
can determine the lifetime as well. For example, if a health tracker
provides heartbeats every 30 seconds, the lifetime of > 90,000 mil-
liseconds would enable calculating the averages of 3 consecutive
heartbeats.

As an example demonstrating the second question, consider
sending a hidden verification code, which should expire in 30 sec-
onds; or limiting access to the license of commercial software to
one hour; or leasing a marketing dataset for 24 hours. Hence, the
actual business properties of sensitive data determine the lifetime
value that data producers should assign to the data’s OBEx object.

5.2 Max Number of Accesses

Statistical privacy provides mathematical formulee to help deter-
mine the max number of accesses that preserves user privacy [12].
However, the number of accesses can be determined via business
analysis in many cases. We further explicate this issue in section 2.

Statistical Model. Recall the motivating use case, in which a
person communicating with contacts of similar age is likely to
be a local. By knowing the average and standard deviation of a
customer’s contacts, enterprises can infer whether the customer
is likely a local or migrant. If a customer is already determined to
be a local, this fact can be leveraged to also learn the customer’s
age by continuously invoking methods greater or equal. Next, we
describe two different algorithmic approaches that a malicious data
consumer can exploit to guess a customer’s age, a data item whose
privacy we want to preserve.

(1) Binary Search. Binary search can find an integer between
0...n in log, n comparisons. Assume that a customer’s age can
range between 1 and 100, while the age’s probability distribution is
unknown in advance. By using binary search, one can guess the
age’s value in log, 100 ~ 6.6 queries. Thus, to reduce the risk of
leaking the age information to non-trusted parties, the producer
should set the maximum number of permitted greater queries to
fewer than 6.

(2) Guessing Entropy. In probability theory, the guessing process
is an “uncertain event” to developers, and the Shannon entropy [18]
can be used to determine the uncertainty of information. Christian
Cachin [1] proposed a guessing entropy for estimating the expected
number of guesses under an optimal guessing strategy. In this paper,
we apply this guessing entropy to determine the number of accesses
data providers should specify in the access policy of an OBEx object.

Yin Liu, Zheng Song, and Eli Tilevich

Let y be a probability distribution, and x be a specific event that
can be considered as the correct age in our case. Then, let X be the
random variables representing the age guessed by data consumers.
Meanwhile, X has N possible values, and the probability of X is
Px, so that the elements of Px will be p1,p2,pN-

Therefore, our case could be described based on the mathematical
notations above: the age (x) has been already stored in the OBEx
object. The developer has collected N possible age values (X;) with
probabilities p1,p2, ..., pi, ..., pN. Thus, “is X; equal to x?” will
be the equal querying process of data consumers. In addition, we
assume Py is a monotonically decreasing sequence, which is p; >
p2 = ... =2 pN—1 = pN- Then, the optimal guessing strategy is to
guess the most likely value first, following the sequence of Px. The
guessing entropy [1] is:

N
E[GX)] =) p; - (1)
i=1
The formula calculates the expected number of accesses the
developer needs to query an OBEX object to obtain the correct age
under the optimal guessing process.

An Example. An OBEX object represents the hidden age value
as an integer, whose range is 0...100. Assume the local’s age is
25, while a consumer has collected a data set including the possi-
ble age values of 30, 25, 28, 26 with the respective probabilities of
40%,30%, 20%, 10%. Based on the guessing entropy, the expected
number of equal quires is 40% - 1 +30% - 2 + 20% - 3 + 10% - 4 = 2.
Therefore, the access policy should set the number of accesses to
less than 2 to reduce the risk of leaking the sensitive age data to
non-trusted parties.

5.3 Permitted Query Methods

To systematically determine which query methods should be per-
mitted on a given OBEx object, data producers should follow the
following procedure:

(1) Inspect Statistical Significance. The semantics of sensitive data
determines which operations can be meaningfully applied to it. For
example, it would be absurd to allow clients to only compute the
sum of observed individual body temperatures or to compute the
average of GPS locations.

(2) Consider Privacy Requirements. Data producers should limit
query methods to meet the requirement of data privacy. In our use
case, allowing consumers to sum a collection of ages is harmless, but
for financial data, this query can reveal sensitive information.

(3) Exclude Composite Methods. Notice that some statistical cal-
culations can be substituted by a combination of several other
operations. For example, one can calculate the average of a collec-
tion by combining sum and count. In this case, if the former method
is inaccessible, then the latter ones should be excluded as well.

6 EVALUATION

We first evaluate various performance characteristics of the refer-
ence implementation of OBEx; we then show how OBEx defends

Querying Invisible Objects

against a deep-copy attack, intended to subvert the OBEx mecha-
nism for protecting sensitive data; finally, we report on the lessons
learned from the evaluation.

To assess the performance characteristics of OBEx, we first mea-
sure the total time it takes to create, serialize, and statistical query
OBEx objects, which encapsulate sensitive data of various sizes.
We then measure the total memory consumption at runtime to
determine the actual limit on the number of OBEx objects that can
be created without exhausting the total JVM memory.

6.1 Control Group Choice and Runtime
Environment

The OBEX object can be considered efficient if its performance is
competitive with other existing APIs provided by Java platform.
Thus, we compare the speed of initializing and serializing OBEx
objects against three Java APIs, which provide relevant functional-
ities, including SealedObject, SignedObject, and String °. We
include SealedObject and SignedObject because they also pro-
vide internal protection mechanisms that improve data privacy. We
include String, as it is the most commonly used object type with
similar features (storing a byte stream). To ensure a fair compar-
ison, we configure the SealedObject and SignedObject objects
with the same encryption algorithm (i.e., AES and SHA-256) used
by OBEx. Table 1 shows the runtime environment we used for all
experiments.

Table 1: Runtime Environment.

oS ubuntu 16.04 LTS, 64-bit

Memory 11.5 GiB

Processor Intel Core i5-3210M CPU @ 2.50GHz * 4
JDK OpenJDK 1.8.0_131

JVM OpenJDK 64-Bit Server VM

(build 25.131-b11, mixed mode)

6.2 Performance

We compare the respective performance of our subjects in terms of
the total runtime and memory consumption. The time consumed by
initialization, serialization / unserialization and statistical queries is
measured by means of System.currentTimeMillis. A Java instrumen-
tation package, running an agent monitoring the memory status at
runtime, is used to measure memory consumption.

To determine how the size of sensitive data affects performance,
we evaluate a data series of different sizes, ranging from 10 bytes to
1 megabytes. Furthermore, to increase the evaluation’s reliability,
we repeat each measurement for 1,000 times and average the results.

6.2.1 Time consumption.

Instantiation. Instantiation comprises memory allocation, de-
fault value initialization, shared library setup, etc. OBEx invokes a
native function to initialize OBEx objects, which allocates variables
and data structures, generates the metadata (e.g., current time),

°Java Platform, Standard Edition 7 API Specification
https://docs.oracle.com/javase/7/docs/api/

MANLANG’17, Sep. 25-29, 2017, Prague, Czech Republic

calculates the unique object ID, passing it to a field in the managed
layer. To measure the time consumed, we record the time before
and after creating the object, with Figure 12 showing the results.

As expected, the time consumed increases as sensitive data grows
in size. In contrast to the control group, which experiences a sharp
spike in execution time as the data reaches 1 megabyte in size, OBEx
maintains the average execution time of (11.913ms). Although
OBEXx takes longer to initialize for small objects than String and
SealedObject, it maintains stable performance characteristics ir-
respective of the sensitive data’s size.

80 T T T T T T

ObEx
70 | sealedObject === i
signedObject

String

60 B

50 - B

duration (ms)
B
o
T
L

30 b
20 E

oﬁwwriﬂ

% <
@, 1
2o Z3
sensitive data size

Figure 12: Performance of Instantiation.

Serialization / Unserialization. OBEx objects are serialized/unse-
rialized when transferred across the network. Normally, an object
can be serialized to a binary stream and sent to another device or
server. When it arrives to the destination, it is unserialized and
reconstructed to an isomorphic object, with the same data fields.
When transferring OBEx objects across the network, the runtime
first gathers the relevant sensitive data and metadata, and then en-
crypts and combines them into a byte array as part of serialization.
Unserialization reverses the process.

Figure 13 shows the total time consumed by the serialization
process. Due to the time taken by assembling and encrypting
data, the objects in the control group outperform the OBEx objects.
However, for String objects, as the contained data increases in
size, the time consumed grows rapidly. When the data size reaches
1 megabyte, OBEx (31.32ms) surpasses String (49.341ms).

Meanwhile, Figure 14 depicts the time consumed by the un-
serialization process. OBEx outperform both SealedObject and
SignedObject for small data sizes (from 1B to 10KB). For 1MB,
OBEx (16.239ms) only outperforms String (26.23ms).

As part of their serialization/unserialization OBEx objects go
through expensive operations, such as encryption/decryption, con-
struction/reconstruction, digital signature generation, and verifica-
tion, thus losing out to the control group, for which these processes
are not as involved. OBEx still outperforms String. Thus, one can
conclude that OBEx shows satisfying performance characteristics
as compared to the control group.

MANLANG’17, Sep. 25-29, 2017, Prague, Czech Republic

50

ObEx s
sealedObject ===
signedObject

String

4

o

30 E

duration (ms)

20 E

10 E

% % < % Y% <,
% % T % 00429 %
sensitive data size

Figure 13: Performance of Serialization.

30

ObEx —]
25 | sealedObject ==

signedObject
String

15 E

duration (ms)

10 B

0 — = = s ﬂ»

% % < 2 % 2
% % T % 00429 %

sensitive data size

Figure 14: Performance of Unserialization.

6.2.2 Statistical Queries. Here we measure the total time taken
by the statistical calculations a data consumer may want to perform
on the ages of a phone user’s contacts, including average, count,
median, mode, and standard deviation. We first randomly generate
age numbers to create a collection of OBExX objects. We then record
the time taken to perform each statistical method. Table 2 shows
that the time increases linearly with the growth of the number of
OBEX objects. Notice that the OBEx runtime first checks if an object
may have expired before including its data into a given statistical
calculation, thus incurring additional processing time. As future
work, we plan to investigate how to parallelize the processing of
large collections.

Yin Liu, Zheng Song, and Eli Tilevich

Table 2: Time Consumption of Statistical Queries.

Num Avg Count Median Mode Std.

10 ~Oms = Oms ~ 0ms Ims = Oms
100 4ms 5ms 4ms 5ms 4ms
1000 543ms 551ms 553ms 554ms 546ms

6.3 Memory Consumption

For data-intensive applications, it is important to ensure that OBEx
is memory efficient. Therefore, we first compare the memory con-
sumed by OBEx and the control group, containing data items rang-
ing between 10 bytes and 1 megabytes in size. We investigate the
upper limit on the number of OBEX objects that can be created in a
single, default configuration JVM.

Runtime allocation. To measure memory consumption, we exe-
cute an agent JAR file containing an implementation of premain-class.
By invoking javaAlang.instrumentgetAgetObjectSizelo, we can accu-
rately estimate the runtime memory allocated for each object. How-
ever, this method can only measure the amount of memory con-
sumed by the specified object. In other words, the fields inherited
from superclasses or the actual size of instances in a reference array
will be omitted. To address this problem, we sum all object fields
by recursively traversing them through Java reflection.

Since OBExX objects run in both the managed and native layers,
we measure the memory consumed in both of them. In the man-
aged (i.e., bytecode) layer, the memory allocated for OBEX is fixed
to 96 bytes in all different cases of sensitive data sizes (Table 3).
The reason is that only the mID and several interfaces of wrapper
method are stored in the managed layer. In the native layer, OBEx
objects consume the amount of memory proportional to the size of
the sensitive data they contain. Besides, OBEx objects have meta-
data attached to them, containing their lifecycle policy, including
creation time, the number of accesses, and data type. We sum the
memory consumed by all these data items and compare the result
with the control group (Table 4).

Table 3 shows that the memory consumed by the OBEx objects
is almost the same as that of SealedObject and SignedObject,
which are proportional to the size of the sensitive data they en-
capsulate. String objects allocate two times as much memory as
the other subjects for the 1MB data size. These results indicate
that OBEx never consumes excessive volumes of memory. More
importantly, the OBEX runtime manages the memory allocated for
OBEX objects explicitly rather than relying on garbage collection
as the control group does.

Memory Limitation of OBEx Objects. As compared with Java ob-
jects, OBEx objects keep the majority of data in the native layer. In
other words, if someone continuously creates an OBEx object with
infinite expiration time, the runtime memory will be exhausted.
In general, this limitation highly depends on the size of physical
memory. We can observe this phenomenon by creating an OBEx
object with 1 megabytes sensitive data in an infinite loop, setting
the expiration policy to infinity. Table 5 shows the percentage of

0package javalang.instrument
http://docs.oracle.com/javase/7/docs/api/java/lang/instrument/Instrumentation.html

Querying Invisible Objects

Table 3: Memory Allocation of OBEx.

Data Size Runtime Layer Managed Layer
10B 94 B 96 B

100 B 184 B 9 B
1KB 1108 B 9% B

10 KB 10324 B 96 B
100 KB 102484 B 9 B

1 MB 1048660 B 96 B

Table 4: Memory Allocation of OBEx and Control Group.

Data Size ObEx SealedObject SignedObject String
10B 190 B 120 B 272 B 40 B

100 B 280 B 200 B 360 B 216 B

1 KB 1204 B 1128 B 1288 B 1960 B

10 KB 10420 B 10344 B 10504 B 19616 B
100 KB 102580 B 102504 B 102664 B 196664 B
1MB 1048756 B 1048680 B 1048840 B 2014080 B

runtime memory consumed by continuously creating OBEX objects.
After the number increased near to 10,000, the test environment
hangs without responding. This result shows that the maximum
possible number of OBEx objects depends on the size of the avail-
able physical memory. Our runtime environment, with 11.5 GiB
physical memory, can support up to 10,000 objects, each containing
1 megabyte of sensitive data.

Table 5: Memory Limitation of ObEx Objects.

Data Size Number of Objects %MEM
1 MB 2000 17.6
1 MB 4000 34.7
1 MB 6000 51.7
1 MB 8000 68.0
1 MB ~10000 N/A

6.4 Object-Level Privacy Threats and Defense

OOP prescribes that objects should encapsulate both data and be-
havior. Hence, object-level privacy threats try to maliciously gain
access to the data by invoking private methods or deep copying the
entire object. Attackers can use Java reflection API to perpetrate
the first two operations, and can deep-copy objects by serializing
them to a memory buffer and reading them back.

OBEX objects are not vulnerable to the reflective access vul-
nerability, as they keep no sensitive data at the bytecode level.
Deep-copying, on the other hand, can create copies that can be
forwarded to multiple sites, multiplying the specified access privi-
leges. In this experiment, we emulate this copying attack to check
if the OBEx design can defend against it. Figure 15 show how when
deep-copying an OBEX object, only the managed layer’s content
is duplicated, while the sensitive data in the native layer is not. In

MANLANG’17, Sep. 25-29, 2017, Prague, Czech Republic

other words, the copies alias the same sensitive data. The presence
of aliases has no effect on the sensitive data’s lifecycle.

— >] 101

on| —
—

Figure 15: Process of Deep-Copying OBEx Object.

6.5 Lessons Learned

Despite the privacy-preservation benefits of OBEx demonstrated
above, to fully realize its potential, we argue that it should be
supported natively by the JVM. This native support would help (1)
complicate privilege escalation and library substitution attacks, (2)
integrate the OBEX life cycle management with garbage collection,
and (3) avoid the dependence on third-party security libraries. We
next explain these expected benefits.

6.5.1 Complicating Privilege Escalation and Library Substitution
Attacks. Because the OBEx local runtime is a shared library loaded
by the JVM, privilege escalation (e.g., root account in Linux) can
directly access the sensitive data in memory. In addition, an attack
can replace the OBEX runtime with a malicious version at load time.

Integrating with the JVM can increase the integrity of the OBEx
privacy-protection mechanism, as the JVM security mechanism
makes it a hard target for attackers'! 12. Although the highest priv-
ilege attacks still get unrestricted access to the system, the success
rate of such attacks is rare for properly administered systems.

6.5.2 Integrating with JVM Garbage Collection. After the OBEx
runtime clears sensitive data, the memory allocated for its OBEx
object should become reclaimable immediately. However, to be able
to mark OBEx objects as available for garbage collection requires
JVM integration.

6.5.3 Avoiding Dependencies on Third-Party Security Libraries.
Despite the existence of the JDK package javax.crypto.x 13, the
OBEX runtime relies on a third-party C++ library (Crypto++), as
all sensitive data operations are performed in the native library.
Integrating with the JVM would allow using its built-in crypto
libraries.

To facilitate the proposed integration, we have started incorpo-
rating OBEX into the Open]JDK HotSpot VM. We have already added
the programming interface. We are still working on integrating our
native library. Appendix provides details of this integration effort.

HTVM Specification http://docs.oracle.com/javase/specs/jvms/se7/html/index.html
12gecure Computing with Java: Now and the Future
http://www.oracle.com/technetwork/java/javaone97-whitepaper-142531.html
Bjavax.crypto*
https://docs.oracle.com/javase/7/docs/api/javax/crypto/package-summary.html

MANLANG’17, Sep. 25-29, 2017, Prague, Czech Republic

7 RELATED WORK

OBEXx is related to several research area, including differential pri-
vacy, authentication, access control schemes, self-destruction mech-
anisms, and the internal protection in programming languages.

7.1 Data Privacy

Data privacy research divides between mathematical approaches
and software engineering solutions. In mathematics, Dwork et al.
[2] were first to put forward differential privacy, a mathematical
solution that prevents attackers from maliciously discovering an
individual’s private information. As a protection mechanism, one
can obfuscate the original dataset by generating random noise,
while applying the mathematical frameworks of differential privacy
to calibrate and measure the impact of the added noise on the
statistical operations over the dataset [3]. Zhang et al. [27] proposed
how an imperative language can be applied to facilitate the process
of verifying differential privacy algorithms.

In software engineering, Gaboardi et al. [8] provided an informa-
tion sharing interface that enables users, without any differential
privacy background, to conveniently generate privacy-preserving
datasets that support statistical queries. Meanwhile, Liu et al. [15]
presented a programming framework, Oblivin, a domain specific
language that enables programmers to create cryptographic pro-
grams by using a custom compiler that generates code for secure
computation. In addition, Kosba et al. [13] developed “Hawk”, a
blockchain-based contract system that compiles non-secure “Hawk”
programs to those that guarantee the privacy of transactions by em-
ploying cryptography. Furthermore, Miller et al. [16] developed a
tool that can generate secure protocols, enabling clients to security
communicate with a non-trusted server.

7.2 Authentication and Access Control

Holford et al. [11] presented a self-defending object (SDO) that can
authenticate users while invoking a method. An authentication
token is passed as a parameter to the objectfis public methods to
be able to examine whether the caller is permitted to invoke a
given method. Meanwhile, Venelle et al. [20] provided a Mandatory
Access Control (MAC) model for JVM that limits which methods
can be invoked and which fields can be accessed. Furthermore,
several related works study the Android permission system [5, 6],
which can be circumvented to grant illicit access to resources[4],
while aiming at improving its effectiveness [21], and identifying
the data privacy risks [14, 17].

7.3 Self-Destruction

Geambasu et al.[9] developed a self-destruction system called Van-
ish, which periodically destroys expired access keys, so as to pre-
vent all further access to the encrypted information. Based on a
similar concept, Xiong et al. [23] proposed an ABE-based secure
document self-destruction (ADS) scheme for the sensitive docu-
ments in the cloud. Meanwhile, Yue et al. [25] created a similar
self-destruction scheme called SSDD for electronic data. However,
Wolchok et al. [22] pointed out that attackers can compromise the
Vanish approach by continuously crawling the storage to gain the
keys. Although Zeng et al. [26] improved the Vanish approach to
avoid the sniffer attacks, their approach was still confined to an

Yin Liu, Zheng Song, and Eli Tilevich

external security framework rather than being integrated with a
programming language runtime system.

7.4 Language Protection Mechanisms

The Java standard API provides an internal protection mechanism
for sensitive data via the SignedObject and the SealedObject
mechanisms. The SignedObject stores a signature, thus protecting
its serializable representation. Without the valid digital signature,
the protected object cannot be extracted. The SealedObject, on
the other hand, encrypts the original object, encapsulating the
result with a cryptographic cipher. However, once the original
object has been recovered, the sensitive data is no longer protected.
Meanwhile, since the implementation of these mechanisms is solely
in the Java layer, a native library could be used to intercept and
compromise the security mechanisms provided by these objects.

As compared with these works, OBEx relies neither on compiler
nor on encryption. The runtime reliably destroys the sensitive data,
as prescribed by a declarative access policy. The policies specify
the lifetime of sensitive data, the types of queries allowed, and the
number of queries permitted. In the meantime, OBEx manages
sensitive data entirely in the runtime system layer, thus rendering
the data invisible. Hence, OBEx is able to improve data privacy in all
managed execution environments, with IoT and mobile applications
being particularly promising as an application area.

8 CONCLUSIONS AND FUTURE WORK

The advent of mobile, wearable, and IoT devices has generated a
deluge of data, much of which has some privacy restrictions. There
is an inherent conflict between the end users contributing this data
and commercial enterprises. The end users want to keep their sen-
sitive data private, while the enterprise would like to use this data
to provide intelligent, context-sensitive services and applications.

In this paper, we argue that innovations in programming tech-
nology can help reconcile these two conflicting agendas: sensitive
data can be kept private, while enterprises can still derive valuable
business intelligence from the data. We show how we designed, im-
plemented, and evaluated OBEx, a novel programming abstraction
that keeps sensitive user data invisible, while controlling its lifecyle
and querying policy. The OBEx provides programming interfaces
to perform statistical computations, so as to enable developers to
build intelligent mobile and IoT applications.

We have discussed realistic scenarios and use cases that apply
OBEX to preserve data privacy. We have discussed the OBEx design,
implementation, and programming model. Our evaluation also
shows that OBEx exhibits satisfying performance characteristics.
To maximize the positive impact, we advocate that the support of
OBEX objects be incorporated into the Java Virtual Machine and
exposed via a standard APL To that end, we have motivated why
OBEx should be integrated with Java Virtual Machine, as well as
discussed (in Appendix) how the OBEx programming APIs can be
incorporated into OpenJDK HotSpot VM.

To fully realize the promise of OBEX, we plan to investigate the
following questions: (1) To what extent can OBEx reduce the data
leakage and privacy attacks? (2) How can we apply OBEx to specific
domains? (3) How can we efficiently manage memory and perform
the statistical calculations for a large number of OBEx objects?

Querying Invisible Objects

REFERENCES

(1]

(]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[24]

[25]

Christian Cachin. 1997. Entropy measures and unconditional security in cryptog-
raphy. Ph.D. Dissertation. Swiss Federal Institute of Technology in Zurich.
Cynthia Dwork. 2008. Differential privacy: A survey of results. In International
Conference on Theory and Applications of Models of Computation. Springer, 1-19.
Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Cali-
brating noise to sensitivity in private data analysis. In Theory of Cryptography
Conference. Springer, 265-284.

Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner.
2011. Android permissions demystified. In Proceedings of the 18th ACM conference
on Computer and communications security. ACM, 627-638.

Adrienne Porter Felt, Kate Greenwood, and David Wagner. 2011. The effective-
ness of application permissions. In Proceedings of the 2nd USENIX conference on
Web application development. 7-7.

Adrienne Porter Felt, Elizabeth Ha, Serge Egelman, Ariel Haney, Erika Chin, and
David Wagner. 2012. Android permissions: User attention, comprehension, and
behavior. In Proceedings of the Eighth SOUPS. ACM, 3.

Ira R Forman and Nate Forman. 2004. Java Reflection in Action (In Action series).
(2004).

Marco Gaboardi, James Honaker, Gary King, Kobbi Nissim, Jonathan Ullman,
Salil Vadhan, and Jack Murtagh. 2016. PSI (): a Private data Sharing Interface. In
Theory and Practice of Differential Privacy. New York, NY. https://arxiv.org/abs/
1609.04340

Roxana Geambasu, Tadayoshi Kohno, Amit A Levy, and Henry M Levy. 2009.
Vanish: Increasing Data Privacy with Self-Destructing Data.. In USENIX Security
Symposium. 299-316.

Li Gong and Gary Ellison. 2003. Inside Java (TM) 2 Platform Security: Architecture,
API Design, and Implementation. Pearson Education.

John W Holford, William J Caelli, and Anthony W Rhodes. 2004. Using self-
defending objects to develop security aware applications in Javaffl. In Proceedings
of the 27th Australasian conference on Computer science-Volume 26. Australian
Computer Society, Inc., 341-349.

Daniel Kifer and Bing-Rong Lin. 2012. An axiomatic view of statistical privacy
and utility. Journal of Privacy and Confidentiality 4, 1 (2012), 2.

Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papaman-
thou. 2016. Hawk: The blockchain model of cryptography and privacy-preserving
smart contracts. In Security and Privacy (SP), 2016 IEEE Symposium on. IEEE,
839-858.

Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, Yves Le Traon,
Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien Octeau, and Patrick
McDaniel. 2015. Iccta: Detecting inter-component privacy leaks in android apps.
In Proceedings of the 37th International Conference on Software Engineering-Volume
1. IEEE Press, 280-291.

Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan Huang, and Elaine Shi. 2015.
Oblivm: A programming framework for secure computation. In Security and
Privacy (SP), 2015 IEEE Symposium on. IEEE, 359-376.

Andrew Miller, Michael Hicks, Jonathan Katz, and Elaine Shi. 2014. Authenticated
data structures, generically. In ACM SIGPLAN Notices, Vol. 49. ACM, 411-423.
Majda Moussa, Massimiliano Di Penta, Giuliano Antoniol, and Giovanni Bel-
trame. 2017. ACCUSE: helping users to minimize Android app privacy concerns.
In Proceedings of the 4th International Conference on Mobile Software Engineering
and Systems. IEEE Press, 144-148.

Claude Elwood Shannon. 2001. A mathematical theory of communication. ACM
SIGMOBILE Mobile Computing and Communications Review 5, 1 (2001), 3-55.
Secure Hash Standard. 2002. FIPS PUB 180-2. National Institute of Standards and
Technology (2002).

Benjamin Venelle, Jérémy Briffaut, Laurent Clévy, and Christian Toinard. 2013.
Security enhanced java: Mandatory access control for the java virtual machine.
In Object/Component/Service-Oriented Real-Time Distributed Computing (ISORC),
2013 IEEE 16th International Symposium on. IEEE, 1-7.

Yifei Wang, Srinivas Hariharan, Chenxi Zhao, Jiaming Liu, and Wenliang Du.
2014. Compac: Enforce component-level access control in Android. In Proceedings
of the 4th ACM Conference on Data and Application Security and Privacy. ACM,
25-36.

Scott Wolchok, Owen S Hofmann, Nadia Heninger, Edward W Felten, J Alex
Halderman, Christopher J Rossbach, Brent Waters, and Emmett Witchel. 2010.
Defeating Vanish with Low-Cost Sybil Attacks Against Large DHTs.. In NDSS.
Jinbo Xiong, Zhiqiang Yao, Jianfeng Ma, Ximeng Liu, and Qi Li. 2013. A secure
document self-destruction scheme: an ABE approach. In High Performance Com-
puting and Communications & 2013 IEEE International Conference on Embedded
and Ubiquitous Computing (HPCC_EUC), 2013 IEEE 10th International Conference
on. IEEE, 59-64.

Yang Yang, Chenhao Tan, Zongtao Liu, Fei Wu, and Yueting Zhuang. 2017. Urban
Dreams of Migrants: A Case Study of Migrant Integration in Shanghai. arXiv
preprint arXiv:1706.00682 (2017).

Fengshun Yue, Guojun Wang, and Qin Liu. 2010. A secure self-destructing
scheme for electronic data. In Embedded and Ubiquitous Computing (EUC), 2010

MANLANG’17, Sep. 25-29, 2017, Prague, Czech Republic

IEEE/IFIP 8th International Conference on. IEEE, 651-658.

[26] Lingfang Zeng, Zhan Shi, Shengjie Xu, and Dan Feng. 2010. Safevanish: An
improved data self-destruction for protecting data privacy. In Cloud Computing
Technology and Science (CloudCom), 2010 IEEE Second International Conference
on. IEEE, 521-528.

[27] Danfeng Zhang and Daniel Kifer. 2017. LightDP: Towards automating differential
privacy proofs. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles
of Programming Languages. ACM, 888-901.

Appendices

A INTEGRATING THE OBEX
PROGRAMMING INTERFACE INTO
OPENJDK HOTSPOT VM

(L) Download OpenJDK source code
(1.) Build OpenJDK
(II.) Integrate OBEx Programming Interface

Steps:
(1)

@)
(3)

14Folder:
5Folder:
16Folder:
7Folder:

Put OBEX programming interface (.java file) into the classess
folder 4.
Build the source code for generating header files that are
needed for native functions 1°.
Match native functions with the header file (may need to
modify the original native code).
Add the native functions to the mapfile-vers file 1.
Rebuild the OpenJDK.
Test
e Use the java,javac command built by step (5
o Create tests which use new API and its native func-
tions.
e Compile and run the tests.

)17.

../jdk8u/jdk/src/share/classes/java/security
../jdk8u/build/linux-x86_64-normal-server-release/jdk/gensrc_headers
../jdk8u/jdk/make/mapfiles/libjava
../jdk8u/build/linux-x86_64-normal-server-release/images/j2sdk-image/bin

https://arxiv.org/abs/1609.04340
https://arxiv.org/abs/1609.04340

	Abstract
	1 Introduction
	2 Usage Scenario and Use Case
	2.1 Typical Usage Scenario
	2.2 Use Case

	3 Background
	3.1 Risks to Data Privacy
	3.2 Exploits of Java Objects

	4 Design and Implementation
	4.1 Design Overview
	4.2 System Architecture

	5 Developing Data-Intensive, Privacy-Preserving Applications
	5.1 Time-to-Expiration
	5.2 Max Number of Accesses
	5.3 Permitted Query Methods

	6 Evaluation
	6.1 Control Group Choice and Runtime Environment
	6.2 Performance
	6.3 Memory Consumption
	6.4 Object-Level Privacy Threats and Defense
	6.5 Lessons Learned

	7 Related work
	7.1 Data Privacy
	7.2 Authentication and Access Control
	7.3 Self-Destruction
	7.4 Language Protection Mechanisms

	8 Conclusions and Future work
	References
	Appendices
	A Integrating the ObEx programming interface into OpenJDK HotSpot VM

