
Language Design for Distributed Objects

William R. Cook
University of Texas in Austin
wcook@cs.utexas.edu

Eli Tilevich
Virginia Tech

tilevich@cs.vt.edu
Ali Ibrahim

University of Texas in Austin
aibrahim@cs.utexas.edu

Ben Wiedermann
University of Texas in Austin

ben@cs.utexas.edu

ABSTRACT
The fundamental ideas of distributed objects have changed
little in the last 20 years. Existing languages are retrofitted
with transparent distribution mechanisms based on proxies.
Experiments with mobile code demonstrate its power but
have little impact on practice. The problems with trans-
parency and mobile code have been well known since at
least 1994. But in the absence of any fundamental new
ideas, the same problematic approaches are used, for ex-
ample in the design of Java RMI. In this essay we discuss
a new programming construct called Remote Batch Invoca-
tion (RBI). A batch is a code block that combines remote
and local execution over fine-grained object interfaces, but
is executed by partitioning and remote evaluation. Remote
Batch Invocation effectively addresses the shortcomings of
transparent distribution with a controlled form of mobile
code. Our experience leads us to believe that distribution
cannot be implemented as a library, but requires specific lan-
guage support. Viewing distribution as a language design
problem represents a revolutionary step in the development
of distributed objects.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features—Frameworks; D.1.3 [Programming Tech-
niques]: Distributed Programming

General Terms
Languages, Design

Keywords
distributed computing, mobile code, language design, batch-
ing

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Distributed Objects for the 21st Century 2009 Genoa, Italy
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

The most widely-used approach to implementing distributed
objects is to retrofit existing languages with a form of re-
mote procedure call. This pragmatic approach continues to
be popular despite increasing awareness of its deficiencies.
Numerous alternatives based on mobile code have also been
explored, but we believe they have not achieved widespread
adoption because they are difficult to use to implement com-
mon distribution patterns.

We have recently invented a new programming construct,
called a batch block, that expands the unit of distribution
from single procedure calls to blocks of code. In this essay we
discuss the background for this new construct, using Waldo
et. al.’s ‘A Note on Distributed Computing’ [23] as a guide.

2. REMOTE PROCEDURE CALLS
The original motivation for Remote Procedure Calls (RPC)

was as a machine-oriented analog to the text-based, conver-
sational command languages used in many distributed pro-
tocols [24]. The idea was to replace commands with stub
procedures that send messages to the remote system using
standard data encoding. The result was transparent dis-
tribution, where remote procedure calls work just like local
calls. It is interesting to note that conversational command-
line interfaces are still the backbone of internet functionality
(mail, web, file transfer). Remote procedure calls were gen-
eralized to support remote method calls in object-oriented
systems [15, 25]. Stubs were generalized to remote object
proxies, providing transparent distribution of objects.

A key advantage of RPC is that procedure calls are ubiq-
uitous in programming languages. Thus, most programming
languages can express remote method calls in a natural fash-
ion. In particular, a language can support remote calls by
simply defining an appropriate library. These libraries can
be created automatically by stub generators.

The problems with RPCs are well known [20, 23, 17, 22].
In 1994, engineers at Sun Labs published ‘A Note on Dis-
tributed Computing’ [23], a manifesto which attacked the
widely-held view that the goal of distributed object systems
should be to hide the complexities of distributed comput-
ing. Waldo and colleagues argued persuasively that local
and distributed programming models are different, and thus,
‘papering over the network’ is bound to fail. They focus on
four issues: latency, memory access, partial failure, and con-
currency.

Latency causes inefficiency when invoking multiple remote
operations. Numerous proposals have been made to ad-
dress this problem, including asynchronous RPC and im-
plicit batching [1, 4, 6]. Unfortunately, asynchrony does not

help when a later operation depends upon the result of an
earlier one. In addition, fine-grained asynchrony can signif-
icantly complicate client programming. Implicit batching is
sensitive to small changes in programs, leaving programmers
without a clear performance model. Design patterns, includ-
ing Remote Façades and Data Transfer Objects [8], opti-
mize communication at the cost of tying the server interface
design to typical client usage patterns, which compromises
transparency and compositionality. In short, efforts to op-
timize latency within traditional RPC have side-effects that
are often as bad as the problem they are meant to solve.

Memory access is a problem because a local pointer is
not valid when sent to a remote machine. Distributed ob-
ject systems use remote proxies as a kind of remote pointer
to an object on another machine. To unify local and re-
mote computation, proxies must be created automatically
whenever a reference to an object is sent remotely. Overuse
of proxies leads to chatty communication and increased la-
tency. One alternative is to move objects between client
and server, rather than creating proxies. This requires that
the local and remote systems share the same runtime, that
the code be available on both machines or transmitted dy-
namically. Since objects themselves often have pointers to
other objects, an important problem becomes how one can
avoid sending too many objects with each remote procedure
call [12]. Remote pointers also introduce the problem of
distributed garbage collection [16].

Partial failure is a problem because each component of a
distributed computation (e.g., client, server, or the network)
can fail independently. Partial failure is both difficult to de-
tect and difficult to handle in a general and reusable fash-
ion. The shared wisdom among distributed system devel-
opers has been that effective failure handling is application-
specific. That is, each distributed application requires that
the programmer writes custom code to handle each possible
case of partial failure.

Concurrency is inherent in remote calls, because a dis-
tributed application contains at least two separate threads of
execution, at each side of distributed communication. These
threads do not share a common resource manager, thus mak-
ing their coordination challenging. For example, a synchro-
nization operation performed on a client proxy of a remote
object does not get propagated to the actual remote object
on the server. Thus, maintaining the centralized semantics
of Java built-in concurrency constructs requires special han-
dling, which can be nontrivial [21].

Despite this analysis, two years later the authors of ‘A
Note’ defined Java RMI, a distributed object model for the
Java language [25]. Java RMI is basically an object-oriented
implementation of the Remote Procedure Call paradigm that
leverages the capacities of the Java language and the Java
Virtual Machine to offer a more intuitive model for dis-
tributed computing. To address partial failure in RMI, all
remote calls are declared as throwing a RemoteException

that the programmer is responsible for handling. The pro-
grammer can too easily avoid this responsibility by simply
leaving a catch clause empty. Even with these small im-
provements, we believe that RMI tries to paper over the
network in exactly the way that ‘A Note’ criticizes. The
issues of latency, memory access model, partial failure and
concurrency remain. Given the problems with remote pro-
cedure calls, it is not surprising that alternatives to remote
procedure calls have been developed.

3. REMOTE EVALUATION
Remote evaluation [19] is a form of mobile code in which

a client sends code to a server to be executed. It generalizes
remote procedure calls, which can be viewed as a form of
remote evaluation where the code is a single call. Remote
evaluation allows the code to contain multiple calls, condi-
tionals, and possibly loops or other control flow constructs.
A detailed review of remote evaluation and how it relates
to other forms of mobile code is beyond the scope of this
essay [9]. Instead we will discuss a few of the issues that
have arisen in the exploration of remote evaluation. Some
of these issues relate to problems discussed in ‘A Note’.

First of all, remote evaluation solves the problem of la-
tency. Any number of remote operations can be performed
in one round-trip, and the operations can depend upon each
other in complex ways.

Unfortunately, remote evaluation alone does not solve the
problem of memory access. What data to transmit with the
code, and how the data is migrated, is a difficult problem.
There are also issues in deciding what resources the mobile
code should be allowed to access. System calls? Construc-
tors? Primitive data types operations? This is both a secu-
rity issue and a portability issue.

Remote evaluation does have an impact on partial failure:
the set of remote operations represented by a single object
will be executed atomically with respect to network failures.
If a network failure prevents a batch from being sent to the
remote server, then no remote operations are performed.
Otherwise, all the remote operations are performed unless
one of the operations results in a logical exception. Many
other issues relating to partial failure still remain, however.

Sending code in a specific byte-code format is often an
easy way to go, but it is not language independent. Instead,
some work on remote evaluation has defined an intermediate
language for the code. Examples include SQL and Tube [10].
The latter uses a form of Scheme as the intermediate lan-
guage. It is interesting to note that some RPC systems
have also included mechanisms for executing multiple calls.
This can be viewed as a primitive form of remote evalua-
tion, where the code to be executed is a linear sequence of
basic calls. Examples include NFS v4, ONC RPC [18], and
Amazon Web Services [2].

The issues listed above are well-known. We have identified
another issue in using mobile code for client-server interac-
tion: how are results returned to the client? Work on mobile
code has focused on sending code, but it is not clear which
results to return, or how to return them. And how does the
client name and bind variables to the results? If the mobile
code makes many method calls and returns many results,
the problem becomes worse.

More generally, we think that a key problem is how local
and remote code interact. It is not enough to simply send
some remote code to the server. It must be meaningfully
connected to the client that creates inputs to the remote
code and then uses the results returned by the remote code.

4. REMOTE BATCH INVOCATION
Given 40 years of history in building distributed systems,

is there any hope in discovering any fundamentally new ap-
proach to distributed computing? One must be careful how
the question is asked. The functionality of distributed sys-
tems and messaging has been thoroughly investigated. It is

unlikely that researchers will find anything new at the level
of wire formats or messaging. However, the programming
language interface to distributed computing still has some
potential for improvement.

One thing that both distributed objects and remote eval-
uation have in common is that they assume an existing lan-
guage and implement distribution as a library. That is,
they don’t consider what kind of language changes might be
useful for distributed computing. On the other hand some
languages have been designed from the ground up for dis-
tributed computing. Emerald is an early example, which pi-
oneered the idea of proxies and mobile code [3]. But at that
point the issues with distributed objects had not yet sur-
faced. Research languages have also been designed, but they
often have other goals besides practical improvements to dis-
tributed objects (Obliq [5], Lambda 5 [14], pi-calculus [13],
join calculus [7], etc).

Our perspective is both practical and radical. From a
practical viewpoint, we start with the design of widely-used
imperative languages, using Java as an example. The same
principles would apply to Python, C#, or ML. The radical
departure is that we consider any language changes that are
useful to support distributed computing. We eventually ar-
rived at an interesting new statement form, analogous to try

or synchronized, that we find useful in building distributed
systems.

We have developed Remote Batch Invocation (RBI) as
a new distributed programming abstraction that combines
the clean programming model of RPC with the efficiency
and simplicity of remote evaluation. The technical details of
RBI are described in a paper appearing in the main technical
program of ECOOP 2009 [11]. In short, the key concept in
RBI is the batch statement, whose body combines remote
and local computation. In Java, a batch block looks like
RMI but it executes using remote evaluation. In addition,
the batch block moves the necessary data between client and
server in bulk. This essay focuses on the how RBI addresses
the issues identified in ‘A Note’, and on its potential as a
new approach to distributed objects.

RBI is an effective solution to latency of fine-grained calls.
These benefits derive from the use of remote evaluation,
which executes any number of fine-grained calls in a single
round trip. But RBI provides a familiar high-level program-
ming model that hides the complexity of remote evaluation.
The net effect is that there is no need for Remote Façades or
Data Transfer Objects to combat latency. The batch state-
ment gives programmers a clear performance model: one
round trip per lexical batch statement.

Our approach to RBI is based on strict interfaces: a client
can only access the operations in the public service interface
of the server.

RBI avoids problems relating to memory access by elim-
inating the need for remote pointers. Only primitive data
types are transferred between the client and server. Any in-
termediate objects that are accessed or created on the server
are used on the server within the batch, and then discarded
when they are done. This makes sense, because the intuitive
view of a batch is that it specifies some computations to be
performed on a remote server, but when it is running the ‘re-
mote’ code is actually executing locally on the server. Only
the visible outputs of these computations can be seen by
the client. RBI allows the server to be stateless, in the sense
that it does not have to preserve state about clients after

a batch executes. There is no need for distributed garbage
collection.

To transfer a complex object, like a hash table, from client
to server (or vice-versa), the batch must create a new ob-
ject and then copy the primitive values from one object to
another, using the public interface of the objects. This is
a high-level form of serialization that also supports trans-
lation between disparate implementations. Future work on
RBI will allow these serialization operations to be reused in
a library.

More permissive memory access models are possible. The
key point is that RBI supports a very clean and restrictive
model in a natural way. From a philosophical viewpoint,
there is also some benefit to transferring only primitive val-
ues. Complex data types and user defined data abstrac-
tions (classes and ADTs) can have very different seman-
tics in different languages, making them difficult to trans-
fer. Rather than implement complex data transmission, RBI
moves more of the complexity into the remote evaluation
script. We believe that this is a good approach because sim-
ple expressions and statements can be executed in nearly any
programming language: Expressions (calls, sequences, con-
ditionals, loops) are common to all programming languages.
But data structures, and especially complex data types and
abstractions, cannot be transferred easily.

For logical exceptions, our current implementation of RBI
mimics conventional programming language semantics; ex-
ceptions transfer execution to the closest enclosing try/catch
block on the client. In previous work, we have explored other
options such as allowing for re-execution of remote oper-
ations or rolling back already executed remote operations.
We are not sure yet how important these options are and
how they would be expressed in our language.

RBI is different from mobile code. With RBI, the code to
be executed contains both local and remote code. The block
is partitioned to separate the local and remote code. RBI
also identifies all communication needed to connect them.
Mobile code alone does not do this.

RBI is often compared to asynchronous remote method
invocation because they both address the issue of latency
in calling remote methods. We view synchronicity of the re-
mote calls as orthogonal to batching. Our current implemen-
tation uses synchronous method invocation partly because
it is built on Java RMI. However, a remote batch as a whole
could be executed asynchronously in the same way individ-
ual remote method calls can be executed asynchronously.
Another interesting way to combine RBI with asynchronous
execution is to optimize the remote server script produced
by RBI. Similar to the work on asynchronous methods calls,
the remote server script could be parallelized by an inter-
preter or compiler.

5. CONCLUSIONS
This essay has discussed Remote Batch Invocation (RBI),

a new programming construct that enables greater expres-
siveness in creating efficient distributed object systems. RBI
retains the usability advantages of RPC-based programming
abstractions for distributed computing, while eliminating or
significantly improving on their limitations. This indicates
that RBI may constitute a revolutionary step in the progres-
sion of programming technologies that use objects to tame
the complexity of constructing and maintaining distributed
systems.

Although only the future will tell whether RBI will enjoy
wide adoption among distributed system programmers, we
would like to ensure that tool vendors have a chance to seri-
ously consider the advantages of RBI. To that end, we have
made our reference implementation freely-available on the
web for experimentation and porting to different languages
and environments. Although the reference implementation
is in Java and uses RMI as its transport, RBI can be imple-
mented in any object oriented language and can use a variety
of transport mechanisms. We hope that RBI will make it
into the toolset of professional programmers charged with
the challenges of creating the ever more sophisticated dis-
tributed systems of today and tomorrow.

Availability:
The reference implementation of RBI can be downloaded
from: http://research.cs.vt.edu/vtspaces/best

6. REFERENCES
[1] M. Alt and S. Gorlatch. Adapting Java RMI for grid

computing. Future Generation Computer Systems,
21(5):699–707, 2005.

[2] Amazon.com. Amazon associates web services.

[3] A. Black, N. Hutchinson, E. Jul, H. Levy, and
L. Carter. Distribution and Abstract Types in
Emerald. IEEE Transactions on Software Engineering,
13(1):65–76, 1987.

[4] P. Bogle and B. Liskov. Reducing cross domain call
overhead using batched futures. ACM SIGPLAN
Notices, 29(10):341–354, 1994.

[5] L. Cardelli. A language with distributed scope. In
POPL ’95: Proceedings of the 22nd ACM
SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 286–297, New York,
NY, USA, 1995. ACM.

[6] K. Cheung Yeung and P. Kelly. Optimising Java RMI
Programs by Communication Restructuring. In ACM
Middleware Conference. Springer, 2003.

[7] C. Fournet. The Join-Calculus: a Calculus for
Distributed Mobile Programming. PhD thesis, Ecole
Polytechnique, Palaiseau, 1998.

[8] M. Fowler. Patterns of Enterprise Application
Architecture. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2002.

[9] A. Fuggetta, G. P. Picco, and G. Vigna.
Understanding code mobility. IEEE Transactions on
Software Engineering, 24:342–361, 1998.

[10] D. A. Halls. Applying Mobile Code to Distributed
Systems. PhD thesis, University of Cambridge,
Cambridge, England, 1997.

[11] A. Ibrahim, Y. Jiao, E. Tilevich, and W. R. Cook.
Remote batch invocation for compositional object
services. In The 23rd European Conference on
Object-Oriented Programming (ECOOP 2009), July
2009.

[12] C. V. Lopes. Adaptive parameter passing. In ISOTAS
’96: Proceedings of the Second JSSST International
Symposium on Object Technologies for Advanced
Software, pages 118–136, London, UK, 1996.
Springer-Verlag.

[13] R. Milner. Communicating and mobile systems: the
pi-calculus. Cambridge University Press, 1999.

[14] T. Murphy, V. Karl, C. R. Harper, and F. Pfenning. A
symmetric modal lambda calculus for distributed
computing. In In Proceedings of the 19th IEEE
Symposium on Logic in Computer Science (LICS,
pages 286–295. IEEE Press, 2004.

[15] The Object Management Group (OMG). The
Common Object Request Broker: Architecture and
Specification, 1997.

[16] D. Plainfossé and M. Shapiro. A survey of distributed
garbage collection techniques. In IWMM ’95:
Proceedings of the International Workshop on Memory
Management, pages 211–249, London, UK, 1995.
Springer-Verlag.

[17] U. Saif and D. Greaves. Communication primitives for
ubiquitous systems or RPC considered harmful. In
Distributed Computing Systems Workshop, 2001
International Conference on, pages 240–245, 2001.

[18] R. Srinivasan. RFC 1831: RPC: Remote procedure
call protocol specification version 2, 1995.

[19] J. W. Stamos and D. K. Gifford. Implementing remote
evaluation. IEEE Trans. Softw. Eng., 16(7):710–722,
1990.

[20] A. S. Tanenbaum and R. v. Renesse. A critique of the
remote procedure call paradigm. In EUTECO 88,
pages 775–783. North-Holland, 1988.

[21] E. Tilevich and Y. Smaragdakis. Portable and efficient
distributed threads for Java. In ACM Middleware
Conference, pages 478–492. Springer-Verlag, Oct 2004.

[22] S. Vinoski. RPC Under Fire. IEEE INTERNET
COMPUTING, pages 93–95, 2005.

[23] J. Waldo, A. Wollrath, G. Wyant, and S. Kendall. A
Note on Distributed Computing. Technical report, Sun
Microsystems, Inc. Mountain View, CA, USA, 1994.

[24] J. E. White. RFC 707: High-level framework for
network-based resource sharing, Dec. 1975.

[25] A. Wollrath, R. Riggs, and J. Waldo. A distributed
object model for the javatm system. In COOTS’96:
Proceedings of the 2nd conference on USENIX
Conference on Object-Oriented Technologies
(COOTS), pages 17–17, Berkeley, CA, USA, 1996.
USENIX Association.

