
TAE-JS: Automated Enhancement of JavaScript Programs
by Leveraging the Java Annotations Infrastructure

Myoungkyu Song and Eli Tilevich
Dept. of Computer Science

Virginia Tech
Blacksburg, VA 24060, USA

{mksong, tilevich}@cs.vt.edu

Abstract
Recent state-of-the-art approaches enhance JavaScript programs
with concerns (e.g., persistence, security, transactions, etc.) by
modifying the source code by hand to use special libraries. As
a result, adding concerns to a JavaScript program creates diver-
gent codebases that must be maintained separately. At the core
of the problem is that JavaScript lacks metadata to express con-
cerns declaratively. In this paper, we present a declarative approach
to enhancing JavaScript programs that applies the Java annota-
tions infrastructure to JavaScript, without extending the JavaScript
language. An IDE combines JavaScript and Java during the de-
velopment, but processes the languages separately. Programmers
declare how concerns should be added to a JavaScript program us-
ing Java annotations. Based on the annotations, a code generator
synthesizes aspect code that adds the specified concerns. Although
these enhancements are implemented as third-party libraries, our
approach can transparently insert them into JavaScript programs
given a declarative specification.

Categories and Subject Descriptors D.2.3 [Coding Tools and
Technologies]: Program Editors

General Terms Languages, Design, Experimentation

Keywords enhancement, concerns, metadata, persistence, secu-
rity, transactions

1. Introduction
As Web applications now constitute an integral part of the modern
computing infrastructure, the JavaScript language has become in-
creasingly prominent. Although JavaScript was originally designed
as a language for writing short, simple scripts for interactive Web
pages, these days JavaScript programs keep growing in size and
complexity. They often constitute multiple software modules mak-
ing heavy use of standard libraries and frameworks. As JavaScript
development is becoming increasing complex, following proven
software engineering principles can substantially facilitate the pro-
cess of engineering Web applications.

[Copyright notice will appear here once ’preprint’ option is removed.]

A well-known software engineering principle is separation of
concerns that codifies how different facets of an application should
be expressed separately to ease software comprehension and main-
tenance. If each concern’s implementation is modularized, pro-
grammers can change concerns in isolation without perturbing the
rest of the program. Recent state-of-the-art approaches add various
(mostly non-functional) concerns to JavaScript programs by pro-
viding libraries and frameworks that enhance JavaScript programs
with persistence [6], security [26], and transactions [9].

A major drawback of these approaches is that they require mod-
ifying the original JavaScript source code by hand, creating pro-
gram versions that must be maintained separately. Increasing the
maintenance burden is detrimental for any software; however, it is
particularly harmful for JavaScript programs, executed on a vari-
ety of client platforms in different execution environments. It is the
execution environment that often determines whether a JavaScript
program should be enhanced with a given concern. For example,
a security enhancement may be needed in security sensitive exe-
cution environments, but would be unnecessary in other environ-
ments. Thus, there is great potential benefit in enhancing JavaScript
programs transparently, on demand, without manual changes to the
maintained version of the source code.

In the domain of enterprise computing, this problem has well-
accepted solutions. For example, in an enterprise Java application
[18], programmers can add various concerns by means of declar-
ative annotations. A programmer can annotate some Java fields
as persistent (e.g., using the JPA [8] annotations), and a transpar-
ent persistence framework (e.g., Hibernate [2]) would render these
fields persistent. Java frameworks perform all the necessary pro-
gram transformations either as a static preprocessing step, at class
load time, or at runtime by means of reflection. Although JavaScript
has powerful reflective capabilities and the ability to change run-
ning programs through “monkey patching,” declarative enhance-
ment has not yet been explored in the JavaScript space. A key im-
pediment is that JavaScript lacks built-in metadata that can be used
to tag program constructs.

This paper presents TAE-JS (Transparent Automated Enhancement
for JavaScript), an approach to enhancing JavaScript programs
declaratively. A key novelty of TAE-JS is that it enables a host pro-
gramming language to use the metadata infrastructure of another
language, without modifying the host language. TAE-JS accom-
plishes this by means of an IDE plug-in. The multi-lingual devel-
opment model1 of TAE-JS flexibly mixes languages during the de-
velopment, but then processes them separately. As a result, the host
language receives all the benefits of another language’s metadata

1 Our approach was inspired by prior work on multi-lingual editing envi-
ronments (e.g., [1]).

Accepted to PPPJ 2013 1 2013/6/28

infrastructure, which includes type checking and processing APIs.
The host language’s syntax remains intact, so that the approach is
applicable even to legacy code.

This paper describes the design, implementation, and evaluation
of TAE-JS and makes the following main contributions:

• An approach for using the metadata infrastructure of another
language in a host language, without extending the host lan-
guage’s syntax.
• An approach to transparently enhancing JavaScript programs

by means of generative aspects.
• Three concrete realizations of the TAE-JS approach, each fea-

turing an annotation library and a processing plug-in, that en-
hance JavaScript programs with persistence, security, and trans-
actions.

The rest of this paper is structured as follows. Section 2 mo-
tivates this work with an example. Section 3 discusses the design
and implementation of TAE-JS. Section 4 presents the results of
three case studies we have conducted to evaluate TAE-JS. Section
5 discusses the advantages and limitations of our approach. Sec-
tion 6 compares TAE-JS with the related state of the art. Section 7
outlines future work directions and conclusions.

2. Motivating Example
Consider a code snippet in Figure 1 that handles user login. The
entered id and password are checked at the server, with only three
unsuccessful login attempts allowed. The JavaScript module con-
taining this snippet can be used in multiple Web applications.

The number of unsuccessful attempts is stored in the variable
failedCheck. Because this variable is transient, a user having
failed to enter the correct password for three times, can immedi-
ately restart the browser and continue to login. Although bypassing
this constraint may be acceptable for some Web applications, one
may want to prevent it from happening in high assurance domains,
such as financial applications. To that end, the programmer can
make the failedCheck variable persistent across sessions, with
the persistent store being refreshed after a given timeout2.

The functionality described above can be implemented by us-
ing a transparent persistence library. For example, Cannon and
Wohlstadter [6] describe a persistence library for JavaScript pro-
grams. Figure 2 shows how the original code snippet can be en-
hanced with persistence. The variable failedCheck is retrieved
from a storage, whose implementation is provided by a third-party
library. By using the get/setItem library functions, the variable’s
state is rendered persistent.

As another enhancement, the code may need to encrypt the pass-
word before it is transferred to the server. This enhancement can be
provided by a security library that features encryption/decryption
facilities. For example, Stark, Hamburg, and Boneh [26] describe
an encryption library for JavaScript programs. Figure 3 shows how
the original code snippet can be enhanced with security by encrypt-
ing the pd variable.

Finally, the original code snippet may need to be enhanced with
both persistence and security. The resulting code appears in Figure
4. The code there uses both the persistence and security libraries.

The remarkable observation about this example is that applying
only two concerns (persistence and security) to this code snippet
created four different versions of the code that now need to be main-
tained separately. In fact, the number of code versions to maintain
can be calculated by this formula: 2k, where k is the total num-
ber of concerns. One can see that modifying source code by hand

2 If the failedCheck variable remains persistent forever, a user having
entered an incorrect password three times will never be able to login again.

1 function checkCredentials() {
2 var failedCheck = 0;
3 while (failedCheck < 3) {
4 enterLoginInfo();
5 var id = document.getElementById(’id’);
6 var pd = document.getElementById(’password’);
7 if (serverCheck(id, pd))
8 break;
9 ++failedCheck;

10 }}

Figure 1. Core business logic.

1 function checkCredentials() {
2 var failedCheck = 0;
3 failedCheck = storage.getItem(’key failedCheck’);
4 while (failedCheck < 3) {
5 enterLoginInfo();
6 var id = document.getElementById(’id’);
7 var pd = document.getElementById(’password’);
8 if (! serverCheck(id, pd))
9 break;

10 failedCheck = storage.getItem(’key failedCheck’);
11 ++failedCheck;
12 storage.setItem(’key failedCheck’, failedCheck);
13 }}

Figure 2. Code (green) in Figure 1 enhanced with transparent
persistence.

1 function checkCredentials() {
2 var failedCheck = 0;
3 while (failedCheck < 3) {
4 enterLoginInfo();
5 var id = document.getElementById(’id’);
6 var pd = document.getElementById(’password’);
7 if (! serverCheck(id, encrypt(pd)))
8 break;
9 ++failedCheck;

10 }}

Figure 3. Code (red) in Figure 1 enhanced with security.

1 function checkCredentials() {
2 var failedCheck = 0;
3 failedCheck = storage.getItem(’key failedCheck’);
4 while (failedCheck < 3) {
5 enterLoginInfo();
6 var id = document.getElementById(’id’);
7 var pd = document.getElementById(’password’);
8 if (! serverCheck(id, encrypt(pd)))
9 break;

10 failedCheck = storage.getItem(’key failedCheck’);
11 ++failedCheck;
12 storage.setItem(’key failedCheck’, failedCheck);
13 }}

Figure 4. Code (red and green) in Figure 1 enhanced with security
and persistence.

to enhance it with additional concerns leads to the combinatorial
explosion in the number of different code versions to maintain.

3. Design and Implementation
In this section, we describe TAE-JS, Transparent Automated
Enhancement for JavaScript, our approach to enhancing JavaScript
programs that solves the problems outlined above. First, we de-
scribe the design alternatives we have considered; then we describe
our design and implementation; finally, we revisit the motivating
example to show how our approach can enhance programs while
cleanly separating concerns.

Accepted to PPPJ 2013 2 2013/6/28

IDE Editor & PlugIn

JavaScript
Source

Java
Annotations

Java Compiler

Java
Classes

Annotation
Processing Tool

Aspect
Script AspectScript

Preprocessor

Enhanced
JavaScript

Source

Figure 5. Enhancing JavaScript Programs Transparently: Control Flow Diagram.

3.1 Design Considerations
The problems described in our motivating example stem from a
poor separation of concerns. That is, the logic for persistence and
security concerns is entangled with that of the core business func-
tionality. This problem has been studied extensively by the aspect-
oriented programming community. In the JavaScript space, an as-
pect extension, AspectScript [33], has been created. JavaScript pro-
grammers can write AspectScript code that would enhance the
base JavaScript code with additional concerns. However, that code
would have to be written and maintained by hand. As a result, as-
pect code would have to be manually updated whenever the origi-
nal code changes (e.g., a persistent variable’s name changes) or the
concerns are to be added differently (e.g., another variable needs to
be encrypted).

In enterprise computing, a widely used approach that effectively
separates concerns is declarative programming using metadata. For
example, in Java, concerns, such as persistence and security, are ex-
pressed through metadata annotations and then implemented using
enterprise frameworks (e.g., Hibernate, JDO, JBoss Security, etc.).
To derive the benefits of declarative programming, JavaScript needs
a means to configure frameworks, and built-in metadata can signif-
icantly simplify the expression of concerns. Unfortunately, extend-
ing the JavaScript syntax with metadata is likely to turn even more
difficult that it was for Java, which is owned by a single company.
In the case of JavaScript, all its divergent stakeholders would have
to come to a consensus.

The practice of using external metadata, such as XML config-
uration files, has been going away in enterprise computing, with
enterprise metadata nowadays expressed almost entirely by means
of built-in metadata, such as Java annotations or C# attributes.

The solution presented here avails the benefits of built-in meta-
data to JavaScript without extending the language’s syntax. In par-
ticular, TAE-JS brings the full expressiveness, type-checking, and
ease-of-processing advantages of Java annotations to JavaScript
programs. Furthermore, generative aspects automatically transform
JavaScript code, thereby enhancing it with the specified concerns.

3.2 Architecture and Design
Figure 5 outlines the control flows of the TAE-JS approach. At
the core of the approach is a specially equipped IDE. The TAE-JS
IDE plug-in makes it possible to add Java annotations to JavaScript
code, without modifying the latter. The JavaScript programmer
selects the text of a program construct to be tagged with metadata
(Figure 6). In response, the plug-in displays a Java annotations
editor (Figure 7) that accepts only Java annotations, which are
syntax and type checked by the Java compiler as they are being
typed. The editor is configured not to save any syntactically invalid
Java annotations.

Internally, the entered Java annotations are handled separately
from the JavaScript code, even though their consistency with

@Persist(key = "key_failedCheck", value = "failedCheck")

Figure 6. Annotation-aware IDE.

Figure 7. Annotation editor: annotating failedCheck.

JavaScript is maintained by the IDE. The Java Annotation Pro-
cessing Tool (APT) infrastructure is then used to processes the
annotations. The APT—a part of the JDK—was created as a set
of convenient APIs and a plug-in architecture that simplify the
engineering of annotation processing applications in Java. TAE-
JS leverages the APT to generate AspectScript code. As the final
step, the AspectScript automatic preprocessor enhances the original
JavaScript with the specified concerns. This automatically prepro-
cessed code can then be included in Web applications.

The TAE-JS development model cleanly separates the roles of
concern and application developers, as one can see in Figure 8.
Concern developers create special JavaScript libraries that imple-
ment the concerns (e.g., a persistence library, a security library,

Accepted to PPPJ 2013 3 2013/6/28

Concern Implementation

Java
Annotations

Library

APT
Plugin

Concern
Developer

Application
Developer

useprovide JavaScript
Library

Figure 8. The roles played by concern and application developers
in TAE-JS.

etc.) Then they also create Java annotations and an APT plug-in
that generates AspectScript code to add their library API calls to
JavaScript programs. Next we detail each part of the TAE-JS in-
frastructure in turn.

3.2.1 Annotation-aware IDE plug-in
Figure 6 shows a screenshot of our annotation-aware IDE plug-in
that makes it possible for the programmer to tag JavaScript program
constructs with Java annotations. The editor creates the impression
that the JavaScript syntax has been extended with Java annotations.
However, a special editor is used for entering annotations. To anno-
tate a JavaScript construct, the programmer must first select it using
the mouse or the keyboard. If the selected construct can be anno-
tated (it is a variable or a function), the IDE adds the “Annotation
Editor” option to the context menu. Selecting that option invokes
the annotation editor (Figure 7) described below. The IDE displays
markers to designate every annotated construct. Hovering over a
marker displays its annotation as a tooltip. In addition, the IDE
provides a table view that displays all the annotations in a given
JavaScript file. This view can also be used to remove annotations.

The IDE maintains the correct mapping between the tagged
JavaScript constructs and their annotations in the presence of pro-
gram evolution. In other words, when the annotated JavaScript pro-
gram evolves, with code added, removed, or modified, the IDE
keeps track of the annotated JavaScript constructs, as they move
to different lines.

Finally, the IDE can, using one annotation as a sample, anno-
tate the rest of the fields in a function. Assume, that the program-
mer has annotated var failedCheck with @Persist (key =
"key_failedCheck", variable = "failedCheck"). Then
the programmer can select a code block, containing the variables
id and pd, and choose the menu option “Apply to All.”

The selected fields will be automatically annotated as @Persist
(key = "key_id", variable = "id") and @Persist (key =
"key_pd", variable = "pd"), respectively. The IDE will au-
tomatically infer the naming correspondences between the sample
variable’s name and its annotation’s string values (if any), general-
ize them, and apply the generalized naming conventions to annotate
the selected variables (see Algorithm 1). Thus, our annotation-
aware IDE provides all the advanced features for authoring and
maintaining metadata information.

3.2.2 Java annotation editor
The Java annotation editor (Figure 7) makes Java metadata anno-
tations available to JavaScript programmers. To allow JavaScript
programmers tag their programs with Java annotations, the editor
combines special UI features and automated code generation. To
make the Java compiler check the syntax and type of the program-
mer entered annotations, the editor automatically synthesizes Java
identifiers, which are then rendered invisible (and non-editable) to
the JavaScript programmer. The synthesized Java identifiers also
encode the structural information about the annotated JavaScript
constructs. As a result, when processing the annotations, the APT
plug-ins no longer need to refer to the original JavaScript code to
generate the AspectScript aspects to transform it.

1 class f checkCredentials {}
2

3 class Annotator {
4 // Enter annotation for variable "failedCheck"
5 // in function "checkCredentials".
6 @Persist(key = "key 42", variable = "failedCheck")
7 f checkCredentials v failedCheck;
8 /** This Java declaration encodes JavaScript
9 * code below:

10 * <p><code><pre>
11 * function checkCredentials {
12 * var failedCheck;
13 * }
14 * </pre></code>
15 */
16 }

Figure 9. Code in Java annotation editor; gray—invisible gener-
ated; blue—visible generated; red—programmer entered.

Algorithm 1: FindPattern
Input: Program Construct PC and Annotation N
Output: Pattern Found

1 Let P be a set of pattern candidates.
2 P : {p0, p1, .., pi, .., pn}
3 Attributes = getAttributes(N)
4 ForEach attr in Attributes
5 Tokens← GetTokens(PC)
6 ForEach token in Tokens
7 P ← LongestCommSubStr(token, attr)
8 End
9 End

10 Sort(P)
11 Return p0

As an example, consider the code in Figure 9 that is handled
by the Java annotation editor shown in Figure 7. Depending on its
purpose, the code’s sections can be visible or invisible as well as
automatically generated or programmer entered. The code in gray
is automatically generated and rendered invisible to the JavaScript
programmer; this code creates a valid compilation context for the
Java compiler to enable the syntax and type checking for the pro-
grammer entered annotations. To provide proper documentation, a
skeletal representation of the tagged JavaScript code is shown as
part of a JavaDoc comment, so an HTML document can be gener-
ated showing all the annotated JavaScript code blocks. The code in
blue provides the instructions for the JavaScript programmer enter-
ing annotations. Finally, the code in red is the programmer entered
annotation.

Notice that the generated Java code provides sufficient infor-
mation about the annotated JavaScript programs, so that the APT
plug-ins can generate AspectScript code without having to refer
back to the original JavaScript code. To that end, TAE-JS maps
the JavaScript type system to the Java type system. Specifically,
JavaScript functions and variables are mapped to Java classes and
member fields. Functions in JavaScript and classes in Java map
to each other one-to-one. The automatically synthesized Java code
follows an established coding convention (i.e., function names are
preceded with the f_ prefix, and variable names with the v_ prefix).

3.2.3 Generating aspects
As shown in Figure 8, TAE-JS requires that a concern developer
provides a JavaScript library implementing the concerns, a library
of Java annotations for applying the concern, and an APT plug-in
to add the concern’s library calls to the enhanced JavaScript code.

Accepted to PPPJ 2013 4 2013/6/28

AspectScriptJava AnnotationsJavaScript

Programmer entered annotation Generated Java identifier From Java Annotations to AspectScriptFrom JavaScript to Java Annotations

Pointcuts

Advice

Aspect

failedCheck

failedCheck

checkCredentials}

class Annotator {

function checkCredentials () {

 var failedCheck ;

} f_checkCredentials v_failedCheck ;

 @Persist (key= “key_” + “failedCheck”, value= “failedCheck”)
1

2

1 2

Figure 10. A TAE-JS data flow diagram: persisting variable failedCheck.

1 class PersistAnnotationProcessor
2 implements AnnotationProcessor {
3 ...
4 public void process() {
5 /∗∗
6 ∗ For each declaration annotated with @Persist
7 ∗ retrieve the annotated construct’s type and name
8 ∗ e.g ., f checkCredentials v failedCheck;
9 ∗ Generate AspectScript code referring to

10 ∗ function ”checkCredentials” and variable ”failedCheck”.
11 ∗/
12 }}

Figure 11. Pseudo-code for the APT persistence plug-in.

The APT architecture provides an intuitive Java API for writing
annotation processing plug-ins. A plug-in reads annotated Java
classes and extracts the annotated constructs and their annotations.

Figure 11 shows pseudo-code for an APT plug-in for a transpar-
ent persistence library. Upon encountering the annotation @Persist
(key = "key_failedCheck", variable = "failedCheck")
applied to the generated field named f_checkCredentials
v_failedCheck, the plug-in code can parse the field’s name to de-
termine that the specified JavaScript code is variable failedCheck,
defined in function checkCredentials. To insert the required
persistence functionality, TAE-JS generates aspects.

As our aspect language, we chose AspectScript [33], an AOP
JavaScript extension that works with all the major Web browsers,
including Mozilla Firefox, Safari, Chrome, and Opera. Inspired by
the design AspectScheme [10], AspectScript focuses on supporting
the unique features of JavaScript, including first-class functions,
dynamic typing, and prototype-based programming. AspectScript
features pointcut-advice mechanisms, providing all the major facil-
ities one can expect in a modern aspect language extension.

The snippets of AspectScript code in Figure 12 transparently
persist variable failedCheck. AspectScript defines pointcuts,
program locations at which additional functionality (i.e., advise)
should be interposed, as regular JavaScript variables. The point-
cut variables pcGetV1/SetV1 define the locations at which vari-
able failedCheck is read and written, respectively. The AROUND
and AFTER advice directives express that the execution of as-
pect code should take place in relation to the pointcuts. Anony-
mous functions referenced by variables persistAdviceGetV1
and persistAdviceSetV1 are the advice code that AspectScript
interposes with the original JavaScript code.

1 var pcGetV1 =
2 AspectScript.Pointcuts.get("failedCheck");
3

4 var pcSetV1 =
5 AspectScript.Pointcuts.set("failedCheck");
6

7 var persistAdviceGetV1 = function(jp) {
8 return storage.getItem("key_failedCheck");
9 };

10

11 var persistAdviceSetV1 = function(jp) {
12 storage.setItem("key_failedCheck", jp.value);
13 };
14

15 var aspectGetV1 = AspectScript.aspect(
16 AspectScript.AROUND,
17 pcGetV1,
18 persistAdviceGetV1);
19

20 AspectScript.deployOn(
21 aspectGetV1,
22 checkCredentials);
23

24 var aspectSetV1 = AspectScript.aspect(
25 AspectScript.AFTER,
26 pcSetV1,
27 persistAdviceSetV1);
28

29 AspectScript.deployOn(
30 aspectSetV1,
31 checkCredentials);

Figure 12. AspectScript to add persistence.

In essence, the around advice replaces are the memory reads of
variable failedCheck with retrieving it from persistent storage,
provided by the persistence library in place. The after advice stores
to persistent storage the updates to failedCheck. Recall that the
persistent values can be set to expire after a given timeout, thereby
eventually allowing users to continue trying to login.

Using the persisting of variable failedCheck as an example,
Figure 10 demonstrates how program construct names flow be-
tween JavaScript, Java annotations, and AspectScript code. The
function name “checkCredentials” and the variable name “failed-
Check” flow from JavaScript to the generated Java code (and are
also referenced in the @Persist annotation’s attributes), and fi-
nally appear in the generated AspectScript code that transforms the
original JavaScript program.

Notice, however, that this automatically generated aspect code
may not be sufficient to set in place the persistence policy required

Accepted to PPPJ 2013 5 2013/6/28

1 var persistAdviceSetV1 = function(jp) {
2 if (storage.getItem("key_failedCheck") < 3)
3 storage.setItem("key_failedCheck", jp.value);
4 };

Figure 13. Hand-modified AspectScript code to add application-
specific logic.

for our motivating example. In particular, the programmer may
want to invalidate the reassignment of variable failedCheck to
0 if the persisted value of the attempted login attempts has reached
three. To that end, the programmer can easily modify the generated
AspectScript code by hand as shown in Figure 13. Even adding
this specialized functionality does not require changing the original
JavaScript code by hand.

3.3 Template-Based Code Generation
As one can see, TAE-JS relies on generating potentially large quan-
tities of AspectScript code. Although any code generation method
can be plugged-in as part of the TAE-JS infrastructure, the refer-
ence implementation leverages template-based code generation to
avoid the inconveniences of maintaining hand-crafted, ad-hoc code
generators. In the context of TAE-JS, we found that a template-
based approach strikes the right balance between simplicity and ex-
pressiveness. In particular, template-based code generation reduces
the possibility of introducing syntax errors into the generated code,
while being easy to learn, use, and maintain.

For the case studies described in Section 4, we used the popu-
lar StringTemplate template engine, whose design is based on the
model-view-controller architecture [20]. This design separates the
data used to drive code generation (i.e., the model), from the actual
template (i.e., the view). The StringTemplate language includes ele-
ments of functional languages such as side effect-free expressions,

1 var pcGetVitr =
2 AspectScript.Pointcuts.get("$variable$");
3

4 var pcSetVitr =
5 AspectScript.Pointcuts.set("$variable$");
6

7 var persistAdviceGetVitr = function(jp) {
8 return storage.getItem("key_$variable$");
9 };

10

11 var persistAdviceSetVitr = function(jp) {
12 storage.setItem("key_$variable$", jp.value);
13 };
14

15 var aspectGetVitr = AspectScript.aspect(
16 AspectScript.AROUND,
17 pcGetVitr,
18 persistAdviceGetVitr);
19

20 AspectScript.deployOn(
21 aspectGetVitr,
22 $function$);
23

24 var aspectSetVitr = AspectScript.aspect(
25 AspectScript.AFTER,
26 pcSetVitr,
27 persistAdviceSetVitr);
28

29 AspectScript.deployOn(
30 aspectSetVitr,
31 $function$);

Figure 14. A portion of a StringTemplate template for generating
AspectScript code to add persistence.

independent expression evaluation, and operations on lists of ob-
jects.

Our code generation infrastructure makes several pre-defined
templates per concern available to the enhancement library devel-
oper, including skeletal definitions of aspects of persistence, secu-
rity, and transactions. At the API level, these entities are repre-
sented as variable, function, iterator, and AspectScript keywords.
The developer can provide StringTemplate definitions for the vari-
ables, functions, aspects, pointcuts, contained in these skeletal def-
initions. StringTemplate also makes it straightforward to write the
generated AspectScript source code to a file.

Figure 14 shows a fragment of the StringTemplate template that
we used to implement our persistence enhancement. Our experi-
ences with template-based code generation indicate that using this
principled approach indeed reduces the possibility of introducing
subtle syntax errors and accommodates the reuse of code genera-
tion functionality across different libraries.

3.4 Motivating Example Revisited
Recall that in our motivating example, a piece of JavaScript code
(Figure 1) had to be enhanced with two concerns (persistence
and security), potentially creating four different codebases to be
maintained separately. By using TAE-JS, one can avoid branching
the codebase. The JavaScript programmer first would annotate the
JavaScript codebase with the annotations to add both the persis-
tence and security concerns. Then the concerns can be added as
needed through build configuration.

In modern software development, automated tools handle the
build process (e.g., make or Apache Ant3). These tools are con-
figured through a script that includes the steps the tool must go
through to build a software product. TAE-JS includes two addi-
tional steps that can be easily added to any major build script. The
first step generates AspectScript code by running aspect generation
APT plug-ins. The second step transforms the original JavaScript
code to include the specified concerns by means of the AspectScript
preprocessor executing the generated aspect code. The flexibility of
TAE-JS lies in its ability to flexibly create the versions of JavaScript
code containing the concerns required for a given deployment sce-
nario. To that end, build managers need only to include or exclude
TAE-JS APT plug-ins. As an example, Figure 15 shows how the
TAE-JS steps can be integrated with an ANT build script. Because
it is the build tool that adds the required concerns through auto-
mated program transformation, the original JavaScript codebase re-
mains intact, thereby reducing the costs of software maintenance
and evolution, if TAE-JS were to be used with a different IDE.

1 <target name="jar-persist">
2 <jar destfile="persist_apt_plugin.jar" >
3 ...
4 </jar>
5 </target>
6 <target name="jar-security">
7 <jar destfile="security_apt_plugin.jar" >
8 ...
9 </jar>

10 </target>
11 <target name="jar-transactions">
12 <jar destfile="transactions_apt_plugin.jar" >
13 ...
14 </jar>
15 </target>

Figure 15. An Ant build script with TAE-JS rules.

3 Apache Ant – http://ant.apache.org/

Accepted to PPPJ 2013 6 2013/6/28

Concerns Annotations APC in JS # Advice (LOC) # Aspect # PC
Persistence @Persist (key = ”key variable”, value = ”variable name”) Variable 2 (6) 2 2

Security @Security (kind = Security.op.Encrypt, variable = ”variable name”) Variable 1 (3) 1 1
@Security (kind = Security.op.Decrypt, variable = ”variable name”) Variable 1 (3) 1 1

Transactions @Transaction (inspect = ”inspect function”, function = ”function name”) Function 1 (6) 1 1

Table 1. The case studies metrics (i.e., persistence, security, and transactions). (APC in JS: Annotated Program Constructs in JavaScript.)

4. Case Studies
For our case studies, we replicated the functionalities provided by
three third-party libraries that enhance JavaScript programs with
persistence [6], security [26], and transactions [9].

Although we found the design and implementation of these
third-party libraries compelling, the thesis of this work is that con-
cerns can be added to JavaScript code declaratively, and that auto-
mated program transformation can eliminate the need to manually
modify the maintained version of the source code. Hence, the pur-
pose of our case studies was to measure the programming effort in-
curred by the TAE-JS approach. The application developer’s effort
of annotating JavaScript constructs is quite minimal. Therefore, our
measurements aim at understanding the concern developer’s effort,
required to build a TAE-JS APT plug-in. Recall that the TAE-JS
generates Java identifiers automatically irrespective of how the ap-
plication developer annotates them.

For each of the libraries, we next first briefly describe the li-
brary’s functionality and programming interface. Then, we explain
how we replicated the same functionality declaratively via annota-
tions and describe the TAE-JS plug-in to introduce the library calls
into unaware JavaScript programs. To ensure that we have managed
to replicate the original functionality faithfully, we tested the TAE-
JS approach for each added concern on a Web application running
in a browser.

4.1 Persistence for JavaScript
Although modern Web browsers can persist client-side data for of-
fline use, JavaScript developers may find it difficult to manipulate
and synchronize the persistence state saved in server-side remote
storage. To address these issues, Cannon and Wohlstadter [6] in-
troduced a persistence framework for JavaScript that offers persis-
tence facilities similar to those found in frameworks for the Java
language (e.g., Hibernate and JDO4). Specifically, the introduced
framework can detect mutations of persistent objects, serialize per-
sistent objects to store them locally, and synchronize local and re-
mote copies of persistent objects. The persisted objects are rep-
resented as key/value pairs5 and manipulated with explicit library
calls.

As it turns out, the functionality of this persistence library lends
itself well to being expressed declaratively. In TAE-JS, we anno-
tate the persistent values with the @Persist annotation that takes
two String attributes: key and value. For example, to persist vari-
able foo, the programmer can annotate it as @Persist (key=
"key_foo", value= "foo").

To generate an AspectScript aspect to weave in the persistence
library calls into a program, the generator also needs the informa-
tion about the scope of the persisted variables. In JavaScript, vari-
ables can be local, member, and global. AspectScript can interpose
advise when accessing or modifying all these variable types, albeit
through different pointcuts. The annotation editor communicates
this information through generated Java identifiers. For local and
member variables, the name of the enclosing functions are repre-
sented as a Java class. For global variables, the name of the class

4 JDO – http://www.datanucleus.org/products/accessplatform 3 0/jdo/
5 Web Storage – http://www.w3.org/TR/2009/WD-webstorage-20091029/

is GLOBAL—e.g., GLOBAL gvar;. Based on this information, the
APT persistence plug-in intercepts accessing and modifying vari-
ables by means of around and after advice mechanisms, respec-
tively. The advice functions simply contain the library calls to store
and retrieve the persistent variables’ values from persistent storage.
As shown in the first row of Table 1, the programmer can render a
variable persistent just by annotating it, with TAE-JS automatically
generating two advices, two aspects, and two pointcut expressions.

4.2 Security for JavaScript
To protect sensitive information, Web applications may need to
encrypt some JavaScript variables before transmitting them to the
server and decrypt the encrypted values received from the server.
To that end, Stark et al. [26] presented a JavaScript symmetric
encryption library, whose implementation is specifically optimized
for JavaScript. This general-purpose encryption library provides a
simple API that the JavaScript programmer can use to encrypt and
decrypt variables.

With TAE-JS, the functionality of this library is exposed
through the @Security annotation that has two attributes: the
kind of security operation performed, and the variable operated
on. The first attribute is a Java enum type, which can be typechecked
more precisely than a string attribute. Also, this annotation is easily
extensible. One can add a new encryption mechanism by creating
another enum constant. To encrypt a variable foo, the program-
mer annotates it as @Security(kind= Security.op.Encrypt,
variable= "foo").

The strategy for generating AspectScript code to express this
concern is similar to that used for the persistence concern. The
similarity stems from the fact that both of these concerns are ap-
plied to variables within a given function. Figure 16 shows a snip-
pet of AspectScript code that encrypts variable pd in function
checkCredentials on the client side, as well as decrypts vari-
able mid in function getMemberId.

As shown in the second and third rows of Table 1, the program-
mer can encrypt or decrypt a variable by annotating it, with TAE-
JS automatically generating 2 advices, 2 aspects, and 2 pointcut
expressions for each annotation.

1 var pcEncryptV1 = AspectScript.Pointcuts.get("pd");
2 var pcDecryptV1 = AspectScript.Pointcuts.set("mid");
3

4 var adviceEncryptV1 = function(jp) {
5 return encrypt(jp.value);
6 };
7

8 var adviceDecryptV1 = function(jp) {
9 return decrypt(jp.value);

10 };
11

12 var aspectEncryptV1 = AspectScript.aspect(
13 AspectScript.AROUND, pcEncryptV1, adviceEncryptV1);
14 AspectScript.deployOn(aspectEncryptV1, checkCredentials);
15

16 var aspectDecryptV1 = AspectScript.aspect(
17 AspectScript.AROUND, pcDecryptV1, adviceDecryptV1);
18 AspectScript.deployOn(aspectDecryptV1, getMemberId);

Figure 16. AspectScript code enhanced with security.

Accepted to PPPJ 2013 7 2013/6/28

1 function sample () {
2 // upper code block of transaction .
3 Code_Block_A
4 // transactions code block to be selected.
5 Code Block T
6 // bottom code block of transaction.
7 Code_Block_B
8 }

1 function sample () {
2 // upper code block.
3 Code_Block_A
4 // refactored code block.
5 sample_R(args);
6 // bottom code block.
7 Code_Block_B
8 }

1 function sample_R(args) {
2 var tx = transaction {
3 Code Block T
4 };
5 sample_T(tx);
6 }
7

8 function sample_T(tx) {}

Figure 17. Method Refactoring to add transactions.

1 var pcTranV1 = AspectScript.Pointcuts.exec(sample_T);
2

3 var adviceTranV1 = function(jp) {
4 var tx = jp.args[0];
5 if(inspect(tx))
6 tx.commit();
7 };
8

9 AspectScript.after(pcTranV1, adviceTranV1);

Figure 18. AspectScript code enhanced with transactions.

4.3 Transactions for JavaScript
A common approach to improving security and reliability in the
presence of untrusted third-party code is to execute that code in a
transactional context. A unit of code delineated by a transaction is
executed speculatively, and depending on the observed behavior,
the results can be either committed or rolled back. When a trans-
action is rolled back, the program’s state is restored to the point
right before the transactional code started execution. To avail this
powerful mechanism to Web applications, Dhawan et al. [9] added
transactions to JavaScript. As their implementation strategy, they
extended the language with a new keyword, transaction that the
programmer can use to delineate transaction boundaries; the imple-
mentation also includes a library, called Transcript, with the API for
managing transactions.

TAE-JS enables the programmer to engage the services of the
Transcript library declaratively, with a single annotation rendering
a block of JavaScript code transactional. When a programmer se-
lects a block of JavaScript code, our annotation-aware IDE warns
the programmer that only variables and functions can be annotated,
and then prompts the programmer if an automated Extract Function
refactoring [11] should be performed. If the programmer agrees,
the annotation editor opens to accept the TAE-JS transaction an-
notation. Then the IDE, behind the scenes, extracts the function to
be executed transactionally, so that the subsequently generated As-
pectScript code could operate on the extracted function.

Figure 17 shows function sample, in which the programmer se-
lects Code_Block_T to be rendered transactional. Because aspect
languages cannot operate on arbitrary code blocks, the IDE offers
to refactor the function, extracting function sample_T as shown
in Figure 17. The calls to the Transcript library as shown in Fig-
ure 18 are then inserted to the extracted transactional function. Be-
cause AspectScript would not work on JavaScript extended with a
new keyword (transaction), we tested the reference implemen-
tation using regular extracted JavaScript functions. However, if the

transaction keyword is to be added to JavaScript, AspectScript
will probably be extended with transaction-specific pointcuts.

4.4 Rendering Yahoo! Finance E-Chart Persistent
To evaluate how well the TAE-JS approach can scale, we used
it to render all the variables in the initialization functions in the
echart_head.js script from the Yahoo! Finance website6 per-
sistent. That is, every time this page is reloaded, its variables are
initialized to the values they held the last time the page was dis-
played. Although one cannot make a compelling business case for
persisting all the variables, we conducted this study to test the scala-
bility of the TAE-JS code generation infrastructure. In terms of the
specific numbers involved, there were 167 variables tagged with
the @Persist annotation. The TAE-JS IDE plug-in generated 53
Java classes for each JavaScript function that contained variables.
All the variables were added to class PersistenceAnnotator,
which was passed as a parameter to the persistence APT plug-in.
The plug-in generated 3,192 lines of AspectScript code required
for adding the persistence library calls for each variable read and
write. Although one can hardly imagine a scenario under which so
many variables would have to be rendered persistent, the TAE-JS
code generation infrastructure was able to generate the required as-
pect code for this input almost instantaneously.

5. Discussion
The ability to access the functionality written in another language
goes all the way back to Common Lisp with its foreign function
interface (FFI) [4]. Usually, FFI serves as a mechanism for improv-
ing performance by calling well-optimized routines written in an-
other language or for accessing those legacy code parts that cannot
be easily ported. To the best of our knowledge, TAE-JS is the first
approach that enables a host language to reuse the declarative meta-
data facilities of another language. In other words, the motivation
for using the functionality of a different language is to leverage the
expressiveness of its metadata facility. Furthermore, TAE-JS en-
ables JavaScript programmers to take advantage of the annotation
facilities of Java, without extending the JavaScript syntax. Instead
an IDE enables a multi-lingual development model, with the Java
compiler ensuring proper name and typechecking of the entered an-
notations. Although a built-in metadata facility makes a program-
ming language amenable to declarative programming models, it is
not always feasible to add this facility to a widely used language
with a large legacy codebase. Hence, leveraging the built-in meta-
data facility of another language presents a viable alternative.

Next we discuss what we consider as the main advantages and
limitations of the TAE-JS approach.

5.1 Advantages
The main advantage of the TAE-JS approach is that it cleanly sepa-
rates concerns. It can enhance the core functionality with additional
concerns based on a declarative specification. The power of Java
typechecking ensures that these specifications are syntactically cor-
rect. Furthermore, because TAE-JS encodes the information about
the JavaScript constructs interacting with the added concerns as
Java identifiers, APT plug-ins generating AspectScript code do not
need to reference the JavaScript code. Finally, which concerns are
to be added for a given deployment is configured entirely through
build configuration.

5.2 Limitations
One of the limitations of TAE-JS is that it adds concerns stati-
cally. As a result, the concerns would not appear in those parts of

6 Yahoo Finance – http://finance.yahoo.com/

Accepted to PPPJ 2013 8 2013/6/28

the code that are generated dynamically at runtime. In particular,
JavaScript features the eval function that can evaluate a textual
string at runtime, generating new JavaScript code. Assume that a
field in a JavaScript function was annotated as persistent, and the
same function contains an eval that generates code referencing the
persistent field. The static transformations that render the field per-
sistent would not be applied to the code generated by eval at run-
time. We plan to address this limitation as a future work by offering
a mechanism that can transform dynamically generated code.

TAE-JS generates aspects, an approach that presents two lim-
itations. First, aspect languages cannot add functionality to arbi-
trary blocks of code that cannot be easily extracted into functions.
As a result, only those concerns that are focused around variables
and functions are amenable to be added via TAE-JS. The sec-
ond limitation stems from AspectScript automatically transforming
JavaScript programs to weave in concern code into the main code.
Transformed code is hard to debug. Even though AspectScript does
not yet feature a debugger, this problem has been addressed in as-
pect extensions for other languages. For example, AspectJ comes
with a state-of-the-art symbolic debugger, and it is likely that a sim-
ilar debugger will be provided for AspectScript.

6. Related Work
The related work includes interfacing with foreign languages, sup-
porting separation of concerns via metadata, validation of metadata,
and program transformation for web applications.

6.1 Interfacing with Foreign Languages
TAE-JS enables JavaScript to use the metadata facilities of Java.
Several prior approaches focused on interfacing with foreign
languages. SWIG [3] automatically generates bindings between
C/C++ code and scripting languages, including Tcl, Python, Perl
and Guile. Using SWIG, C/C++ code can be invoked from a script-
ing language using annotated header files. Exu [5] provides bind-
ings across multiple languages. In particular, Exu generates the
language bindings that can interface Java and C++. With these ap-
proaches, the programmer is responsible for maintaining binding
configurations. STJS [32], PYJS [31], and P2JS [30] can directly
translate from other languages to JavaScript, without using meta-
data. In contrast, TAE-JS focuses on interfacing with the metadata
facilities of a foreign language and automatically maintains the
correctness of the inter-language interfaces.

6.2 Supporting separation of concerns via Metadata
Aspect-oriented programming [14] is the foremost programming
discipline for modularizing concerns (especially cross-cutting con-
cerns). There is ongoing debate as to which concerns avail them-
selves to be treated separately [15], which determines the applica-
bility of TAE-JS. Its declarative programming model follows the
general AOP philosophy of treating cross-cutting concerns sepa-
rately and modularly.

AOP tools, including AspectJ 5 [27] and JBoss AOP [29],
can add metadata (e.g., declare annotation and annotation
introduction), thus implementing concerns. Because JavaScript
does not have built-in metadata, TAE-JS uses Java annotations en-
tered by means of a special IDE.

Song and Tilevich[24] reuse the concern implementations in es-
tablished languages from emerging languages by translating meta-
data alongside that of the main source code. By contrast, TAE-
JS expresses concern implementations within the same language
declaratively.

Code generators can automatically synthesize metadata from
higher level input. XDoclet, an extensible code generator [34], can
automatically generate XML deployment descriptors from special

source code tags. It parses Java source files to extract special meta-
data tags. XDoclet templates guide the generation process that can
reference program constructs as well. Similarly, Closure [28] pro-
vides JSDoc, a set of annotations for JavaScript. However, embed-
ding special metadata tags cannot be type-checked or kept con-
sistent in the presence of code changes. Unlike XDoclet and JS-
Doc, our approach uses Java 5 annotations to generate JavaScript
aspects.

6.3 Validation of Metadata
Automated tools have been used to validate the correctness of meta-
data statically. Cepa et al. [7] check the correctness of using cus-
tom attributes in .NET by providing meta-attributes that define de-
pendencies between attributes. An automated tool checks these at-
tribute dependencies declaratively expressed as a custom attribute.
Minamide et al. [19] validate XML metadata using a string an-
alyzer. Their algorithm checks and validates metadata grammar.
Metadata Invariants [23] validate both XML and Java 5 annota-
tions by codifying naming and typing relationships between meta-
data and the main source code. By contrast, TAE-JS uses Java type-
checking to ensure the syntactic correctness of the entered meta-
data.

6.4 Program Transformation for Web applications
Washizaki et al. [35] present an AOP framework for JavaScript,
AOJS. AOJS expresses advice and joinpoint constructs in XML and
weaves in aspects at runtime using a proxy-based method. Since the
web applications using AOJS rely on external configuration XML
files, evolving these applications may require keeping the XML
files consistent with the main source code.

Kiciman et al. [13] instrument JavaScript by means of a run-
time profiling techniques that rewrites the abstract syntax tree
(AST). Their approach offers a dynamic instrumentation tool for
Web application development. Although relying on a customized
JavaScript parser can hinder portability, we may adopt a similar
approach to be able to add concerns at runtime.

Lerner et al. [16] provide an AOP extension for JavaScript, in-
tegrated with a JIT compiler, whose aim is to support principled
runtime adaptation. BrowserShield [22, 36] rewrite JavaScript to
increase the level of security against vulnerabilities in the dynami-
cally generated JavaScript codes. We can use their AOP extension
with dynamic weaving instead of AspectScript to extend TAE-JS
to support declarative enhancement of dynamically modified code.

On the other hand, in PHP, transformation have been applied as
a preprocessing step [25]. Our approach differs by employing Java
5 annotations to transform JavaScript programs.

7. Future Works and Conclusions
One future work direction will evaluate the scalability of the TAE-
JS approach for large JavaScript codebases. Another direction will
continue investigating the expressiveness of TAE-JS to enhance
JavaScript code with concerns provided by other libraries. We plan
to investigate how TAE-JS can be applied to dynamically generated
JavaScript code. Although our declarative approach can currently
benefit only the programmers using the Eclipse IDE, we plan to
develop a Java library that works across IDEs to generate the
required aspect code. Finally, we plan to support indirect calls and
anonymous functions.

As JavaScript has become the lingua franca of Web applica-
tions, solid software engineering principles should be applied to
the development and maintenance of JavaScript programs. The
ability to separate concerns cleanly can particularly benefit those
JavaScript codebases that may need to be reused in applications
with different non-functional requirements. In this paper, we pre-

Accepted to PPPJ 2013 9 2013/6/28

sented Transparent Automated Enhancement for JavaScript (TAE-
JS), a novel approach to enhancing JavaScript programs with ad-
ditional concerns. The main novelty of TAE-JS lies in embedding
the metadata infrastructure of a foreign programming language in a
host language, without modifying the host’s language syntax. In the
reference implementation of TAE-JS, we demonstrated how Java
annotations can be fully utilized by JavaScript programs. Another
novelty of TAE-JS is in applying generative aspects to JavaScript
programs. Our results indicate that JavaScript programs can be en-
hanced transparently based on declarative specifications, thereby
improving the overall separation of concerns.

Availability
The reference implementation of TAE-JS can be downloaded from:
http://research.cs.vt.edu/vtspaces/taejs.

References
[1] R. A. Ballance, S. L. Graham, and M. L. Van De Vanter. The pan

language-based editing system. ACM Trans. Softw. Eng. Methodol.,
1(1):95–127, 1992.

[2] C. Bauer and G. King. Hibernate in Action. Manning, 2005.
[3] D. M. Beazley. SWIG: an easy to use tool for integrating scripting

languages with C and C++. In Proceedings of the 4th Conference on
USENIX Tcl/Tk Workshop, TCLTK, 1996.

[4] D. Bobrow, L. DeMichiel, R. Gabriel, S. Keene, G. Kiczales, and
D. Moon. Common Lisp object system specification. ACM Sigplan
Notices, 23:1–142, 1988.

[5] J. Bubba, A. Kaplan, and J. Wileden. The Exu approach to safe, trans-
parent and lightweight interoperability. In Proceedings of the 25th In-
ternational Conference on Computer Software and Applications Con-
ference, COMPSAC, pages 393–400, 2001.

[6] B. Cannon and E. Wohlstadter. Automated object persistence for
JavaScript. In Proceedings of the 19th International Conference on
World Wide Web, WWW, pages 191–200, 2010.

[7] V. Cepa and M. Mezini. Declaring and enforcing dependencies be-
tween .NET custom attributes. In Proceedings of the 3rd Inter-
national Conference on Generative Programming and Component
Engineering, GPCE, pages 283–297. 2004.

[8] L. DeMichiel and M. Keith. JSR 220: Enterprise JavaBeans 3.0, May
2006. http://jcp.org/aboutJava/communityprocess/final/jsr220/index.
html.

[9] M. Dhawan, C. chieh Shan, and V. Ganapathy. Enhancing JavaScript
with Transactions. In Proceedings of 26th European Conference
Object-Oriented Programming, ECOOP, pages 383–408, 2012.

[10] C. Dutchyn, D. B. Tucker, and S. Krishnamurthi. Semantics and
scoping of aspects in higher-order languages. Sci. Comput. Program.,
pages 207–239, 2006.

[11] M. Fowler. Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 1999.

[12] E. Käsper and P. Schwabe. Faster and timing-attack resistant AES-
GCM. In Proceedings of the 11th International Workshop on Crypto-
graphic Hardware and Embedded Systems, CHES, pages 1–17, 2009.

[13] E. Kiciman and B. Livshits. AjaxScope: a platform for remotely moni-
toring the client-side behavior of web 2.0 applications. In Proceedings
of 21th ACM SIGOPS Symposium on Operating Systems Principles,
SOSP, pages 17–30, 2007.

[14] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. M.
Loingtier, and J. Irwing. Aspect-oriented programming. In Pro-
ceedings of 11th European Conf. on Object-Oriented Programming,
ECOOP, 1997.

[15] J. Kienzle and R. Guerraoui. AOP: Does It Make Sense? The Case
of Concurrency and Failures. In Proceedings of the 16th European
Conference on Object-Oriented Programming, ECOOP, 2002.

[16] B. S. Lerner, H. Venter, and D. Grossman. Supporting dynamic, third-
party code customizations in JavaScript using aspects. In Proceedings

of the ACM International Conference on Object Oriented Program-
ming Systems Languages and Applications, OOPSLA, pages 361–376,
2010.

[17] M. Matsui and J. Nakajima. On the power of bitslice implementation
on Intel Core2 processor. In Cryptographic Hardware and Embedded
Systems, Lecture Notes in Computer Science, pages 121–134, 2007.

[18] J. McGovern, R. Adatia, Y. Fain, J. Gordon, E. Henry, W. Hurst,
A. Jain, M. Little, V. Nagarajan, H. Oak, et al. Java 2 Enterprise
Edition 1.4 (J2EE 1.4) Bible. Wiley, 2011.

[19] Y. Minamide and A. Tozawa. XML Validation for Context-Free Gram-
mars. In Proceedings of the 4th ASIAN Symposium on Programming
Languages and Systems, APLAS, pages 357–373, 2006.

[20] T. J. Parr. Enforcing strict model-view separation in template engines.
In Proceedings of the 13th International Conference on World Wide
Web, WWW, pages 224–233, 2004.

[21] C. Rebeiro, D. Selvakumar, and A. S. L. Devi. Bitslice implementa-
tion of AES. In Proceedings of the 5th international conference on
Cryptology and Network Security, CANS, pages 203–212, 2006.

[22] C. Reis, J. Dunagan, H. J. Wang, O. Dubrovsky, and S. Esmeir.
BrowserShield: vulnerability-driven filtering of dynamic HTML.
ACM Trans. Web, 1(3), 2007.

[23] M. Song and E. Tilevich. Metadata invariants: Checking and infer-
ring metadata coding conventions. In Proceedings of the 34th Inter-
national Conference on Software Engineering, ICSE, pages 694–704,
2012.

[24] M. Song and E. Tilevich. Reusing non-functional concerns across
languages. In Proceedings of the 11th International Conference on
Aspect-Oriented Software Development, AOSD, pages 227–238, 2012.

[25] J. Stamey, B. Saunders, and S. Blanchard. The aspect-oriented web. In
Proceedings of the 23rd annual international conference on Design of
communication: documenting & designing for pervasive information,
SIGDOC, pages 89–95, 2005.

[26] E. Stark, M. Hamburg, and D. Boneh. Symmetric Cryptography in
Javascript. In Proceedings of Annual Computer Security Applications
Conference, ACSAC, pages 373–381, 2009.

[27] The AspectJ Project Team. The AspectJ 5 Development Kit Devel-
oper’s Notebook. http://eclipse.org/aspectj/doc/next/adk15notebook/.

[28] The Closure Project Team. Annotating JavaScript for the Clo-
sure Compiler, 2010. https://developers.google.com/closure/compiler/
docs/js-for-compiler.

[29] The JBoss AOP Project Team. JBoss AOP. http://www.jboss.org/
jbossaop/.

[30] The P2JS Project Team. Perl to JavaScript, 2008. https://github.com/
urandom/p2js.

[31] The PYJS Project Team. Python to JavaScript, 2011. http://pyjs.org/.

[32] The STJS Project Team. Strongly-typed JavaScript, 2010. http:
//st-js.sourceforge.net/.

[33] R. Toledo, P. Leger, and É. Tanter. AspectScript: expressive aspects
for the web. In Proceedings of the 9th International Conference on
Aspect-Oriented Software Development, AOSD, pages 13–24, 2010.

[34] C. Walls, N. Richards, and R. Oberg. XDoclet in Action (In Action
series). Manning Publications Co., 2003.

[35] H. Washizaki, A. Kubo, T. Mizumachi, K. Eguchi, Y. Fukazawa,
N. Yoshioka, H. Kanuka, T. Kodaka, N. Sugimoto, Y. Nagai, and
R. Yamamoto. AOJS: aspect-oriented JavaScript programming frame-
work for Web development. In Proceedings of the 8th Workshop
on Aspects, Components, and Patterns for Infrastructure Software,
ACP4IS, pages 31–36, 2009.

[36] D. Yu, A. Chander, N. Islam, and I. Serikov. JavaScript instrumen-
tation for browser security. In Proceedings of the 34th annual ACM
SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, POPL, pages 237–249, 2007.

Accepted to PPPJ 2013 10 2013/6/28

Appendices
A. The Annotation Processing Examples
TAE-JS uses the reflective APIs of the Annotations Processing
Tool to interpret the specified Java annotations and generate As-
pectScript code by means of SecurityAnnotationProcessor

1 public class SecurityAnnotationProcessor
2 implements AnnotationProcessor {
3 AnnotationProcessorEnvironment _env;
4

5 SecurityAnnotationProcessor(
6 AnnotationProcessorEnvironment env) {
7 _env = env;
8 }
9

10 void process() {
11 AnnotationTypeDeclaration annoDecl =
12 (AnnotationTypeDeclaration)_env.
13 getTypeDeclaration(
14 Security.class.getName());
15 retrieveAnnotation(annoDecl);
16 }
17

18 void retrieveAnnotation(
19 AnnotationTypeDeclaration annoDecl) {
20 Collection<Declaration> annotatedTypes =
21 _env.getDeclarationsAnnotatedWith(annoDecl);
22 for (Declaration decl : annotatedTypes) {
23 Collection<AnnotationMirror> mirrors =
24 decl.getAnnotationMirrors();
25 for (AnnotationMirror mirror : mirrors) {
26 Map<AnnotationTypeElementDeclaration,
27 AnnotationValue>
28 valueMap = mirror.getElementValues();
29 generateAspectScript(valueMap);
30 }
31 }
32 }
33

34 void generateAspectScript(
35 Map<AnnotationTypeElementDeclaration,
36 AnnotationValue> valueMap) {
37 Set<Map.Entry<AnnotationTypeElementDeclaration,
38 AnnotationValue>> valueSet =
39 valueMap.entrySet();
40 for (Map.Entry<AnnotationTypeElementDeclaration,
41 AnnotationValue> annoAttrName : valueSet) {
42 // Parsing the annotation and attributes .
43 // Generating AspectScript .
44 }
45 }
46 }

Figure A.1. The annotation processing Class.

1 import java.util.HashMap;
2 import java.util.List;
3

4 public interface AspectScriptGenerator {
5 String getPointcut(String func_name);
6 List<String> getAdvice(String varName,
7 String kind);
8 String getJointPoint();
9 int getIter(List<String> org_contents,

10 HashMap<String, String> key_name,
11 int startIndex, StringBuilder buf);
12 String getAspecTemplate(String entrypoint);
13 String getMultiLine(List<String> f_contents,
14 int startIndex);
15 }

Figure A.2. The annotation processing interface.

(Figure A.1); it implements interface AnnotationProcessor to
examine the specified annotations. The annotation processor in-
vokes method process to retrieve the specified annotations. Class
AspectScriptGenerator (Figure A.2) implements the logic to
parse the declared annotations to generate the AspectScript code.

B. The AspectScript Examples
Here we provide the details omitted from code snippets presented
in the case studies section. Function adviceEncrypt contains
the advice that invokes the encrypt function of the JavaScript
SJCL library (Figure B.1). The function takes myPlainText as
a parameter and then accesses the program’s DOM tree through
object form on line 2.

After validating its input on lines 4-12, on line 13, adviceEncrypt
creates object p consisting of five properties, adata—authenticated
data, iter—a strength factor, mode—a cypher mode, ts—authentication
strength, and ks—a key size. These properties provide the default
values for the SJCL library, which leverages the AES algorithm
[12, 17, 21] and the SHA256 hash function.

On line 27, the function encrypt receives the designated pass-
word, the generated key, the secured data, the parameter object, and
the object for the corresponding calculated storage. The encrypted
value is stored in object ct.

1 var adviceEncrypt = function (myPlainText) {
2 var v = form.get();
3 v.plaintext = myPlainText;
4 if (v.plaintext === ’’ &&
5 v.ciphertext.length) {
6 return;
7 }
8 if (v.key.length == 0 &&
9 v.password.length == 0) {

10 error("need a password or key!!");
11 return;
12 }
13 var p = {
14 adata : v.adata,
15 iter : v.iter,
16 mode : v.mode,
17 ts : parseInt(v.tag),
18 ks : parseInt(v.keysize)
19 };
20 if (!v.freshiv || !usedIvs[v.iv]) {
21 p.iv = v.iv;
22 }
23 if (!v.freshsalt || !usedSalts[v.salt]) {
24 p.salt = v.salt;
25 }
26 var rp = {};
27 var ct = sjcl.encrypt(v.password || v.key,
28 myPlainText, p, rp);
29 v.iv = rp.iv;
30 usedIvs[rp.iv] = 1;
31 if (rp.salt) {
32 v.salt = rp.salt;
33 usedSalts[rp.salt] = 1;
34 }
35 v.key = rp.key;
36 if (v.json) {
37 v.ciphertext = ct;
38 v.adata = ’’;
39 } else {
40 v.ciphertext = ct.match(/"ct":"([ˆ"]*)"/)[1];
41 }
42 form.set(v);
43 v.plaintext = ’’;
44 form.set(v);
45 form.ciphertext.el.select();
46 };

Figure B.1. The AspectScript code for encryption.

Accepted to PPPJ 2013 11 2013/6/28

Function adviceDecrypt is the advice that invokes the decrypt
function of the JavaScript SJCL library (Figure B.2). Having re-
ceived ciphertext as input, the function leverages the DOM ob-
ject form to decrypt both JSON formatted and raw data.

Function sjcl.decrypt decrypts JSON data, taking password,
key, ciphertext as parameters and using the global variable of
rp. Function sjcl.codec.base64.toBits decryps raw data,
taking ciphertext as a parameter. Function sjcl.mode.decrypt
decrypts the preprocessed ciphertext by using AES.

C. The Template-based Code Generating
Examples

Class TemplateGen (Figure C.1) uses a library for generating the
JavaScript source code. Method runTemplateGen replaces the
attributes in the corresponding template with the values of its input
parameters, which include the group and template names.

1 var adviceDecrypt = function(ciphertext) {
2 var v = form.get();
3 var iv = v.iv, key = v.key, adata = v.adata, aes;
4 var v.ciphertext = ciphertext;
5 if (ciphertext.match("{")) {
6 try {
7 v.plaintext = sjcl.decrypt(
8 v.password || v.key, ciphertext, {}, rp);
9 } catch(e) {

10 error("Can’t decrypt: "+e);
11 return;
12 }
13 v.mode = rp.mode;
14 v.iv = rp.iv;
15 v.adata = rp.adata;
16 if (v.password) {
17 v.salt = rp.salt;
18 v.iter = rp.iter;
19 v.keysize = rp.ks;
20 v.tag = rp.ts;
21 }
22 v.key = rp.key;
23 v.ciphertext = "";
24 document.getElementById(’plaintext’).
25 select();
26 }
27 else
28 {
29 ciphertext = sjcl.codec.base64.
30 toBits(ciphertext);
31 if (iv.length === 0) {
32 error("Can’t decrypt: need an IV!");
33 return;
34 }
35 if (key.length === 0) {
36 if (v.password.length) {
37 doPbkdf2(true);
38 key = v.key;
39 }
40 }
41 aes = new sjcl.cipher.aes(key);
42 try {
43 v.plaintext = sjcl.codec.utf8String.
44 fromBits(
45 sjcl.mode[v.mode].decrypt(aes,
46 ciphertext, iv, v.adata, v.tag));
47 v.ciphertext = "";
48 document.getElementById(’plaintext’).
49 select();
50 } catch (e) {
51 error("Can’t decrypt: " + e);
52 }
53 }
54 form.set(v);
55 };

Figure B.2. The AspectScript code for decryption.

The conditional statement on line 9 determines for which con-
cern (e.g., security, persistence, transactions, etc.) the JavaScript
code should be generated. On line 10, object templateGroup
manages the group file format to define a group of templates. Then,
on line 14, method getInstanceOf instantiates a template from
the group. On line 15, method getAspectObjArgs returns the in-
stance aspectObj that can access the attributes. At the same time,
the returned aspectObj parses the program elements containing
annotations and connects them with the variables in a given tem-
plate.

Class AspectObject defines the mapping between annota-
tions and the concerns they express. The code generator automates
the implementation of the specified concerns systematically and
generally, making it possible for the user to specify various non-
functional concerns declaratively, thus freeing the programmer to
focus on implementing the Web application’s business logic.

1 import java.util.ArrayList;
2 import java.util.List;
3 import org.antlr.stringtemplate.StringTemplate;
4 import org.antlr.stringtemplate.StringTemplateGroup;
5

6 public class TemplateGen {
7 void runTemplateGen(List<String> attrs,
8 String groupName, String templateName) {
9 if (groupName.equals(...)) {

10 StringTemplateGroup templateGroup =
11 new StringTemplateGroup(
12 groupName, templateName);
13 StringTemplate theConcretAspect =
14 templateGroup.getInstanceOf("theAspect");
15 AspectObject aspectObj =
16 getAspectObjArgs(groupName);
17 for (int i = 0; i < attrs.size(); i++) {
18 theConcretAspect.setAttribute(
19 attrs.get(i), (i + 1));
20 theConcretAspect.setAttribute(
21 attrs.get(i), aspectObj.getVar());
22 theConcretAspect.setAttribute(
23 attrs.get(i), aspectObj.getKey());
24 theConcretAspect.setAttribute(
25 attrs.get(i), aspectObj.getFunc());
26 }
27 }
28 else if (..) {
29 ...
30 }
31 }
32 }

Figure C.1. The code generator.

1 class AspectObject {
2 String key;
3 String var;
4 String func;
5

6 public AspectObject(String key,
7 String var, String func) {
8 this.key = key;
9 this.var = var;

10 this.func = func;
11 }
12 ...
13 }

Figure C.2. An object for generating the AspectScript code.

Accepted to PPPJ 2013 12 2013/6/28

