
Sonification Design Guidelines to Enhance Program Comprehension

Khaled Hussein1, Eli Tilevich1, Ivica Ico Bukvic2

1Department of Computer Science
2Department of Music

Virginia Tech, Blacksburg, VA 24061
{khussein,tilevich,ico}@vt.edu

SooBeen Kim
Wellesley College

Wellesley, MA 02481
skim10@wellesley.edu

Abstract

Faced with the challenges of understanding the source
code of a program, software developers are assisted by a
wealth of software visualization research. This work ex-
plores how visualization can be supplemented by sonifica-
tion as a cognitive tool for code comprehension. By en-
gaging the programmer’s auditory senses, sonification can
improve the utility of program comprehension tools. This
paper reports on our experiences of creating and evaluat-
ing a program comprehension prototype tool that employs
sonification to assist program understanding by rendering
sonic cues. Our empirical evaluation of the efficacy of in-
formation sonification indicates that this cognitive aid can
effectively complement visualization when trying to under-
stand an unfamiliar code base. Based on our experiences,
we then propose a set of guidelines for the design of a new
generation of tools that increase their information utility by
combining visualization and sonification.

1. Introduction

The source code comprising modern software systems is
among the most complex products of human intellect. Soft-
ware maintenance is concerned with correcting problems
and enhancing existing features in released software and
constitutes the largest portion of the total software develop-
ment effort and cost [6, 7, 28, 29, 55]. An essential prereq-
uisite for maintaining a software system is understanding
its source code. As a result, software comprehension has
long been recognized as one of the most critical and time-
consuming software development activities [33, 30, 47, 36].

Research efforts aiming at addressing challenges of
software comprehension falls into two general categories.
Some researchers study different cognitive factors that af-
fect source code understandability, including readability,
documentation, evolution, etc. Other researchers explore

new techniques and tools that simplify program understand-
ing and evaluate them empirically.

One of the traditional cognitive aids employed to im-
prove program understanding is software visualization [39].
Several research studies, however, have shown that an addi-
tional information channel provided by sound can enhance a
visual or haptic display [53, 52, 51]. To that end, this paper
explores how a program comprehension tool can use sound
to facilitate program comprehension and how vision should
be supplemented with sound to achieve maximum benefit.
Specifically, this work presents an approach to enhancing
an Integrated Development Environment (IDE) with an au-
ditory display. We report on our experiences of adding the
ability to render sonic cues to Eclipse [42], so that sonifi-
cation could supplement visualization to assist program un-
derstanding. Using the enhanced IDE, we then conducted
a controlled experiment to assess the efficacy of sonifica-
tion as a cognitive aid that assists program comprehension.
In addition, we have reviewed a substantial body of the re-
search literature in data sonification and program compre-
hension to understand the potential for these two research
areas to cross-pollinate. Finally, based on the results of
our study and the insights from the literature review, we
have created a set of guidelines for guiding the creation of
techniques and tools that harmoniously combine vision and
sound to help the programmer in understanding an unfamil-
iar codebase.

Hence, this work makes no claims regarding the supe-
riority of sonifciation over visualization or vice versa as a
cognitive aid for program comprehension. Instead, we ar-
gue that these two presentation techniques should be com-
bined to achieve maximum benefit for a large and diverse
population of software developers. Although the general
idea of adding sound to enhance a visual display has been
studied in the past, the novelty of this work lies in applying
this idea to the problem of program comprehension.

Although this paper reports on the initial results of an on-
going investigation, we believe that it makes the following
contributions:



• An approach to adding the ability to render sonic cues
to an existing Integrated Development Environment
(IDE).

• A controlled experiment that demonstrates how sonifi-
cation can be a viable tool for program comprehension.

• A set of guidelines for the design of software compre-
hension tools that increase their information utility by
combining sonification and visualization.

The rest of this paper is organized as follows. Section
2 provides a background and discusses the state of the art
in program comprehension, software visualization, and in-
formation sonification. Section 3 presents our approach to
sonifying an IDEs and an implementation realized as an
Eclipse plug-in. Section 4 details the controlled study we
conducted. Section 5 presents a set of guidelines for con-
structing program comprehension tools that combine visu-
alization and sonification. Section 6 outlines future work
direction. Section 7 presents concluding remarks.

2 Background and Related Work

Program comprehension has long been recognized as an
essential part of the software development process [47]. The
effectiveness of program comprehension depends on a va-
riety of diverse factors, ranging from source code readabil-
ity to how effectively structural program information is re-
trieved and exposed [43]. In the following, we first give
an overview of program comprehension and its challenges.
Then we outline how software visualization has been em-
ployed to aid program comprehension. Finally, we intro-
duce information sonification and its main concepts used in
the paper.

2.1 Program Comprehension

In a comprehensive review, Storey [40] describes the
state of the art in program comprehension, including
its main cognitive theories, tooling strategies, and future
trends. Of particular importance to this paper are cogni-
tive models, the mental processes and information struc-
tures leading to a particular mental model, and their influ-
ence on software tools for program comprehension. One of
the insights communicated by Storey is the need for more
cognitive support in order to leverage the established cogni-
tive theories. Among the main factors affecting the forma-
tion of the mental model is information representation. The
following summarizes the related state of the art in repre-
senting information visually and sonically.

2.2 Software Visualization

Card et al defined information visualization as ”the use
of computer-supported, interactive, visual representations
of abstract data to amplify cognition” [9]. Software visu-
alization is a subset of information visualizations that is pri-
marily concerned with program details such as structure, al-
gorithms, execution, and evolution [14]. Therefore, several
researchers developed software visualizations that support
program comprehension.

One of the main source code visualization techniques is
the line-oriented technique, in which the visualization tool
represents every single line in the source code. Eric et al
proposed Seesoft [14] as a line-oriented source code visu-
alization that was enhanced by several other tools such as
Augur [18], Aspect Browser [19], and Tarantula [24].

In addition to line-oriented visualizations, researchers
developed a variety of source code visualizations that study
the source code from different perspectives. For example,
Visual Code Navigator [31] is an example of block-oriented
source code visualizations, in which it creates an annotated
syntax tree of the source files and represents code struc-
ture in cushions. The SHriMP (Simple Hierarchical Multi-
Perspective) tool employs both single view and multiple-
view visualization techniques to expose program informa-
tion at different levels of abstraction [41, 56].

Hundhausen et al investigate a number of software visu-
alization effectiveness theories in program comprehension
[21]. One of the theories of interest is Dual-coding, which
emphasizes encoding information in both verbal mode such
as textual displays and non-verbal mode such as pictures
and icons. In our case, we are interested in adding another
encoding mode, auditory representations.

2.3 Information Sonification

A recent article by Walker and Nees [50] provides an
overview of the main concepts of sonification research and
design. They define an auditory display as using sound
to convey information and sonification as an auditory dis-
play that uses non-speech audio. According to Kramer at
al., sonification is ”the transformation of data relations into
perceived relations in an acoustic signal for the purposes of
facilitating communication or interpretation” [27].

A large body of sonification research has identified a set
of scenarios, in which auditory displays are most effective
[37, 26, 23]. For one, human hearing tends to be well-
equipped to identify temporal information, making auditory
displays particularly effective for rendering complex data
patterns and events that require the user’s immediate atten-
tion [17, 32]. In addition, an auditory display can be em-
ployed as a substitute when a visual display is not available,
vision has already been engaged in some comprehension



task [54], or vision has been overloaded with information
[8]. Hearing has also been found to be better fit to process
multiple concurrent inputs [16]. Finally, supplementing a
visual display with an audio cue may increase tolerance for
error [11].

deCampo [13] presents a Sonification Design Map that
shows quantitative relationships between non-speech audi-
tory displays. He starts with a traditional classification of
sonification approaches (i.e., audification [26], parameter
mapping, and model-based [20]) and then proposes to cate-
gorize sonification approaches on the bases of their respec-
tive data representations: continuous, discrete point data,
and model-based. The sonification approach employed
for this work falls in the model-based data representation,
which mediates between the sonified data and the sound
through a model based on the properties of the data. The
model captures the domain knowledge of the sonified data
and thus can be applied to different types of datasets.

When applied to computing, several prior approaches
have used an auditory display to convey information about
computer programs. Vickers and Alty [44] investigate how
music can be used to communicate information about pro-
gramming language structures, program runtime behavior,
and locating bugs [45]. Their CAITLIN system aurolizes
Turbo Pascal programs. This investigation has demon-
strated that music can be a successful communication de-
vice, even for users who have not been formally trained
in music. Compared to their work, this paper focuses on
understanding computer code manipulated through an IDE,
using sonifications that are significantly less-structured than
music tunes, and finally employs sonification interactively
(i.e., the sonic cues are rendered in response to specific user
UI actions).

Finlayson and Mellish [15] have investigated approaches
to representing programming constructs using speech and
non-speech audio, concluding that the two modalities
should be used together for maximum benefit. Berman and
Gallagher [4] sonify program slices to improve program un-
derstanding. By contrast, this work focuses on interactive
sonification, rendered in response to specific IDE user ac-
tions.

Considering the complexity of understanding modern
programs and the need for new approaches to facilitate the
task, the idea of using sound to aid software comprehen-
sion has been remarkably unexplored. In 2006, a working
session titled “The Sound of Software: Using Sonification
to Aid Comprehension” was held at the 14th IEEE Interna-
tional Conference on Program Comprehension [3]. Never-
theless, to the best of our knowledge, three years later, this is
the first publication citing that working session. One could
see that the program comprehension community so far has
not followed upon the ideas explored during that session.
We believe that the main obstacle hindering the adoption of

sound as a medium to aid program comprehension is that
pursuing this research requires a multi-disciplinary team,
with expertise in both music and software technologies. Un-
fortunately, few computer scientists possess enough exper-
tise (or even interest) in music technologies, and few music
technologies possess enough expertise in computing to be
able to exchange ideas required for creating new technolo-
gies. This work is a result of an interdisciplinary collabora-
tion, and next we report on some of its initial results.

3 Enhancing an IDE with Sonification Ca-
pacities

Developing large software projects usually involves us-
ing a number of visual tools, including IDEs, source control
plugins, and file managers. Empirical evaluations and the
practitioner’s experiences alike show that using IDEs can
significantly increase programmer’s productivity. Microsoft
Visual Studio and Eclipse are two examples of commercial
and open source IDEs, respectively. In this work, we used
Eclipse as our experimentation platform, an IDE to be en-
hanced with sonification capabilities.

Max/MSP [12] is a visual IDE designed specifically for
audio and music-oriented applications. Created by mu-
sicians for musicians, it has since grown to encapsulate
Quicktime and OpenGL, as well as to offer embedding
of mainstream programming languages, including Java,
JavaScript, Python, and Lua. MAX/MSP offers a large li-
brary of abstractions through a free SDK. In the area of mu-
sic and interactive multimedia, MAX/MSP facilitates rapid
prototyping of ideas and concepts, arguably one of its great-
est advantages. It is the strengths of MAX/MSP as a digi-
tal signal processing engine and its ability to interface with
other applications seamlessly that influenced our decision
to use Max/MSP as the audio platform for the experiment.

Integrating Eclipse with sonic cues requires that Eclipse
communicate with MAX/MSP. The Eclipse IDE supports
a plug-in architecture that makes it possible to extend
the IDE with additional capabilities in a systematic way.
To achieve maximum flexibility, we put in place a sim-
ple client-server communication model using TCP sock-
ets between our Eclipse plug-in and the MAX/MSP en-
gine. To that end, we used a MAX/MSP package called
jitter that provides scripts for processing network transac-
tions. Specifically, the plugin sends numeric values repre-
senting program information to MAX/MSP, which then pro-
cesses the numeric values to render the corresponding sonic
cues. Because the MAX/MSP server is decoupled from the
Eclipse plug-in client, the server could be reused for en-
hancing other IDEs with sonic cues in a cost-effective man-
ner. Figure 1 demonstrates how our Eclipse plug-in com-
municates with the MAX/MSP server.



Figure 1. Enhancing Eclipse with sonifica-
tion rendered through MAX/MSP using a
client/server architecture.

4 Empirical Evaluation

The hypothesis under study in this experiment is that as a
cognitive aid to assist source code comprehension, informa-
tion sonification can be as effective as information visual-
ization. To that end, effective in this experiment is measured
in terms of reaction, comprehension, and user preference.
Chewar et al defines reaction as the response time to a noti-
fication and comprehension as situation awareness caused
by accumulative perception of elements in the system [10].
Positive results of this experiment could yield new insights
about the use of sonification in creating program compre-
hension tools.

For this experiment, we visualized and sonified three
pieces of program information:

1. the number of lines of code in a method;

2. the total number of method calls in a method;

3. a given API usage by a method (e.g., a total num-
ber of calling methods in a given package such as
java.utils.io)

One could argue about the pragmatic value of helping the
programmer understand these specific pieces of program in-
formation. Since our primary goal was to come up with a
proof of concept, thus setting up a platform for further in-
vestigation, we may have traded some utility for simplicity.
The details of the controlled experiment are presented next.

4.1 Experimental Design

To visualize and sonify the pieces of program informa-
tion described above, we developed an Eclipse plugin. The
plugin can be configured to render visualization and ignore
sonification or vice versa. When the programmer hovers
over a method, the plugin collects information about this
method. Then, based on the representation mode, it either
generates a visualization or sonification. When the plugin

is in visualization mode, it generates a yellow text box sim-
ilar to the one that displays JavaDoc documentation. This
text box contains 3 numbers that represent the number of
code lines, total number of method calls in this method, and
the total number of calls to a java.utils.io methods
respectively as shown in Figure 2.

Figure 2. Eclipse plugin visualization of
method information

When the plugin is in the sonification mode, it generates
three sonic cues representing the 3 numbers collected. The
sonic cues used were as follows: rain from the left speaker,
water stream from the right speaker, and cello from the cen-
ter. 3 shows the association of these sonic cues and the
sonified information. The sonic cue volume increases with
the increased numeric value of the represented information.
However, we made sure that the volume will not exceed the
comfortable zone for the average human hearing.

Figure 3. Association of sonic cues to soni-
fied information

In this experiment, participants answered questions
about an unfamiliar code base assisted first by a visualiza-
tion and then by a sonification of the program’s informa-
tion or vice versa, with the order altered for each new par-
ticipant. To avoid biased results, we created two similar
Java source code files to be used for both visualization and
sonification. Each source file contained 24 methods. The
order of the methods in each source code file is changed
and the method names are modified, but the average LOC
per method, the average calls to the API, and the average
method calls per method were kept constant.



4.1.1 Participants

For the study, we recruited 10 volunteers, 9 of whom
were computer science undergraduate students from differ-
ent universities, participating in a summer research program
at Virginia Tech. One participant was a graduate student.
The only prerequisite to participate in the study was to have
a basic-to-intermediate experience using Java. The average
age of participants was 21.4 years old (ranging from 19 to
24 years old). Although the demographics of the partici-
pants may have an effect on the generality of our findings,
it is likely that the identified trends will persevere for more
experienced programmers and larger code bases. The ex-
periment sessions were conducted on an individual basis,
and an experimenter was present during the sessions.

4.1.2 Materials

As a venue for the experiment, we used the DISIS labora-
tory [46], a specialized laboratory for conducting multime-
dia experiments. The laboratory walls are sound-proof to
minimize any noise interference from outside. The standard
equipment in the lab includes standard Windows and Apple
workstation, with dual monitors. For the experiment, we
used a workstation with Intel Pentium IV 1.8 GHz, 512 MB
RAM, and 19“ dual monitor running at 1024x1024. The
monitors were arranged, so that when a participant is sit-
ting, the primary monitor would display the source code,
and the secondary monitor would display the questions to
be answered. The setup is shown in 4.

Figure 4. Experimental Setup in DISIS

4.1.3 Training Session

The experimenter provided a ten-minute training for the
Eclipse plugin for each participant. During the training ses-
sion, the participants were asked to interact with a training
source code in order to get familiar with the sonic and vi-
sual cues. The training source code file contains 21 meth-
ods, in which each 3 methods are 3 examples for visualizing

Which 3 methods have the largest number of method calls?
Which are the 3 longest methods?
Which 3 methods have the most API usage?
Compare the lines of method and the number of method calls in
(methodName)
Choose the correctly sorted list of characteristics of (methodName)

Table 1. Reaction Questions

Which method has the most lines of code?
Which method has the least API usage (not including methods with
0 API usage)?
Which method has smallest number of lines and method calls com-
bined?
Which method did you perceive as the most crucial method of this
program?
Which method did you perceive as the least crucial method of this
program?

Table 2. Comprehension Questions

or sonifying a combination of method lines count, API us-
age count, or method calls count. At all times, the methods
were collapsed, so that the participant would not look at the
source code of each method, but rather focus on interact-
ing with the visualization and the sonification to answer the
questions. The participants were encouraged to adjust the
volume on the head speakers to comfortable levels. How-
ever, the volume could still be adjusted during the experi-
ment if needed.

4.1.4 Procedure

Each participant was asked to fill a consent form. Then
he/she was given a ten-minute training session. Then the
participant was asked to start the experiment with either one
of the following conditions:

Visual condition–the participant interacts with the
source code using our Eclipse plugin started in the visu-
alization mode. All methods were collapsed at all times.
Participants interacted with the source code in order to an-
swer the questions displayed on the secondary monitor. The
questions were divided into two sections. While the first
section contained 5 questions targeting the participant’s re-
action, the second section contained another 5 questions tar-
geting the participant’s comprehension. Table 1 and Table
2 list the questions used in the reaction and comprehension
sections. The questions focus on the relation between the
observed phenomena rather than on identifying discrete val-
ues.

Audio condition–the participant interacts with the
source code using our Eclipse plugin started in the sonifi-
cation mode. Similar to the visualization mode, all methods
were collapsed at all time. Unlike visualization mode, yel-
low notifications were invisible.



In both conditions, when the participants were done with
answering the questions in the reaction section, the exper-
imenter instructed them to stop interacting with the source
code, although they still could look at the method’s names.
Then participants would start answering the comprehension
questions without source code interaction. At the end of
each condition, the experimenter asked participants to re-
lax for a couple of minute until the mode of the plugin was
switched.

At the end of the experiment, the participants were asked
a number of questions about his/her preferences. All par-
ticipants were allowed and even encouraged to freely give
comments at the end of each preference question. The ex-
periment lasted for approximately 30 minutes per partici-
pant on average.

4.1.5 Variables

The experiment employs both independent and dependent
variables. The independent variables are the specific visu-
alization or sonification used to help a participant to answer
particular questions. The dependent variables include the
correctness, comprehension, user’s response time, and user
preference. To measure user preference, we asked each par-
ticipant to fill a questionnaire using a subjective rating scale
from 1 to 5. The following section presents and discusses
our results.

4.2 Results

The results obtained from performing the empirical eval-
uation mentioned above are summarized in the following.

Correctness:
In this measure, we were interested in comparing the

number of correct answers between visualization and soni-
fication. Interestingly, we found 1-1 correlation between
the two conditions. This implies that users were able to
react the same way when using sonification or visualiza-
tion. Based on the users’ feedback, using visualization or
sonification was easy to answer the questions. However,
the practicality of using visualization is different than using
sonification as demonstrated in the following.

Comprehension:
In this measure, we were interested in measuring the

effect of using visualization or sonification on the users’
awareness of the program information, including their
memorization. After analyzing the data we found that users
were able to answer all the comprehension questions, with-
out interacting with the source code, correctly in both con-
ditions. However, we have noticed differences in the par-
ticipant average response time to the comprehension ques-
tions. Although we do not have significant time differences,
users took from 5 to 11 seconds more to answer the ques-
tions when they used sonification. Interestingly, 4 of the

Which method would you use if you’re asked to answer the same
questions again? Why?
How easy was it to distinguish between the 3 different pieces of
data? (1=easy, 5=difficult)
Which method did you perceive as the least crucial method of this
program?

Table 3. Preference Questions

participants mentioned that “using sonification was easier
and faster, but using visualization was more accurate”.

User preference:
Table 3 shows the preference questions that participants

had to answer at the end of each condition. Although the
results show the participants’ preference for visualization
as an aid for answering the questions. their comments
demonstrate that they are quite interested in using sonifi-
cation. One explanation about the participants being some-
what skeptical about the practicality of sonification, is the
sheer novelty of the approach. One participant stated this
sentiment as follows “[I prefer] visual, because I can eas-
ily read and understand. Using sound is too new for me.”

4.3 Discussion

Based on the results described above, there is strong evi-
dence that sonification could be as effective as visualization
if used in the right context and with the right program in-
formation data. All the participants found our visualization
helpful in understanding the code. Based on some of the
comments, we have reason to believe that supplementing vi-
sualizations with sonification will prove beneficial; it would
expand the simultaneous perception channels, thus increas-
ing the amount of information processed concurrently. For
example, one of the participants stated that ”For the ones
where I could scan them, I’d use the sound method. That
way I was only concerned with looking at the methods and
I could let my hearing comprehend the details. Visually, I’d
have to keep track of both; which method I was looking at
and the details. Splitting my cognitive resources in a good
way, I guess.”.

The results of our experiment are not surprising, as
they coincide with the documented results of other re-
searchers who use sonification to represent information
[1, 13, 16, 17, 25]. Sonically enhanced visualizations are
definitely worth exploring, as they could lay the foundation
for a new generation of program comprehension tools. To
aid in the development of such tools, the following section
discusses our proposed guidelines for using sonification in
program comprehension tasks.



5 Designing Guidelines for Combining In-
formation Visualization and Sonification in
Program Comprehension Tools

Based on our experiment and drawing on the insights
from the data sonification research literature, we next pro-
pose a set of guidelines that will inform the design of pro-
gram comprehension tools that combine visualization and
sonification. These tools are likely to improve their infor-
mation utility as compared to existing tools that use visual-
ization as their only cognitive aid. We stop short of follow-
ing a pattern-oriented methodology to describe these guide-
lines. Even though design patterns have been used to iden-
tify sonification best practices [2, 38], our guidelines aim at
addressing the challenges that pertain to combining visual-
ization and sonification in a single program comprehension
tool. Therefore, at this point, we feel that more empirical
evidence is needed to determine whether our guidelines are
indeed patterns. In the following presentation, we first in-
troduce a general principle and then illustrate it with a hy-
pothetical example of applying the principle to building or
enhancing a program comprehension tool.

5.1 Add sonification to simplify visualiza-
tions

Information visualization can become overly complex
and unwieldy in several ways. For one, visualization can
change the displayed content in the user’s focal view, which
can be disturbing for the user’s attention management.
Moreover, any visualization is necessarily confined by the
number of available display pixels. Thus, a visualization
designer has limited screen real estate available for display-
ing their visual representations. Therefore, we propose that
sonification be used as an avenue for addressing these in-
herent shortcomings of information visualization.

For example, consider the Call Hierarchy View in
Eclipse [42]. Upon requesting a call hierarchy on a given
method, Eclipse generates a tree visualization of a call
graph shown in Figure 5. The visualization, however, pro-
vides no information about the depth of the generated call
graph. Assuming that the programmer needs to know how
deep the tree is, she can only do so by expanding the call hi-
erarchy tree, which may prove cumbersome and ineffective.
Expanding a long tree, for example, is likely to conceal im-
portant nodes from the programmer’s focal view. Adding
a special visual cue that can show the depth of the tree is
likely to clutter the tree visualization.

By contrast, a fairly straightforward sonification could
effectively help address the issues above by issuing a sonic
cue that represents the depth of the tree via a different
volume or pitch. The programmer then can hover over a
method and immediately recognize the depth of its call path.

This additional cognitive aid has the potential to minimize
the required interaction time by providing the user with use-
ful information without complicating the existing tree visu-
alization.

Figure 5. Call Hierarchy View in Eclipse

5.2 Increase visual perception speed and
accuracy by adding sonification

A study by Vroomen and de Gelder [48] has shown that
the use of auditory cues can enhance visual perception. Al-
though one could argue that few situations in software de-
velopment warrant the programmer reacting immediately to
some development-related event, such situations do occur,
particularly in large software development projects that in-
volve multiple developers. For example, multiple concur-
rent edits of the same source file complicates the subse-
quent merging of the changes. Because automated merge
tools are often incapable of handling the resulting complex-
ity, manual editing becomes necessary, a tedious and error
prone activity that is better avoided. Although a visualiza-
tion could convey the information about the developers who
have checked out a source file for modification purposes
(e.g., FASTDash [5], a new developer starting to modify
a file is a real time event that has to be communicated.

We argue that a sonic cue could effectively supplement
the information already conveyed by a visualization such
as FASTDash. For example, when the programmer opens
a file, a sonic cue representing the number of concurrent
edits can be rendered. This additional cognitive aid could
help the programmer keep her attention on the coding task



at hand by conveying this information without having to
switch one’s attention to the visualization. Upon receiving
the sonic cue, the programmer will be able to use the exist-
ing visualization to obtain more details about the concurrent
edits.

5.3 Add sonification to present multiple
information pieces simultaneously

The use of sound can improve comprehension and lower
cognitive load when one has to monitor multiple informa-
tion sources updated concurrently. Specifically, a visualiza-
tion coupled with or relegated to aural cues has been found
to be more efficient and less error prone [16, 49, 22]. Ad-
ditionally, some researchers even suggest that listeners are
capable of monitoring multiple audio streams better than
single streams [1]. Musical scores, in particular, are known
to convey lots of concurrent information together with their
mutual relationships. In particular, rhythm is much more
pronounced aurally than it is visually [34], which can fa-
cilitate more accurate cognition while lowering the overall
cognitive load. For example, the part of our controlled ex-
periment that dealt with the number of lines could have used
an attack-based multiple beats sonification, compressed in
a short time interval. Thus, if several different sources of
information about a program have to be conveyed concur-
rently, a program comprehension tool could employ both
visual and aural cues.

5.4 Use sonification to summarize infor-
mation

Real-life programs often have large and complex code
bases, with vast amounts of information that the program-
mer is expected to understand. Several software visualiza-
tion techniques have been proposed to address the chal-
lenges of representing large data sets. Nevertheless, with
the increased types and variety of information that has to
be conveyed, software visualizations can quickly become
extremely complex to provide relevant data summaries. For
example, linking and brushing enables effective interactions
with a visualization to retrieve manageable portions of in-
formation that can be displayed on a single screen. How-
ever, even a provided portion may still contain too much
details, not all of which is relevant. For example, Eclipse
text editors always display all the content of a source file.1

For some program comprehension task, such as understand-
ing which source files exceed a given number of lines or
some cyclomatic complexity metrics, seeing an entire file is
unnecessary and counterproductive.

1Eclipse presents a collapsed view of methods and classes, but still all
the classes and methods are displayed.

A simple sonification could effectively complement a vi-
sualization by providing a summary for large volumes of
information. For example, a sonic cue could be used to ex-
press a relative length or a cyclomatic complexity metrics
of selected source files.

5.5 Interchange visualization and sonifica-
tion to improve effectiveness

The information that can prove valuable when under-
standing an unfamiliar code base pertains to different prop-
erties of the code, all of which can use different visualiza-
tions. For example, Eclipse uses a call hierarchy view for
call graphs, a class hierarchy view for class structures, and
source control view for project repositories. The program-
mer, however, can make use of only a limited number of
visualizations at a time.

Although audio may not necessarily convey more infor-
mation, it covers more ground spatially (360 degrees in 3D
while visual perception is anterior in nature), and as such
could provide more distinguishable entry points for moni-
toring. This ability, however, also depends on other factors,
including the specific sound and spatialization technology
in use. A study by Kaper et al. [25] has observed that at
times sound superseded visuals in terms of the amount of
conveyed detail, while at other times the situation was the
opposite. This insight, in and of itself, suggests that under
certain circumstances, one could design aural cues, so that
they are indeed more effective than their visual counterparts
utilized in the same scenario. In particular, a program com-
prehension tool could replace multiple visualizations that
fall short of improving comprehension with multiple soni-
fications at will, thus improving the overall cognitive utility
of the tool.

5.6 Alternate visualization and sonifica-
tion to improve accessibility

The importance of accommodating users with disabili-
ties has been widely recognized. It has been estimated that
161 million people worldwide are either blind or visually
impaired [35]. Some programmers could have either visual
or auditory impairments. Thus, visual or auditory represen-
tations of the information could supplement the otherwise
unaccessible cues for impaired users.

6 Future Work

This paper introduces a number of design guidelines for
supplementing information visualization with sonification
in program comprehension tools. As opposed to the some-
what simplistic design that we had to follow to create our
prototype experimentation tool, the next logical step is to



leverage our guidelines to create a realistic program com-
prehension tool that combines visualization and sonifica-
tion. In designing this tool, it will be worth investigating
the different types of information that can be provided to
the programmer and various combinations and interactions
of visual and audio representations. The effectiveness of the
tool will be evaluated empirically, possibly leading to other
guidelines and insights.

7 Conclusion

As software is getting more complex, the task of un-
derstanding code bases is becoming more difficult, requir-
ing better tools and approaches. This paper represents an
attempt to enrich visualization-based program comprehen-
sion tools with sonification. We have constructed and evalu-
ated a prototype tool that supplements visual program infor-
mation by rendering sonic cues. The empirical evaluation of
our prototype indicates that information sonification can be
at least as effective as information visualization at different
levels, including correctness and comprehension.

We also have reason to believe that combining the dif-
ferent program representations in the same tool will require
new guidelines and cognitive theories. As a first step in
this direction, we have proposed a set of guidelines that can
guide the design of next-generation program comprehen-
sion tools, combining information visualization and soni-
fication. We hope that these guidelines will prove useful
for researchers and practitioners alike, charged with the dif-
ficult challenge of reducing the burden of program under-
standing.

Acknowledgments The authors would like to thank
Pardha S. Pyla and the anonymous reviewers, whose com-
ments have helped improve the paper. SooBeen Kim was
supported by the NSF (grant NSF-IIS-0552723).

References

[1] J. Anderson and P. Sanderson. Designing sonification for ef-
fective attentional control in complex work domains. In Pro-
ceedings of the 48th Annual Meeting of the Human Factors
and Ergonomics Society (HFES2004), pages 1818–1822,
2004.

[2] S. Barrass. Sonification design patterns. In Proceedings
of the 2003 International Conference on Auditory Display,
pages 170–175.

[3] L. Berman, S. Danicic, K. Gallagher, and N. Gold. The
sound of software: Using sonification to aid comprehension.
In 14th IEEE International Conference on Program Com-
prehension (ICPC’06), pages 225–229, Los Alamitos, CA,
USA, 2006. IEEE Computer Society.

[4] L. I. Berman and K. B. Gallagher. Listening to program
slices. In Proceedings of the 12th International Conference
on Auditory Display (ICAD), 2006.

[5] J. T. Biehl, M. Czerwinski, G. Smith, and G. G. Robert-
son. Fastdash: a visual dashboard for fostering awareness
in software teams. In CHI ’07: Proceedings of the SIGCHI
conference on Human factors in computing systems, pages
1313–1322, New York, NY, USA, 2007. ACM.

[6] B. Boehm and V. R. Basili. Software defect reduction top 10
list. Computer, 34(1):135–137, 2001.

[7] B. W. Boehm. Software Engineering Economics. Prentice
Hall PTR, Upper Saddle River, NJ, 1981.

[8] S. Brewster. Using non-speech sound to overcome informa-
tion overload. Displays, 17(3-4):179–189, 1997.

[9] S. K. Card, J. Mackinlay, and B. Shneiderman. Readings in
Information Visualization: Using Vision to Think. Morgan
Kaufmann, Los Altos, CA, 1999.

[10] C. M. Chewar, D. S. McCrickard, and A. G. Sutcliffe. Un-
packing critical parameters for interface design: evaluating
notification systems with the irc framework. In DIS ’04:
Proceedings of the 5th conference on Designing interactive
systems, pages 279–288, New York, NY, USA, 2004. ACM.

[11] B. Connell, M. Jones, R. Mace, J. Mueller, A. Mullick,
E. Ostroff, J. Sanford, E. Steinfield, M. Story, and G. Van-
derheiden. The principles of universal design, version 2.0.
North Carolina State University, The Center for Universal
Design, Raleigh, 1997.

[12] Cycling ’74 Inc. Max/MSP. http://www.cycling74.
com, 2008.

[13] A. de Campo. Toward a data sonification design space map.
Proceedings of the International Conference on Auditory
Display (ICAD), pages 342–347, 2007.

[14] S. G. Eick, J. L. Steffen, and J. Eric E. Sumner. Seesoft—a
tool for visualizing line oriented software statistics. pages
419–430, 1999.

[15] J. L. Finlayson and C. Mellish. The ’audioview’ - providing
a glance at Java source code. In Proceedings of the 11th In-
ternational Conference on Auditory Display (ICAD), 2005.

[16] W. Fitch and G. Kramer. Sonifying the body electric: Su-
periority of an auditory over a visual display in a complex,
multivariate system. In Kramer G. (ed) Auditory Display:
Sonification, Audification and Auditory Interfaces. SFI Stud-
ies in the Sciences of Complexity, 18:307–326, 1994.

[17] J. Flowers, D. Buhman, and K. Turnage. Cross-modal equiv-
alence of visual and auditory scatterplots for exploring bi-
variate data samples. Human Factors: The Journal of the
Human Factors and Ergonomics Society, 39(3):341–351,
1997.

[18] J. Froehlich and P. Dourish. Unifying artifacts and activities
in a visual tool for distributed software development teams.
In ICSE ’04: Proceedings of the 26th International Confer-
ence on Software Engineering, pages 387–396, Washington,
DC, USA, 2004. IEEE Computer Society.

[19] W. G. Griswold, J. J. Yuan, and Y. Kato. Exploiting the map
metaphor in a tool for software evolution. In ICSE ’01: Pro-
ceedings of the 23rd International Conference on Software
Engineering, pages 265–274, Washington, DC, USA, 2001.
IEEE Computer Society.



[20] T. Hermann. Sonification for exploratory data analysis–
demonstrations and sound examples. PhD thesis, Bielefeld
University, Bielefeld, Germany, 2002.

[21] C. Hundhausen, S. Douglas, and J. Stasko. A meta-study of
algorithm visualization effectiveness. In Journal of Visual
Languagues and Computing, 2002.

[22] P. Janata and E. Childs. Marketbuzz: Sonification of real-
time financial data. In Proceedsing of the International Con-
ference of Auditory Display (ICAD 2004), 2004.

[23] G. Johannsen. Auditory displays in human–machine inter-
faces. Proceedings of the IEEE, 92(4):742–758, 2004.

[24] J. A. Jones, M. J. Harrold, and J. Stasko. Visualization of test
information to assist fault localization. In ICSE ’02: Pro-
ceedings of the 24th International Conference on Software
Engineering, pages 467–477, New York, NY, USA, 2002.
ACM.

[25] H. Kaper, E. Wiebel, and S. Tipei. Data Sonification and
Sound Visualization. Computing in Science & Engineering,
pages 48–58, 1999.

[26] G. Kramer. An introduction to auditory display. Auditory
Display: Sonification, Audification, and Auditory Interfaces,
pages 1–78, 1994.

[27] G. Kramer, B. Walker, T. Bonebright, P. Cook, J. Flowers,
N. Miner, J. Neuhoff, et al. Sonification Report: Status of
the Field and Research Agenda. 1999. Prepared for the Na-
tional Science Foundation by members of the International
Community for Auditory Display, 1999.

[28] M. M. Lehman and L. A. Belady, editors. Program evolu-
tion: processes of software change. Academic Press Profes-
sional, Inc., San Diego, CA, USA, 1985.

[29] B. Lientz and E. Swanson. Software Maintenance Man-
agement. Addison-Wesley Longman Publishing Co., Inc.
Boston, MA, USA, 1980.

[30] J. Lionel E. Deimel. The uses of program reading. SIGCSE
Bull., 17(2):5–14, 1985.

[31] G. Lommerse, F. Nossin, L. Voinea, and A. Telea. The visual
code navigator: An interactive toolset for source code inves-
tigation. In INFOVIS ’05: Proceedings of the Proceedings
of the 2005 IEEE Symposium on Information Visualization,
page 4, Washington, DC, USA, 2005. IEEE Computer Soci-
ety.

[32] B. Moore. An introduction to the psychology of hearing.
Academic Press San Diego, Calif, 2003.

[33] D. R. Raymond. Reading source code. In CASCON ’91:
Proceedings of the 1991 conference of the Centre for Ad-
vanced Studies on Collaborative research, pages 3–16. IBM
Press, 1991.

[34] B. Repp and A. Penel. Rhythmic movement is attracted
more strongly to auditory than to visual rhythms. Psycho-
logical Research, 68(4):252–270, 2004.

[35] S. Resnikoff, D. Pascolini, D. Etya’ale, I. Kocur, R. Parara-
jasegaram, G. Pokharel, and S. Mariotti. Global data on
visual impairment in the year 2002. Bulletin of the World
Health Organization, 82:844–851, 2004.

[36] S. Rugaber. The use of domain knowledge in program un-
derstanding. Annals of Software Engineering, 9(1):143–192,
2000. 10.1023/A:1018976708691.

[37] M. Sanders and E. McCormick. Human Factors
in Engineering and Design. McGraw-Hill Sci-
ence/Engineering/Math, 1993.

[38] S.Barrass. Sonification design patterns. http://c2.
com/cgi/wiki?SonificationDesignPatterns,
2006.

[39] J. Stasko, J. Domingue, M. Brown, and B. Price. Software
Visualization. MIT Press, 1998.

[40] M. Storey. Theories, methods and tools in program compre-
hension: past, present and future. In Proceedings of the 13th
International Workshop on Program Comprehension IWPC
2005, pages 181–191, 2005.

[41] M.-A. Storey and H. Muller. Manipulating and documenting
software structures using shrimp views. In Software Main-
tenance, 1995. Proceedings., International Conference on,
pages 275–284, Oct 1995.

[42] The Eclipse Foundation. Eclipse - an open development
platform, 2008. http://www.eclipse.org.

[43] S. R. Tilley, D. B. Smith, and S. Paul. Towards a framework
for program understanding. In WPC ’96: Proceedings of
the 4th International Workshop on Program Comprehension
(IWPC ’96), page 19, Washington, DC, USA, 1996. IEEE
Computer Society.

[44] P. Vickers and J. Alty. Using music to communicate com-
puting information. Interacting with Computers, 14(5):435–
456, 2002.

[45] P. Vickers and J. L. Alty. When bugs sing. Interacting With
Computers, 14:793 – 819, 2002.

[46] Virginia Tech. Digital interactive sound & interme-
dia studio. http://disis.music.vt.edu/main/
index.html, 2008.

[47] A. von Mayrhauser and A. M. Vans. Program comprehen-
sion during software maintenance and evolution. Computer,
28(8):44–55, 1995.

[48] J. Vroomen and B. de Gelder. Sound Enhances Visual Per-
ception: Cross-Modal Effects of Auditory Organization on
Vision. Journal of Experimental Psychology Human Percep-
tion and Performance, 26(5):1583–1590, 2000.

[49] A. Walker and S. Brewster. Spatial audio in small screen
device displays. Personal and Ubiquitous Computing,
4(2):144–154, 2000.

[50] B. Walker and M. Nees. Handbook of Sonification, In T.
Hermann, A. Hunt, & J. Neuhoff (Eds.). New York: Aca-
demic Press, 2009.

[51] Y. Wang, S. Celebrini, Y. Trotter, and P. Barone. Visuo-
auditory interactions in the primary visual cortex of the be-
having monkey. electrophysiological evidence. BMC Neu-
roscience, 2008.

[52] C. Wickens, S. Gordon, and Y. Liu. An introduction to hu-
man factors engineering. New York: Addison Wesley Long-
man, 1998.

[53] C. D. Wickens. Processing resources in attention, In R.
Parasuraman & R. Davies (eds.), Varieties of attention,,
pages 63–101. New York: Academic Press, 1984.

[54] C. D. Wickens and Y. Liu. Codes and modalities in multi-
ple resources: a success and a qualification. Hum. Factors,
30(5):599–616, 1988.

[55] N. Wilde, P. Matthews, and R. Huitt. Maintaining object-
oriented software. IEEE Software, 10(1):75–80, 1993.

[56] J. Wu and M.-A. D. Storey. A multi-perspective software
visualization environment. In CASCON ’00: Proceedings of
the 2000 conference of the Centre for Advanced Studies on
Collaborative research, page 15. IBM Press, 2000.


