
Report on the

Second ACM Workshop on
Hot Topics in Software Upgrades (HotSWUp’09)

http://www.hotswup.org/2009/

Tudor Dumitraş
Electrical and Computer
Engineering Department

Carnegie Mellon University
Pittsburgh, PA

tudor@cmu.edu

Iulian Neamtiu
Department of Computer
Science and Engineering
University of California,

Riverside
Riverside, CA

neamtiu@cs.ucr.edu

Eli Tilevich
Department of Computer

Science
Virginia Tech

Blacksburg,VA
tilevich@cs.vt.edu

ABSTRACT
The Second ACM SIGPLAN Workshop on Hot Topics in
Software Upgrades (HotSWUp’09) was held on 25 Octo-
ber 2009 in Orlando, FL. The workshop was co-located
with OOPSLA 2009 and was sponsored by ACM SIGPLAN.
Twenty researchers and practitioners, from the program-
ming languages, systems, software engineering and database
communities, attended HotSWUp’09.

The goal of HotSWUp is to identify, through interdiscipli-
nary collaboration, cutting-edge research ideas for imple-
menting software upgrades.

The workshop combined presentations of peer-reviewed re-
search papers with invited presentations from well-known
experts and a keynote speech on the practical issues related
to performing large-scale upgrades. The audience included
researchers and practitioners from academia, the industry
(Facebook, ABB, Oracle) and the open-source community
(AppUpdater). In addition to the technical presentations,
the program allowed ample time for discussions, which were
driven by debate questions provided in advance by the pre-
senters.

HotSWUp provides a premier forum for discussing problems
that are often considered niche topics in the established re-
search communities. For example, the technical discussions
at HotSWUp’09 covered dynamic software updates, pack-
age management tools, database schema upgrades, upgrades
of systems with real-time constraints, etc., and highlighted
many synergies among these topics. Perhaps more inter-
estingly, the industry presentations provided real-world ex-
amples of systems that a have strong requirement for online

upgrades. These examples emphasized the magnitude of the
software upgrade problems that the industry is facing today.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Mainte-
nance, and Enhancement; D.3.3 [Programming Lan-
guages]: Language Constructs and Features; D.4.7
[Operating Systems]: Organization and Design; H.2.1
[Database Management]: Logical Design; K.6.3
[Management of Computing and Information Sys-
tems]: Software Management

General Terms
Management, Experimentation, Human Factors, Perfor-
mance, Reliability

Keywords
Software upgrades, dynamic software update, package man-
agement, database schema evolution, real-time upgrades

Keynote Address
Release Management And Software Deployment At
Facebook by David Reiss (Facebook)

David Reiss explained that Facebook performs more up-
grades than any other organization in the world. This is
the result of Facebook’s agile development culture, which
compels the engineers to “move fast and break stuff.” The
defects introduced in this manner are fixed in the next up-
grade cycle (or earlier).

Facebook upgrades are executed in weekly deployments. On
each Tuesday, after two days of testing when ≈1,000 devel-
opers use the new features internally, the upgrade is de-
ployed to the live site. The developers are responsible for
the upgrade and its outcomes, rather than transferring the
code to a department of professional system administrators.
This approach ensures that the engineers assume responsi-
bility for the development, testing and deployment of their
software and that they “feel the pain” of the users. All the
experimental code is kept in the main development trunk.
New features are deployed by copying the changes to the live

146

branch (i.e., via svn copy) and by pushing the code to all
the front-end servers. At this point, Danny Dig remarked
that code refactorings often result in breaking changes (see
Dig et al. [7]). Reiss replied that refactorings are rare at
Facebook. Moreover, conflicts do not occur often because
the code does not diverge too much during one week.

Reiss then described three upgrade techniques used at Face-
book. He first focused on an essential piece of the company’s
agile development environment, called Gatekeeper. Gate-
keeper is a system developed in-house, that allows program-
mers to check whether a feature is enabled in the current
version of the code. This prevents separate development
branches and complex code merges; Facebook engineers up-
date the code from the the development trunk and use Gate-
keeper to keep the new features disabled until they are ready
to be released. This effectively decouples the deployment of
a new feature from its launch. Gatekeeper leads to inelegant
code, peppered with if-ladders that check for the availability
of various feature combinations. However, Facebook devel-
opers have found this programming style to be very effective,
because the boundaries of different features and versions are
reflected in the code, instead of being hidden in the branches
of a revision control repository. Michael Hicks asked if Face-
book eventually removes the Gatekeeper checks, to avoid
performance degradation. Reiss explained that they have
automated scripts that look for features that are enabled
for 100% of the users and that have not changed in a while,
and the developers try to remove the corresponding checks.
However, there are checks (e.g., for enabling optimizations
specific to the IA64 architecture) that are never removed.

The second technique that Reiss described targets a reduc-
tion of bandwidth usage when pushing upgrades to the front-
end servers. Because the development machines and the
production servers are usually located in different data cen-
ters, upgrades often require excessive bandwidth, even when
sending code deltas only (e.g., through rsync). After evalu-
ating several alternatives, Facebook decided to use BitTor-
rent to disseminate these updates. Reiss also described a
technique for taking over the active TCP sockets of a server,
by opening a UNIX-domain socket between the old and new
versions and duplicating the socket of the active connection
(i.e., using dup2 and libafdt [1]).

These techniques were developed because Facebook favors
online upgrades and tries to avoid downtime. To achieve
this goal, the site provides a relaxed consistency guarantee:
when you change your data you will see the effects immedi-
ately, but other users might experience a delay. Such incon-
sistencies might result from changes in either the application
front-end or the storage back-end.

Back-end changes are infrequent and do not have a major
impact on Facebook. Data migrations always require special
handling code and usually render the site unavailable for the
users affected by the upgrade (e.g., because ALTER TABLE

is a very inefficient operation in MySQL). However, Face-
book is able to avoid such migrations most of the time. The
changes to database schemas are usually limited to adding
columns and tables, and schema inconsistencies between the
application and the database do not constitute a significant

challenge for Facebook1 (but see the presentation on “Au-
tomating Database Schema Evolution in Information Sys-
tem Upgrades,” in the third session, for examples of systems
where this is a major problem).

Front-end changes, however, have a major impact. A front-
end upgrade is a long-running operation because many
servers must be upgraded. During a front-end upgrade,
the site is in a mixed-version mode: some servers run the
new version while others, which have not been upgraded
yet, continue to run the old version. It is therefore pos-
sible for a client to load the new version of the page (in-
cluding JavaScript code), from a server that has been up-
graded, and to invoke an AJAX callback that arrives at a
server still running the old version of the front-end code. In
this case, the server might be unable to process the callback
because it corresponds to features introduced in the new
version. These front-end inconsistencies represent a major
challenge for Facebook.2 Therefore, Reiss’s debate question,
addressed to the audience, was “How can we provide a con-
sistent JavaScript environment to a browser that interacts
with two or more versions of our back-end?”

This remained an open question.

Session 2: Upgrade Models And Mechanisms

Cooperative Update: A New Model for Dependable
Live Update by Cristiano Giuffrida and Andrew S. Tanen-
baum (Vrije Universiteit, Amsterdam, The Netherlands) [9]

After the keynote speech describing the state of the practice
at Facebook, Cristiano Giuffrida took a step back and dis-
cussed the models for upgrading a system online, focusing on
their dependability guarantees. To this end, Giuffrida refer-
enced Michael Hicks’s Ph.D. thesis [12], which describes two
update models: the interrupt model and the invoke model.
In the interrupt (push) model, the system is interrupted at
an arbitrary point in time to apply the update and the state
is transferred into the new version. Updating tools that fol-
low the interrupt model (e.g., Ginseng [14]) enforce safety
guarantees at runtime and are suitable for providing back-
ward compatibility at the binary level. In the invoke (pull)
model, the system reaches a valid update point and notifies
the updating tool. In this case, the safety guarantees can
be enforced through static or dynamic analysis, which are
suitable for providing backward compatibility at the source
level. Giuffrida questioned the scalability of these models in
the presence of complex upgrades; for instance, open-source
projects double in size every 14 months and require large
amounts of code to be changed during an upgrade. This in-
creases the complexity of state transfers (not only to handle
data type changes), the probability that an update requires

1As Bobby Johnson, Facebook’s Director of Engineering,
explained in his OOPSLA keynote four days later, this is
the result of the site’s highly-connected user base. Because
the friendship connections evolve continuously and do not
produce stable clusters, the Facebook system scales bet-
ter through horizontal partitioning (e.g., split users across
several databases) than vertical partitioning (e.g., split the
names and addresses in different database tables). This al-
lows Facebook to avoid major schema changes.
2According to Johnson, this is, currently, Facebook’s biggest
problem.

147

an unbounded time to complete (when enforcing safety con-
straints eagerly), and the effort to inspect the code manually
(to determine safe update points and to ensure the correct-
ness of execution for all possible update states).

These two models aim to be transparent to the system devel-
opers, separating the development and upgrading concerns
with the goal of supporting legacy code. Instead, Giuffrida
proposed a cooperative update model, which trades trans-
parency and backward compatibility for an increased relia-
bility of the update process. Because the average time be-
tween updates is 30 days in highly-available systems, Giuf-
frida argued that providing relaxed reliability guarantees
during a live update can have severe consequences. In the
cooperative model, the system is receptive to changes and in-
terprets the update properties to prepare for a live update.
Updates are packaged along with metadata that describes
the nature of the update, and an update manager translates
this specification into an update protocol that is appropri-
ate for the changes implemented. Giuffrida described a six-
step procedure for performing a cooperative update. He ex-
plained that this live-update procedure is deterministic and
bounded in time.

At the end of the talk, Alan Choi asked if system compo-
nents must know the state of the other components they
communicate with, during a cooperative update. Giuffrida
replied that components must have sufficient information to
avoid deadlock, but need not know the global state of the
system.

Dynamic Software Updates for Real-Time Systems
by Michael Wahler, Stefan Richter (ABB Corporate Re-
search, Switzerland) and Manuel Oriol (University of York,
UK) [15]

Michael Wahler remarked that, while the previous talks ad-
dressed systems that are updated weekly or monthly, in em-
bedded real-time systems the average time between updates
is one year. These systems have typical lifetimes of 20–
30 years. The main concern in this case is meeting real-
time deadlines. This is challenging, because, while much
of the previous research focused on modifying the internal
structures of the operating system to implement live update
mechanisms, ABB uses commercial operating systems that
cannot be altered.

An embedded system includes processing units that con-
trol physical elements (e.g., a power network), relying on
sensors (e.g., an ammeter) and actuators (e.g., a circuit
breaker). The operating systems available off-the-shelf for
these embedded processors provide mechanisms that allowed
ABB to build a component-based framework supporting dy-
namic updates. These mechanisms include remote debug-
ging, message-passing interfaces and separate address spaces
for threads.

The components execute cyclically on the processor, accord-
ing to a static schedule that is established offline. The up-
date mechanism uses the slack available in each scheduling
cycle to perform the code changes and the state transfer re-
quired. Dig asked what kind of changes are supported by
this framework, and Wahler gave bug fixes and changes in

the communication protocol as examples. He also presented
experimental results, illustrating the update of a component
with 4 kB of state during the 2 ms of slack from a 5 ms
scheduling cycle.

Wahler concluded by outlining several directions for future
work, which include updating multiple components atomi-
cally and tolerating malicious behavior. However, he cau-
tioned the audience that, in the embedded world, there is
a lot of skepticism about whether live updates will ever be-
come acceptable for customers with strict certification re-
quirements.

On Performance of Delegation in Java by Sebas-
tian Götz (Dresden University of Technology, Germany)
and Mario Pukall (Otto-von-Guericke University Magde-
burg, Germany) [10]

Sebastian Götz presented an experimental evaluation of the
overhead imposed by delegation (dispatching a call to an-
other method) in Java. In addition to being one of the key
mechanisms of object-oriented design patterns, delegation is
also used by many dynamic software updating mechanisms
(e.g., function indirection) and contributes to their overhead.

The authors evaluated delegation chains of 1000 invocations,
using 10 Java Virtual Machines (JVMs) on 3 operating sys-
tems, installed on 2 different machines. The results included
the surprising observation that, in some cases, delegation
improves performance by up to 8%. Götz explained that
this happens because the just-in-time (JIT) compiler opti-
mizes the execution on-the-fly. The more information the
JIT compiler has, the better it gets at optimizing the pro-
gram, for instance through inlining or by composing the del-
egated calls automatically. In other experiments, however,
the performance penalty recorded was up to 50%.

Hicks questioned the choice of evaluating delegation chains
of 1000 invocations. He explained that the chains might have
100 calls but never 1000, and the benefits observed might be
exacerbated by these long delegation chains.

Eli Tilevich, the session chair, concluded the formal presen-
tations from the first session by recalling the old parable
that every problem in computer science can be solved by
adding a level of indirection and every performance problem
can be addressed by removing a level of indirection. He then
remarked that the last talk seems to suggest that this is not
always the case, because of optimizing JVMs.

Discussion

Giuffrida kick-started the discussion with the observation
that the average bug lifetime in operating systems is 1.8
years, and, even for security patches, studies suggest a time-
to-update of at least 10 days. He then suggested that the
main focus of upgrading mechanisms should be the mini-
mization of overhead, rather than the live update timing.
Reiss replied that this is true only if the upgrade doesn’t re-
quire downtime, and Hicks added that downtime shouldn’t
concern Facebook if it is below 50 ms (the threshold for
human perception).

148

Tudor Dumitraş asked how can we bound the worst-case-
execution-time (WCET) of state transfer, which seems to
be necessary for the first two approaches presented in this
session. Giuffrida clarified that his approach is not bounded
in time, but guaranteed to terminate eventually. Wahler ex-
plained that if the transfer is short enough, it doesn’t matter
whether it has an exponential complexity. However, he con-
ceded that there are no general guidelines for bounding the
state transfer. Austin Anderson asked Götz why delegation
seems to improve performance in some cases but not in oth-
ers. Tilevich expanded on this by saying that benchmarking
Java is tricky. For example, the extensive DaCapo bench-
mark suite [4] focuses on macro-benchmarks (real world ap-
plications with non-trivial memory loads). Tilevich won-
dered what can be learned from micro-benchmarks, such as
the ones presented in this session. Götz replied that the
goal of the paper was to assess the worst-case penalty due
to delegation.

Giuffrida closed the discussion with the controversial state-
ment that, unlike other research communities (e.g., grid
computing), we have failed to debate the level of trans-
parency that is appropriate for upgrading mechanisms.3

Hicks commented that being transparent to legacy code is
not a major concern for Facebook. He then explained that
we aimed for transparency and focused on updating existing
systems, which were designed without any concerns for soft-
ware upgrades, to demonstrate the feasibility of online up-
grades. Once this point was made, we can think about scala-
bility, how to achieve efficiency, etc. Dig added that we have
conducted some empirical studies in the past, but we need
more. In particular, empirical studies should be done from
the perspective of online upgrading—and not only software
evolution—in order to determine what the most frequent
changes are, and what changes are amenable to automation.

Session 3: OS And Database Upgrades

Online Application Upgrade Using Edition-Based
Redefinition by Alan Choi (Oracle Corporation, USA) [5]
(invited paper)

Alan Choi started his talk by presenting Oracle’s busi-
ness case for online upgrades: many customers demand
this functionality. The necessity of online upgrades arises
in various domains. Applications such as electrical-utility
management systems, support systems for global compa-
nies (e.g., customer-relationship management), assembly-
line manufacturing, e-commerce or online banking require
24/7 database availability. While continuous hardware avail-
ability can be solved by redundancy, we have no complete
solution for continuous software availability. To mitigate
this, Oracle 11g Release 2 allows online application upgrades
using a hot rollover technique, called edition-based redefini-
tion. This technique uses two separate editioning views: old
clients use the old edition, new clients use the new edition.
When data changes in either edition, cross-edition triggers
(backward and forward) ensure that changes are propagated
between the two views. Eventually, the old edition is retired.

3However, the chairs recall a lively debate, on the accept-
able amount of programmer annotations for dynamic soft-
ware updating techniques, held after the first session of
HotSWUp’08.

This technique allows clients to test a new version before de-
ploying it widely. Choi also presented a case study demon-
strating the use of edition-based redefinition to support the
upgrade of a human-resources support application.

Carlo Curino asked if there are any limitations on the form
of the backward/forward triggers, e.g., do they have to be in-
vertible? Choi responded that trigger code is left entirely up
to the application programmer. Hence, it is incumbent upon
the programmer to write triggers that ensure that data is
consistent between the old and new applications. Dumitraş
asked what happens if a trigger is buggy, and Choi replied
that triggers must be tested to make sure they function cor-
rectly. Dumitraş followed up his question by wondering why
are back triggers necessary at all. Choi explained that, in
some cases, Oracle customers require multiple versions to
be active during the upgrade in order to switch to the new
version gradually.

An Implementation of the Linux Software Repos-
itory Model for other Operating Systems by Neil
McNab (Appupdater Project, USA) and Anthony Bryan
(Metalink Project, USA) [13]

Neil McNab described Appupdater, an open-source system
for “detecting, downloading and installing upgrades auto-
matically.” Appupdater currently works on Windows, but
takes its inspiration from Linux. In particular, most Linux
distributions use shared repositories and local package-
management tools that make it easy to detect installed soft-
ware and upgrade. However, in Windows and Mac OS this
process is not streamlined, and applications (e.g., Firefox,
Adobe Reader) include custom-built upgrade mechanisms.

The design of a general-purpose upgrade mechanism needs
to overcome two challenges:

• Software Detection: how can we detect what soft-
ware or version is installed on the local machine? In
Windows, some programs use the registry, others em-
bed version information in the executable itself. Ap-
pupdater uses a local installed-packages database that
stores the hash values of installed programs, and maps
hash values to particular versions of applications.

• Software Download: how can we ensure the integrity
of the installer we are attempting to download? The
solution is to use Metalink, an open standard for rep-
resenting metadata for downloader programs. In par-
ticular, Metalink descriptions can contain information
about mirror lists, file hashes or file sizes.

Appupdater is open source and written in Python. It tries
to ensure privacy by not allowing the repository owner to
find out which software is installed locally, on the users’
machines. McNab also discussed the future of the project,
which includes porting Appupdater to Mac OS.

The audience asked what happens when somebody man-
ages to add a malicious application to the application repos-
itory. McNab responded that we must trust the application
providers. When asked if an Appupdater repository can be-
come a possible target for a DNS poisoning attack, McNab

149

acknowledged that DNS attacks are one of their concerns.
A follow-up question considered the scenario where the lo-
cal hash information on installed software is leaked, which
could make the client susceptible to “probing.” McNab ac-
knowledged that local hashes must be closely guarded. In
theory, they should only be communicated to the Appup-
dater repository, and not to other parties.

Automating Database Schema Evolution in Informa-
tion System Upgrades by Carlo Curino (Massachusetts
Institute of Technology, USA), Hyun J. Moon (NEC Labs,
USA) and Carlo Zaniolo (University of California, Los An-
geles, USA) [6]
(invited paper)

While the first talk in this session focused on mechanisms for
supporting software upgrades that require database changes,
Curino wondered what are the most common changes.
In particular, the presentation focused on two problems:
schema evolution and data evolution.

An analysis of Wikipedia shows that schemas do change a
lot. Moreover, each evolution step can impact up to 70%
of the queries issued by the application. Unfortunately, the
common practice for dealing with schema evolution is man-
ual schema migration. Ideally, migration would be auto-
matic and would provide safety guarantees (e.g., preserv-
ing integrity constraints). Curino presented an approach,
based on Schema Modification Operators (SMOs), that au-
tomatically rewrites queries for 97% of Wikipedia’s evolu-
tion steps. The remaining 2.8% are challenging because the
user exploits knowledge about the application that uses the
database. Sometimes the authors’ auto-migration system is
slow when compared to hand-crafted migrations that make
use of this domain knowledge.

The second line of work—data evolution and database
archival—centers around the archiving and querying of his-
toric contents. The authors propose archiving using the
original schema and automatically rewriting older or newer
queries so they can work on the original schema.

At this point, the audience was wondering what general
lessons can be learned from Curino’s results, which only
cover the evolution of Wikipedia. For instance, is the
query-failure rate (after each evolution step) representa-
tive? Rida Bazzi and Iulian Neamtiu shared their work-
in-progress observations that there is quite a large varia-
tion across applications. Curino agreed that more studies
are needed. He explained that, using support from the
NSF, his group is currently developing a benchmark for
schema evolution, which will include hundreds of applica-
tions (http://schemaevolution.org/).

When asked what percentage of schema evolutions are in-
vertible, Curino answered that, usually, schema changes do
not lose data; for instance, DELETE TABLE, or DELETE COL-

UMN are rare. Hicks added that one can use lenses [8] to
preserve back-and-forth invertibility. Dig pointed out that
there is a parallel between schema evolution and refactor-
ings; for example, we can see a relational databases as an
object instance, and a query as the interface supported by
that instance. Many of the techniques developed, over the

past 20 years, for refactoring programs might apply for au-
tomating schema changes.

A member of the audience then asked if these results are
representative for schema evolution in the corporate world
(e.g., how often do they use aggregates or stored procedures,
which are difficult to handle automatically?). Curino ac-
knowledged that more interaction with the industry would
be beneficial to determine whether the results obtained from
open-source systems, such as Wikipedia, are relevant for
commercial systems. Choi said that, in his experience, al-
most all schema evolution is currently a manual process.
Dumitraş asked what kinds of schema transformation im-
pose downtime, and Reiss answered that, because Facebook
can not tolerate downtime, their solution is to restrict the
form of updates instead.

Discussion

As the debate following Curino’s presentation segued into
the discussion part of the session, McNab asked the audi-
ence one final question: is there a method to ensure that
malicious software doesn’t make it into the software reposi-
tory of Appupdater? On solution, suggested by Reiss, was
for Appupdater to vouch that the only software that is of-
fered comes from trusted vendors.

Session 4: Dynamic Software Updating

Dynamic Software Updates: The State Mapping
Problem by Rida A. Bazzi, Kristis Makris, Peyman Nay-
eri and Jun Shen (Arizona State University, USA) [3]
(invited paper)

Rida Bazzi focused on the following two issues of Dynamic
Software Updating (DSU): (i) what mechanism should we
use to perform state mapping? and (ii) how can we deter-
mine whether an update is safe? He described UpStare, a
general mechanism for immediate updates to multi-threaded
applications that works by redirecting mid-function code in
old functions to mid-function code in the new function. Up-
Stare uses stack reconstruction to update active functions.
Blocking calls are transformed into non-blocking calls, and
all threads block before an update.

The main contribution of the paper is about taming the
state-mapping problem. The proposed solution assumes
some degree of compatibility between versions; some dif-
ferences are ignored to reduce the amount of state to be
mapped. For example, Bazzi explained the concept of
lightweight functions, which are guaranteed to exit in a
bounded period of time. In other words, these functions
have no loops, no recursion, no input, no synchronization,
etc. The strategy is to start with lightweight functions and
continue to heavyweight functions. UpStare waits for light-
weight functions to exit and performs semantic checking
with modifications.

During the presentation, the audience raised several ques-
tions. Hicks asked about a precise definition for heavyweight
functions. Reiss pointed out that network applications can-
not be free of heavy functions—there is always a heavy func-
tion if the program reads from a network socket. Hicks also

150

raised the possibility of having multiple threads that run
light weight functions and never exit. He asked whether
the threads would have to be blocked in such cases. Bazzi
suggested that these scenarios tend to be corner cases, as de-
termined by the performance analysis of realistic programs.

Log functions are those functions that are heavily used. The
presented approach can detect the “top” log function, but
will miss some of them. Bazzi pointed out that around 10%
of changes are due to automatically detected log functions.
Hicks suggested that it may be beneficial to simply ignore
calls to log functions. To ensure backward compatibility, the
presented approach compares the semantics of old and new
versions; components are then forced to have compatible
semantics. For bug fixes, state mapping is either impossible
or trivial. One solution is to checkpoint frequently. Hicks
asked whether the purpose of checkpointing was to check
whether state corruption occurs or not. In the interest of
staying on time, the presenter skipped to the conclusions at
end of the presentation.

Migrating Protocols In Multi-Threaded Message-
Passing Systems by Austin Anderson and Julian Rathke
(University of Southampton, UK) [2]

While much of existing DSU work is focused on type safety,
Anderson’s presentation focused on higher level properties.
Specifically, this work is about ensuring high-level update
safety in message passing systems. Anderson’s approach as-
sumes that there is no shared state. The authors use session
typing for specifying communication protocols formally.

As an example, consider P1 sending two integers to P2. P2
responds with one integer. Updating P1 and P2 separately
could cause an error if P1 and P2 are running different ver-
sions of the protocol and trying to exchange data. Therefore,
the authors propose a solution based on update coordination
using“runs”, i.e., the two processes can be updated if P1 has
finished a run and is withholding sending any more data to
P2. This way, P1 can be updated while P2 consumes data
at the old version; eventually, P2 will be updated. Safety
is enforced through static analysis. The proposed solution
can guarantee that each individual thread will eventually
run the new protocol. A limitation of this approach is that
a sender cannot be a receiver as well.

Reiss asked about the type of code that is amenable to this
static analysis, and Anderson explained that he focused on a
“lambda calculus-like” functional language. Choi wondered
whether the approach assumes that each sender must have
one receiver, and Anderson replied that one-to-many cor-
respondences are supported. The final question concerned
the accuracy of the approach in the presence of multiple in-
stances. For example, what will happen when two instances
of P1 are talking to P2? Anderson explained that, because
all the messages are annotated with the receiver’s informa-
tion, the approach still works as expected.

Efficient Systematic Testing for Dynamically Up-
datable Software by Christopher M. Hayden, Eric A.
Hardisty, Michael Hicks and Jeffrey S. Foster (University
of Maryland, College Park, USA) [11]
(invited paper)

Chris Hayden presented the idea of verifying DSU through
testing. A test minimization procedure is used. The prob-
lem is that DSU creates a new sources of errors, e.g., if the
update is applied at the wrong time. The authors use several
safety check procedures to detect when updates can be ap-
plied; a standard safety check is Con-freeness Safety (CFS),
i.e., an update to a type T can be applied if no instances of
T are in the current program point’s continuation. If an up-
date is not safe at the current program point, this is called a
conflict. Safety checks only ensure some update safety prop-
erties, hence we want to use testing as a means of further
verifying the correctness of updates.

The testing process works as follows: instrument the ap-
plication to trace possible update points, and then try to
apply the update at each point and see whether the test
fails. In practice, however this approach is prohibitive be-
cause of numerous update points. Therefore, the authors
observed that applying the update at many different points
will yield equivalent results, so they perform update test
minimization by detecting (via static analysis) the equiva-
lence classes induced by update points, and only testing the
update at one update point in each class. The authors have
implemented their approach on top of Ginseng [14] and ran
experiments with 11 versions of OpenSSH and 9 versions of
Vsftpd. Their results show that update test minimization is
very effective, and was able top achieve an 86–98% reduction
in the number of update tests.

Dig asked how the authors managed to find conflicts au-
tomatically. The answer was that their safety notion was
based on trace equivalence: if a program trace is unchanged
when a patch is applied, i.e., the patch does not conflict with
the trace, then applying the patch is deemed safe. The au-
dience asked whether this update safety model would work
with protocol updates. The answer was that, since OpenSSH
and Vsftpd use processes rather than threads, each process
completes its portion of the sends and receives before it can
update. Dig asked if the approach would still work prop-
erly in the presence of ping-pong patterns and shared state,
and the authors conceded that this is one of the outstanding
challenges for their approach. The audience asked if sending
messages to yourself could help, but the presenter pointed
out that it made no sense—you already have this data.

Iulian Neamtiu took one step back and asked why DSU sys-
tems use the Activeness Safety check (i.e., prohibit changes
to active code or data) at all if it does not ensure correct-
ness. Michael Hicks replied that they really do not use it
directly, but they modify it in some way.

Discussion

Hicks further suggested that systems should be built with
dynamic updates in mind. Then it will be safer to make
assumptions about what kind of changes can be made. Dig
suggested that safety in this case really depends on the na-
ture of a given application and its requirements. David
Reiss pointed out a fundamental difference between the tele-
phony and modern Web applications. While phones use long
transactions, Web applications like Facebook deal with short
transactions, which are usually at most several seconds long.

151

Acknowledgments
We thank the Program Committee: Gustavo Alonso,
Taweesup Apiwattanapong, Umesh Bellur, Gavin Bierman,
Danny Dig, Manuel Oriol, Mark E. Segal, Liuba Shrira.
Thanks are also due to ACM for sponsoring the workshop,
to Steve Marney, OOPSLA’09 Workshop Chair, to Chan-
dra Krintz, SIGPLAN Vice-Chair, and to Adrienne Griscti,
Program Coordinator of SIG Publications, for their precious
advice and support. Finally, we would like to thank the
authors of submitted and invited papers for providing the
excellent content of the program and for their enthusiastic
participation in the workshop.

1. REFERENCES
[1] LIBrary for Asynchronous File Descriptor Transfer.

http://sourceforge.net/projects/libafdt/.

[2] A. Anderson and J. Rathke. Migrating protocols in
multi-threaded message-passing systems. In HotSWUp
’09: Proceedings of the Second International Workshop
on Hot Topics in Software Upgrades, Orlando, Florida,
2009.

[3] R. A. Bazzi, K. Makris, P. Nayeri, and J. Shen.
Dynamic software updates: the state mapping
problem. In HotSWUp ’09: Proceedings of the Second
International Workshop on Hot Topics in Software
Upgrades, Orlando, Florida, 2009.

[4] S. M. Blackburn, K. S. McKinley, R. Garner,
C. Hoffmann, A. M. Khan, R. Bentzur, A. Diwan,
D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel,
A. Hosking, M. Jump, H. Lee, J. E. B. Moss,
A. Phansalkar, D. Stefanovik, T. VanDrunen, D. von
Dincklage, and B. Wiedermann. Wake up and smell
the coffee: evaluation methodology for the 21st
century. Communications of the ACM, 51(8):83–89,
2008.

[5] A. Choi. Online application upgrade using
edition-based redefinition. In HotSWUp ’09:
Proceedings of the Second International Workshop on
Hot Topics in Software Upgrades, Orlando, Florida,
2009.

[6] C. Curino, H. J. Moon, and C. Zaniolo. Automating
database schema evolution in information system
upgrades. In HotSWUp ’09: Proceedings of the Second
International Workshop on Hot Topics in Software
Upgrades, Orlando, Florida, 2009.

[7] D. Dig and R. Johnson. How do APIs evolve? a
story of refactoring: Research articles. Journal of
Software Maintenance and Evolution, 18(2):83–107,
2006.

[8] J. N. Foster, A. Pilkiewicz, and B. C. Pierce. Quotient
lenses. In ACM SIGPLAN International Conference
on Functional Programming, pages 383–396, Victoria,
BC, Canada, 2008.

[9] C. Giuffrida and A. S. Tanenbaum. Cooperative
update: a new model for dependable live update. In
HotSWUp ’09: Proceedings of the Second
International Workshop on Hot Topics in Software
Upgrades, Orlando, Florida, 2009.

[10] S. Götz and M. Pukall. On performance of delegation
in Java. In HotSWUp ’09: Proceedings of the Second
International Workshop on Hot Topics in Software
Upgrades, Orlando, Florida, 2009.

[11] C. M. Hayden, E. A. Hardisty, M. Hicks, and J. S.
Foster. Efficient systematic testing for dynamically
updatable software. In HotSWUp ’09: Proceedings of
the Second International Workshop on Hot Topics in
Software Upgrades, Orlando, Florida, 2009.

[12] M. W. Hicks. Dynamic Software Updating. PhD thesis,
The University of Pennsylvania, August 2001.

[13] N. McNab and A. Bryan. An implementation of the
linux software repository model for other operating
systems. In HotSWUp ’09: Proceedings of the Second
International Workshop on Hot Topics in Software
Upgrades, Orlando, Florida, 2009.

[14] I. Neamtiu, M. Hicks, G. Stoyle, and M. Oriol.
Practical dynamic software updating for C. In ACM
SIGPLAN Conference on Programming Language
Design and Implementation, pages 72–83, Ottawa,
Ontario, Canada, 2006.

[15] M. Wahler, S. Richter, and M. Oriol. Dynamic
software updates for real-time systems. In HotSWUp
’09: Proceedings of the Second International Workshop
on Hot Topics in Software Upgrades, Orlando, Florida,
2009.

152

