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Abstract:  The explicit tau-leaping procedure attempts to speed up the stochastic 
simulation of a chemically reacting system by approximating the number of firings of 
each reaction channel during a chosen time increment τ  as a Poisson random variable.  
Since the Poisson random variable can have arbitrarily large sample values, there is 
always the possibility that this procedure will cause one or more reaction channels to fire 
so many times during τ  that the population of some reactant species will be driven 
negative.  Two recent papers have shown how that unacceptable occurrence can be 
avoided by replacing the Poisson random variables with binomial random variables, 
whose values are naturally bounded.  This paper describes a modified Poisson tau-leaping 
procedure that also avoids negative populations, but is easier to implement than the 
binomial procedure.  The new Poisson procedure also introduces a second control 
parameter, whose value essentially dials the procedure from original Poisson tau-leaping 
at one extreme to the exact stochastic simulation algorithm (SSA) at the other; therefore, 
the modified Poisson procedure will generally be more accurate than the original Poisson 
procedure. 
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I.  INTRODUCTION 

 We consider a well-stirred system of N  chemical species { }1, , NS S�  undergoing 

M  chemical reactions { }1, , MR R� .  The current state of the system is specified by the 

vector ( )1, , Nx x=x � , where ix  is the current number of iS  molecules in the system.  

Each reaction channel jR  is characterized by its propensity function ( )ja x  and its state-

change vector ( )1 , ,j j N jν ν=� � ; here, ( )ja dtx  gives the probability that the system will 

experience an jR  reaction in the next infinitesimal time dt , and i jν  is the change in the 

number of iS  molecules caused by one jR  reaction. 

 A mathematically exact procedure for simulating the evolution of this system is the 
stochastic simulation algorithm (SSA), which advances the system in time from one 
reaction event to the next.1  The simplest implementation of the SSA is the so-called 
“direct method”, which goes as follows: 
 
 1.  In state x  at time t , evaluate all the propensity functions, and also their sum 

0 1
( ) ( )

M
jj

a a
=

≡�x x . 

 2.  Generate a time increment τ  as a sample of the exponential random variable with 
mean 01 ( )a x . 

 3.  Generate a reaction index j  as a sample of the point probability function 

0( ) ( )ja ax x  ( 1, , )j M= � . 

 4.  Update t t τ← +  and j← +x x � . 

 5.  Record ( , )t x  if desired.  Return to 1, or else stop. 
 
 Carrying out steps 2 and 3 here is mathematically straightforward:  We draw two 
random samples 1r  and 2r  of the unit-interval uniform random variable, and then 

compute ( )0 11 ( ) ln(1 )a rτ = x , and j  as the smallest positive integer for which 

1
( )

j
jj

a ′′=� x  exceeds 2 0 ( )r a x . 

 Although the SSA is mathematically exact (assuming the definition of the 
propensity functions accurately reflects the dynamics of the system), the task of explicitly 
simulating each and every reaction event often makes the SSA too slow for practical 
implementation.  A faster but approximate stochastic simulation procedure is the explicit 
Poisson tau-leaping algorithm.2  The basic idea of this procedure is to advance the system 
by a pre-selected time increment τ  (in contrast to the generated time increment τ  in the 
SSA), which is large enough that many reaction events occur in that time, but 
nevertheless small enough that no propensity function value is likely to change 
“significantly” as a consequence of those reaction events.  The latter restriction is called 
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the leap condition.  One strategy for satisfying it is to require that the expected change in 
each propensity function during a leap be bounded by 0 ( )aε x , where ε  (0 1)ε< �  is the 
error control parameter.  One way to estimate the largest value of τ  that meets this 
particular requirement is as follows:3  First compute 
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then take 
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Using this tau-selection procedure, the explicit Poisson tau-leaping algorithm goes as 
follows:2,3 

 
 1.  In state x  at time t , evaluate all the propensity functions, and their sum 

0 1
( ) ( )

M
jj

a a
=

≡�x x . 

 2.  Using Eqs. (1) - (3), compute the largest time step τ  that is not likely to result in 
any propensity function changing its value by more than 0 ( )aε x . 

 3.  If the τ  value chosen in step 2 is less than some small multiple (say 10) of 

01 ( )a x , then reject it and execute instead a moderate number (say 100) of 
successive single-reaction SSA steps before again attempting a tau-leap.  
Alternatively, if τ  is larger than the chosen small multiple of 01 ( )a x , then accept 
it and proceed to step 4. 

 4.  For each 1, ,j M= � , generate jk  as a sample of the Poisson random variable 

with mean ( )ja τx . 

 5.  Update t t τ← +  and 
1

M
j jj

k
=

← +�x x � . 

 6.  Record ( , )t x  if desired.  Return to step 1, or else stop. 
 
 In this procedure, jk  represents the number of times reaction jR  fires in time 

[ , )t t τ+ .  The Poisson approximation to jk  in step 4 is justified theoretically by the fact 

that, to the extent that ( )ja x  remains constant over the next τ  – i.e., to the extent that the 
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leap condition is satisfied – the number of jR  events that will occur in that next τ  will by 

definition be the Poisson random variable with mean ( )ja τx .  The caveat in step 3 is 

inserted because 01 ( )a x  is the mean time step to the next reaction event in the exact 
SSA, so if satisfying the leap condition restricts τ  to only a few multiples of that time 
then it would be computationally more efficient (and also more accurate) to step 
according to the SSA.  And since such a restriction to a small τ  would likely persist for 
awhile, it seems reasonable to continue stepping according to the SSA for some time 
before again engaging the somewhat elaborate tau-selection procedure of Eqs. (1) - (3) in 
the hope of making a tau-leap. 
 The forgoing tau-leaping procedure has been shown capable of giving an acceptably 
accurate simulation that is substantially faster than the SSA for many “not-too-stiff” 
systems – i.e., systems in which the difference between the characteristic time scales of 
the fastest and slowest dynamical modes is not too large.  But a potential problem with 
the procedure is that, since the Poisson random variable can have arbitrarily large sample 
values, we always run the risk that the Poisson approximation to jk  may result in 

reaction jR  firing so many times that more molecules of one of its reactants will be 

consumed in the τ -leap than are actually available.  When that happens, step 5 may 
produce a negative population for that reactant species, which is unacceptable. 
 In the next section, we will review how a recently proposed “binomial” tau-leaping 
strategy manages to avoid simulating negative populations.  After that we will present a 
“modified” Poisson tau-leaping procedure that resolves the negative population problem 
rather more easily, and in the process provides for increased accuracy relative to original 
Poisson tau-leaping. 

II.  BINOMIAL TAU-LEAPING 

 Recently, Tian and Burrage 4, and independently Chatterjee, et al. 5, proposed a way 
to avoid negative molecular populations in explicit tau-leaping.  Their idea is to further 
approximate jk  as a binomial random variable, one that has the same mean ( )ja τx  as the 

original Poisson random variable, but whose upper limit parameter is deliberately chosen 
to keep jk  from being so large that more reactant molecules are consumed than are 

actually available. 
 We recall that the binomial random variable with parameters p  (0 1)p< <  and L  
(any positive integer) has mean Lp  and variance (1 )Lp p− , and its sample values range 
over all the integers in [0, ]L .  For the binomial random variable with mean ( )ja τx  and 

upper limit jL , the parameter p  will thus be given by ( )j jp a Lτ= x .  The condition 

1p < , which is required for a nonnegative binomial probability, then requires that 

  
( )
j

j

L

a
τ <

x
. (4) 
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This is an additional restriction on the size of the leap variable τ  – one that must be 
imposed in addition to the restrictions imposed by the leap condition through the tau-
selection procedure (1) - (3).  (The leap condition is just as necessary for binomial tau-
leaping as it is for Poisson tau-leaping.)  Although the mean ( )ja τx  of the resulting 

binomial estimate of jk  is, by construction, the same as the mean of the Poisson estimate, 

the variance of the binomial estimate of jk  will be ( ) [1 ( ) ]j j ja a Lτ τ−x x , which is less 

than the variance ( )ja τx  of the Poisson estimate, as was noted by Chatterjee et al. 5 

 To use the binomial tau-leaping procedure, we must choose for each reaction 
channel jR  a value for the parameter jL , the maximum number of permitted firings of 

jR  during τ .  Tian and Burrage 4 and Chatterjee et al.5 use basically the same recipe for 

doing this:  For the reaction 1 2S S→  they take 1jL x= ; for the reaction 1 2 3 4S S S S+ → +  

they take 1 2min( , )jL x x= ; for the reaction 1 1 2S S S+ →  they take jL  to be the greatest 

integer in 1 2x ; etc.  In general, for any unimolecular or bimolecular reaction jR , jL  is 

assigned the value5 

  
( 0)

1, ,
min

i j
i

j i N
i j

x
L

ν

ν

<

=

	 

� �=
� � �

�
, (5) 

where the square brackets denote the “greatest integer in” operation.  Notice that the 
minimization in (5) is taken over only those species that get decreased in an jR  reaction. 

 But it should be noted in passing that there is some artificiality in restricting jk  to 

be less than or equal to the value (5), because that restriction is quite often not obeyed in 
the actual evolution of the system.  For example, in the case of the two reaction channels 

1 2S S� , restricting the total number of forward reaction events in the next τ  to 1x  and 
the total number of backward reaction events to 2x  ignores the fact that far more of both 
reactions might actually occur in time τ ; because, in the absence of other reaction 
channels involving these two species, these two reactions actually observe the less 
restrictive conditions that the number of forward reactions minus the number of backward 
reactions must be 1x≤ , and the number of backward reactions minus the number of 
forward reactions must be 2x≤ .  In general, requiring j jk L≤  will be overly restrictive if 

there are other reactions present that can increase the populations of the consumed jR  

reactants. 
 But there is another side to this coin, which turns out to be rather more troublesome:  
Requiring j jk L≤  will not be restrictive enough if there are other reactions present that 

can decrease the populations of the consumed jR  reactants; because, if there are two or 

more reaction channels with a common consumed reactant, we must take care that the 
total number of firings of all those reaction channels should not consume more molecules 
of the common reactant than are available.  This requirement is clearly recognized by 
both Tian and Burrage 4 and Chatterjee et al.5, but they address it in different ways. 
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 Chatterjee et al.5 propose to handle the problem by generating a binomial jk  subject 

to the limit (5) for each of the consuming reactions in succession, decreasing the common 
reactant population on the right side of (5) appropriately after each jk  is chosen. But 

there is a bias in this strategy that makes its outcome dependent on the arbitrary order in 
which the reactions are considered:  Earlier considered reactions will tend to fire more 
often than later considered reactions; indeed, later considered reactions will not be 
allowed to fire at all if the earlier considered reactions have used up all the molecules of 
the common reactant.  Chatterjee et al.5 try to correct this bias by randomly changing the 
order in which the reactions are considered from one leap to the next. 

 Tian and Burrage4 take a more analytical approach.  They prove theorems for 
constraining the sum of two independent Poisson random variables that allow them to do 
the following:  If two reactions 1R  and 2R  both consume one molecule of a common 
reactant species, and if there are only L  molecules of that species present, then Tian and 
Burrage generate the number of times 1k  and 2k  that those two channels fire subject to 
the constraint 1 2k k L+ ≤ .  Since this is done in a way that treats the two reaction 
channels equitably, there is no bias.  Tian and Burrage state that this procedure can be 
extended to more than two reactions, although they do not give detailed instructions for 
doing that.  But there would appear to be other situations remaining to be addressed.  For 
instance, if reaction 2R  in the aforementioned example consumed two molecules of the 
common species (as happens in a dimerization), then the constraint would read 

1 22k k L+ ≤ , and such a linear combination constraint is not covered by the sum 

constraint theorems of Tian and Burrage4.  Or, if in some bimolecular reaction, one of the 
two reactants is also a consumed reactant in a second reaction while the other consumed 
reactant is also a consumed reactant in a third reaction, then the constraints on the 
numbers of times each of those three reactions could fire would be complicated even to 
write down, much less develop theorems for. 
 It thus appears that the problem of multiple reactions with common consumed 
reactants poses issues for the binomial tau-leaping strategy that have not yet been fully 
resolved.  And writing a general binomial tau-leaping program that reliably handles all 
situations that could possibly arise would seem to be a very challenging task.  In the 
following section, we describe a modified Poisson tau-leaping procedure that resolves the 
negativity problem without having to address these particular issues. 

III.  MODIFIED POISSON TAU-LEAPING 

 If the leap condition is strictly obeyed, in the sense that we never leap by a τ  that 
changes the value of any propensity function by a “significant amount”, we would 
arguably never drive any reactant population negative; because, a change from positive to 
negative in the value of any propensity function is arguably always “significant”, even if 
it happens to be smaller than the bound 0 ( )aε x  that is imposed by the tau-selection 
procedure (1) - (3).  In other words, if ( )ja x  goes from a positive value to zero (or less) 

in a time leap τ , we cannot fairly regard it as “staying approximately constant” during τ , 
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so we have no justification for approximating the number of jR  firings during τ  as a 

Poisson random variable, much less a binomial random variable.  The approximation 
simply requires a smaller value of τ  than the one proposed by Eqs. (1) – (3).  This 
remedy is clearly involved in the binomial approach described in the preceding section, 
where the τ -value suggested by Eqs. (1) - (3) occasionally gets reduced by binomial 
condition (4). 
 Therefore, one obvious if unsophisticated way to avoid negative populations in 
Poisson tau-leaping would be to simply not accept any τ  that produces a negative species 
population, and to keep trying again using smaller values of τ , reduced say by a factor of 
1

2 , until no negative populations are obtained. 

 But while one or two applications of this “try again” procedure during a simulation 
run should be tolerable, frequent applications are not only annoyingly inefficient, but also 
indicative of compromised accuracy.  The first step toward developing a better strategy is 
to recognize that negative values of a consumed reactant are likely to arise only when the 
population of that reactant is already small.  For example, the single reaction 1 2S S→  
will rarely be a problem for Poisson tau-leaping if 1 20x ≥ ; because, in the case 1 20x =  
for example, no τ -selection procedure that is truly consistent with the leap condition 
should allow more than 8 firings of that reaction (otherwise the propensity function would 
suffer a “significant” change during the leap of more than 40%), and the probability that a 
Poisson random variable with mean 8 will give a sample value that is greater than 20 is 
only about 410− .  But if we scale this situation down by a factor of 10, taking 1 2x =  and 
using a Poisson random variable with mean 0.8, the probability of getting a sample value 
greater than 1x  increases by a factor of about 500. 

 It therefore seems prudent to monitor the populations of the consumed reactants for 
each reaction channel during a Poisson tau-leaping simulation, and to flag any reaction 
channel as being “critical” if it is currently in danger of exhausting any of its reactants.  
Taking a cue from the binomial strategy described in Sec. II, we propose to call jR  a 

critical reaction if jL , as computed from formula (5), is found to be less than or equal to 

some critical value cn .  The value assigned to cn  is discretionary, but typically it might 
be something between 2 and 20.  Of course, since the species populations change as the 
system evolves in time, the roster of critical reactions will have to be regularly updated as 
the simulation proceeds.  But note that any reaction whose propensity function happens to 
be zero should not be placed on the critical reactions list; because, since such a reaction 
would have zero probability of firing, it would be incapable of driving any species 
population negative. 
 The following modified Poisson tau-leaping procedure incorporates the forgoing 
strategy in a way that ensures that no more than one firing of a critical reaction can occur 
in a single τ -leap.  That makes it impossible for any critical reaction to produce a 
negative species population count.  The theoretical justification for each step in this 
modified tau-leaping procedure will be explained in detail in the section that follows. 
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 1.  In state x  at time t , evaluate all the propensity functions and their sum 

0 1
( ) ( )

M
jj

a a
=

≡�x x . 

 2.  Identify the currently critical reactions, namely those reaction channels jR  for 

which ( ) 0ja >x  and cjL n≤ , where jL  is as defined in Eq. (5). 

 3.  Using a modified version of Eqs. (1) - (3), compute the largest time step τ ′  that is 
not likely to result in any propensity function changing its value by more than 

0 ( )aε x .  The modification here is that the index j′  in Eqs. (1) and (2) should now 
run over only the non-critical reactions.  If there are no non-critical reactions (i.e., 
if all the reactions are critical), then ignore Eqs. (1) - (3) and put τ ′ = ∞ . 

 4.  If the τ ′  value chosen in step 2 is less than some small multiple (say 10) of 

01 ( )a x , then reject it and execute instead a moderate number (say 100) of 
successive single-reaction SSA steps before again attempting a tau-leap.  
Alternatively, if τ ′  is larger than the chosen small multiple of 01 ( )a x , then 
accept it and proceed to step 5. 

 5.  Compute the sum c
0 ( )a x  of the propensity functions of the critical reactions.  

Generate τ ′′  as a sample of the exponential random variable with mean c
01 ( )a x . 

 6a.  If τ τ′ ′′< :  Take τ τ ′= .  For all the critical reactions jR , set 0jk = .  For all the 

non-critical reactions jR , generate jk  as a sample of the Poisson random variable 

with mean ( )ja τx . 

 6b.  If τ τ′′ ′≤ :  Take τ τ ′′= .  Generate cj  as a sample of the integer random variable 

with point probabilities c
0( ) ( )ja ax x , where j  runs over the index values of the 

critical reactions only.  Set 
c

1jk = , and for all the other critical reactions set 

0jk = .  For all the non-critical reactions jR , generate jk  as a sample of the 

Poisson random variable with mean ( )ja τx . 

 7.  Update t t τ← +  and 
1

M
j jj

k
=

← +�x x � . 

 8.  If any component of x  is now negative, undo step 7, replace 2τ τ′ ′← , and return 
to step 6. 

 9.  Record ( , )t x  if desired.  Return to step 1, or else stop. 

IV.  RATIONALE FOR THE MODIFIED POISSON TAU-LEAPING 
PROCEDURE 

 Step 2 in the modified Poisson tau-leaping algorithm determines which reactions are 
currently critical.  This step has been interposed between the first two steps of the original 
Poisson tau-leaping algorithm.  But two changes have been introduced in step 3:  First, 
the tau-value produced by the selection procedure (1) - (3) has been labeled τ ′  instead of 
τ .  And second, Eqs. (1) and (2) have been modified, in a sense simplified, in that the 
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index j′  now runs over only the non-critical reactions.  (But the index j  in Eqs. (1) - (3) 
still runs over all the reactions.) 
 As regards the first of these two changes, τ ′  is now only a candidate for the actual 
tau-leap.  Step 5 will produce a second candidate τ ′′ , and step 6 will then choose as the 
actual time leap τ  the smaller of τ ′  and τ ′′ .  We will explain in detail why this is done 
momentarily. 
 The justification for the change in the range of the index j′  in Eqs. (1) and (2) is 
this:  Since there will be no more than one firing among all the critical reactions, we need 
be concerned only with propensity function changes that are caused by potentially 
multiple firings of the non-critical reactions.  An examination of the derivation of Eqs. 
(1) - (3) in Ref. 3 will reveal that the index j  in those equations specifies the reaction 
whose propensity function change is being estimated, while the index j′  specifies the 
reaction whose firings are causing those changes.  Since we are concerned here only with 
changes caused by the non-critical reactions, then j′  can now be restricted to the non-
critical reactions.  But the index j  still needs to runs over all the reactions since, for 
reasons that will be explained momentarily, we must ensure that the propensity functions 
of the critical reactions will not be substantially changed during a leap by the firings of 
the non-critical reactions. 
 Step 4 is exactly the same as the third step in ordinary Poisson tau-leaping.  It 
essentially abandons tau-leaping in favor of the exact SSA whenever the tau-selection 
procedure (1) - (3) produces a value on the order of the expected time to the next reaction. 
 To understand the logic behind steps 5 and 6, first note that if the non-critical 
reactions were not firing, then the procedure specified in step 5 to generate τ ′′  would 
make it the time to the next firing of a critical reaction (cf. step 2 of the SSA in Sec. I); 
likewise, the procedure used in step 6b to generate cj  would make it the index of the 
next-firing critical reaction (cf. step 3 of the SSA).  But if firings of the non-critical 
reactions induce changes in the values of the propensity functions of the critical reactions, 
this SSA logic is no longer exact.  That is why we must let j  in Eqs. (1) - (3) run over the 
critical reactions as well as the non-critical reactions.  For then, the τ ′ -selection 
procedure in step 3 should ensure that the changes in the propensity functions of the 
critical reactions caused by firings of the non-critical reactions during the leap will not be 
“significant”. Then, to a first approximation, those changes can be ignored.  And then we 
will have a logical basis for regarding τ ′′  and cj  as reasonably good approximations to 
the time to and the index of the next firing critical reaction. 
 In steps 6a and 6b, the two alternatives τ τ′ ′′<  and τ τ′′ ′≤  are considered 
separately.  If τ τ′ ′′< , then no critical reaction will fire during [ , ]t t τ ′+ , since the earliest 
critical reaction fires at the later time t τ ′′+ ; therefore, a leap by τ τ ′=  proceeds 
according to the recipe described in step 6a.  Alternatively, if τ τ′′ ′≤ , then a leap by τ ′′  
would be allowed by the leap condition (since the leap condition actually allows a leap by 
the larger amount τ ′ ), and that leap would carry us to the occurrence of the next critical 
reaction, 

cj
R ; therefore, a leap by τ τ ′′=  proceeds according to the recipe described in 

step 6b. 
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 Notice that in no case can more than one critical reaction occur in a leap, and 
whatever critical reaction channel does fire (once) will necessarily have a positive 
propensity function.  Thus, it will be impossible under this procedure for the firing of a 
critical reaction to produce a negative species population.  Of course, multiple firings of 
the non-critical reactions could still produce negative populations.  But that becomes less 
and less probable as cn  is assigned larger and larger values.  Step 8 is introduced to take 
care of this usually improbable eventuality.  Arguably, step 8 should also have appeared 
in the original tau-leaping procedure (in Sec. I) between its last two steps.  And steps 7 
and 9 of the modified Poisson tau-leaping algorithm are exactly those last two steps of the 
original Poisson tau-leaping algorithm. 

V.  TUNING THE PARAMETER cn  

 If the value of the parameter cn  were taken to be zero, then no reaction channels 
would ever be identified as “critical” in step 2.  In that case, the modified Poisson tau-
leaping procedure would reduce to the original Poisson tau-leaping procedure. 
 At the other extreme, if the value of cn  were taken so large that every reaction 
channel were always deemed critical, then the computation of τ ′  via Eqs. (1) - (3) in step 
3 would never be performed (τ ′  would always be assigned the value ∞ ), and step 6b 
would always be selected.  But no Poisson random numbers would have to be generated 
in step 6b, since there would be no non-critical reactions.  The modified Poisson tau-
leaping procedure would then reduce to the exact SSA.  Of course, the simulation would 
then be very slow; therefore, we should always try to take cn  “as small as possible”.  A 
too small value for cn  would be signaled by the need to use the try-again procedure of 
step 8 more often than we would like. 
 These considerations show that, by adjusting the value of the parameter cn , we can 
cause the modified Poisson tau-leaping procedure to perform anywhere between the 
original Poisson tau-leaping procedure ( c 0n = ) and the exact SSA ( cn = ∞ ).  This should 
give us added flexibility in finding a satisfactory compromise between simulation speed 
and simulation accuracy.  Experience thus far suggests that a value for cn  somewhere 
between 5 and 15 will usually be optimal.  But it would appear that, so long as cn  is large 
enough that step 6b is sometimes selected, the modified Poisson tau-leaping procedure 
should be somewhat more accurate than the original Poisson tau-leaping procedure. 

VI.  NUMERICAL TESTS 

 To test our modified Poisson tau-leaping procedure, we have applied it, along with 
the original Poisson tau-leaping procedure, the binomial tau-leaping procedure, and the 
exact SSA, to the LacY/LacZ reaction model of Kierzek6.  This model was used by Tian 
and Burrage4 to test their binomial tau-leaping procedure because they found that 
simulating this model using ordinary Poisson tau-leaping regularly produced negative 
populations.  The LacY/LacZ model has 19 species and 22 reactions.  We simply list the 
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reactions in Table 1, and refer to Kierzek6 for an explanation of the underlying biology, 
and to Tian and Burrage4 for a broader discussion of the model. 
 The results of our comparison runs are shown in Table 2.  In evaluating these 
results, it should be kept in mind that the exact SSA run required 3938 s of CPU time, 
and simulated 91.66 10×  individual reaction events.  For error tolerance 0.03ε = , the 
original Poisson tau-leaping simulation took 55.15 10×  leaps; however, over 410  of those 
leaps produced a negative species population.  Whenever a negative species population 
was encountered, the precipitating leap was immediately undone and repeated with τ  
decreased by a factor of ½.  In every case this was sufficient to resolve the negative 
population problem.  But the presence of so many obvious errors in leaping suggests that 
less obvious errors are probably slipping through, and hence that the simulation is not 
being done as accurately as we might wish.  Increasing ε  to 0.05 reduced the number of 
leaps in original Poisson tau-leaping by 38%, but more than doubled the number of 
rejections due to negative populations. 
 No τ -rejections were encountered in the binomial tau-leaping runs or the modified 
Poisson tau-leaping runs.  For 0.03ε =  the binomial run took 50% more leaps than the 
original Poisson run, demonstrating that avoiding negative populations generally requires 
taking smaller leaps.  But surprisingly, increasing ε  to 0.05 did not reduce the number of 
binomial leaps by very much; we shall explain the reason for this shortly. 
 All of the modified Poisson tau-leaping runs used c 10n = , so that a reaction channel 
was deemed “critical” whenever it was within 10 firings of exhausting any one of its 
reactants.  The modified Poisson procedure took 23% more leaps than the original 
Poisson procedure for 0.03ε = , and 29% more leaps for 0.05ε = , but fewer leaps in 
both cases than the binomial procedure.  Of course, these results could be changed either 
way by suitably changing cn , since taking c 0n =  would turn the modified Poisson 

procedure into the original Poisson procedure, and taking cn = ∞  would turn it into the 
SSA. 
 We investigated the relative accuracies of the three tau-leaping methods for the 
LacY/LacZ model by running ensembles of 10,000 runs using each method (with 

0.03ε = ) over a short time interval, and then comparing the final population distributions 
of the 19 species with those obtained in a like ensemble of SSA runs.  For most species, 
both the binomial and the modified Poisson procedures gave noticeably more accurate 
distributions than the original Poisson procedure.  But there was no clear winner in 
accuracy between the binomial and modified Poisson procedures, since for some species 
the binomial results were slightly more accurate while for other species the modified 
Poisson results were slightly more accurate. 
 To gain more insight into how the individual tau-leaping procedures actually 
functioned, we repeated the three long 0.03ε =  tau-leaping runs of Table 2 and plotted 
for each the τ -values that were used on every thousandth leap over a representative time 
interval.  Figure 1 shows the results for the original Poisson tau-leaping run.  The open 
squares in this plot identify τ -values that were originally twice as large, but got reduced 
to avoid negative populations.  As an aside, we note that further testing revealed that 
practically all of the τ -values lying on the up-sloping limiting line in Fig. 1 were 
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determined by the second ( jσ ) argument on the right hand side of Eq. (3), while the τ -

values (at least those represented by solid dots) below that line were determined by the 
first ( jµ ) argument on the right hand side of Eq. (3). 

 Figure 2 shows the τ -values used on every thousandth leap of the binomial tau-
leaping run.  The limiting plateau that kicks in shortly after time 600t =  was found to 
arise from the binomial condition (4) as it applies to reaction 21R :  The reaction rate for 

21R  is 431, so if there are n  LacZlactose molecules, the right hand side of condition (4) 

evaluates to (431 ) 0.0023n n⋅ ≈ , which is precisely the level of the plateau.  Increasing 
the error tolerance ε  from 0.03 to 0.05 has no effect on this plateau value, and that 
explains why there is so little difference between the run times of the binomial procedure 
for those two values of ε . 
 Figure 3 shows the τ -values used on every thousandth leap of the modified Poisson 
tau-leaping run.  In this plot, a solid dot indicates that the leap contained no firings of a 
critical reaction (step 6a of the algorithm), while an open circle indicates that the leap 
contained one firing of a critical reaction (step 6b of the algorithm).  The appearance of 
more open-circled low τ -values than occurred in the original Poisson run in Fig. 1 and 
the binomial run in Fig. 2 shows the modified Poisson procedure “being careful” not to 
leap over more than one firing of a critical reaction.  But the appearance of points (and 
open circles) above the 0.0023 limit of Fig. 2 shows that not leaping over more than one 
firing of a critical reaction can often be done using a τ -value that is actually larger than 
what would be allowed by the binomial condition (4).  This illustrates the point made in 
the paragraph following Eq. (5), that the binomial condition (4) can be overly restrictive 
when the number of molecules of a species that gets consumed in one reaction can be 
increased by some other reaction.  In this case, LacZlactose gets consumed by the limiting 
reaction 21R , but it also gets produced by reaction 20R . 

 Finally, we made comparison simulations of the simple model system 

  1 2
1 2 3

c cS S S→ → , (6) 

with 1 10c = , 2 0.1c = , and initial populations 1(0) 9x = , 4
2 (0) 2 10x = × , 3(0) 0x = .  More 

specifically, we made four sets of 510  simulation runs from time 0 to time 0.1, using the 
SSA, the original Poisson tau-leaping method, the binomial tau-leaping method, and the 
modified Poisson tau-leaping method.  All three tau-leaping simulations had 0.03ε = , 
and the modified Poisson run had additionally c 10n = . 

 Table 3 shows for each simulation set the CPU time for all 510  runs, the average 
number of steps per run, and the average number of step-rejections per run.  (A “step” is 
one reaction for the SSA, and one leap for the three tau-leaping procedures.)  The 
histogram distributions for 2 (0.1)x  and 3(0.1)x  were found to be practically 
indistinguishable among the four simulation sets, but as Fig. 4 shows, marked differences 
were found in the final state distributions for species 1S :  The original Poisson and 

binomial runs produced 1(0.1)x  distributions that differ noticeably from that of the SSA 

run, whereas the modified Poisson runs gave a distribution for 1(0.1)x  that is practically 
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indistinguishable from that of the SSA runs.  The modified Poisson runs required on 
average over twice as much CPU time, and over three times as many steps per run, as the 
other two tau-leaping runs.  But still, the average CPU time for the modified Poisson 
method was less than one-third of that for the SSA, and the average number of steps per 
run for the modified Poisson method was less than 4% of that for the SSA. 
 The increased accuracy of the modified Poisson tau-leaping method over the other 
two tau-leaping methods for this simple example is due to the fact that the number of 1S  

molecules was always less than cn , so reaction 1R  was always treated as a critical 

reaction.  The lesson here is that, by taking care not to leap over more than one 1R  
reaction in this simple model, we will get results that are practically as accurate as the 
SSA but in less time.  Of course, we might not always need that level of accuracy.  But 
the modified Poisson method gives us the option of obtaining it, simply by choosing the 
value of the parameter cn . 

VII.  CONCLUSIONS 

 We have shown that the modified Poisson tau-leaping procedure described in Secs. 
III and IV avoids the negative population problems of original Poisson tau-leaping, and 
can be made to perform anywhere “between” the original tau-leaping procedure and the 
exact SSA simply by tuning the parameter cn  between 0 and ∞ .  Therefore, modified 
Poisson tau-leaping appears to represents a clear improvement over original Poisson tau-
leaping. 

 As compared to the recently proposed binomial tau-leaping procedure4,5 for 
avoiding negative populations, the modified Poisson procedure seems to offer several 
advantages.  First, although both procedures make use of the rather arbitrary values jL  in 

Eq. (5), those jL  values do not get “quantitatively propagated” in the modified Poisson 

procedure as they do in the binomial procedure.  The only purpose served by the jL  

values in the modified Poisson procedure is to decide which reaction channels should be 
put on the critical reaction list.  We need not even compute jL  for any reaction jR  that 

we are confident will never be a critical reaction. 
 Second, the modified Poisson procedure never has to worry about two or more 
reactions with a common consumed reactant “colluding” to drive the population of that 
common reactant negative.  (This assumes that all potentially colluding reactions will be 
on the critical list, but that should always be so.)  This follows from the fact that in a 
modified Poisson tau-leap, there can never be more than one firing among all the critical 
reactions.  In contrast, binomial tau-leaping in principle allows any reaction to fire 
enough times in a leap that its propensity function could actually be brought to zero.  But 
whenever multiple firings of a reaction channel bring its propensity function to zero, there 
is always a possibility that the leap condition will have been “violated in spirit”, since 
such a change in the value of a propensity function is arguably always “significant” 
regardless of what Eqs. (1) - (3) might suggest.  And since violations of the leap condition 
generally imply quantitative inaccuracies in the leap, then even though a binomial tau-
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leap will never lead to negative populations, it may sometimes be accompanied by an 
unanticipated degradation in accuracy. 
 In most practical cases, such as the LacY/LacZ model considered in Sec. VI, we 
expect that the modified Poisson and binomial procedures will have comparable 
accuracies for comparable run times.  But the modified Poisson procedure will be much 
easier to program than the binomial procedure if the latter is required to take proper 
account of all possible “collusions” among reaction channels with common consumed 
reactants.  Thus, we believe that its simplicity, reliability, and tunable accuracy give 
modified Poisson tau-leaping a practical edge over binomial tau-leaping. 
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  FIGURE CAPTIONS 
 
Fig. 1.  Showing, for a simulation of the LacY/LacZ reactions in Table 1 using the 
original Poisson tau-leaping method with 0.03ε = , the tau-values that were used every 
thousandth leap.  Open squares indicate tau-values that had been reduced by a factor of ½ 
from the values that had first been proposed by the tau-selection procedure (1) - (3), in 
order to avoid negative populations. 
Fig. 2.  Showing, for a simulation of the LacY/LacZ reactions using the binomial tau-
leaping method with 0.03ε = , the tau-values that were used every thousandth leap. 
Fig. 3.  Showing, for a simulation of the LacY/LacZ reactions using the modified Poisson 
tau-leaping method with 0.03ε =  and c 10n = , the tau-values that were used every 
thousandth leap.  A solid point indicates that the leap occurred without the firing of any 
critical reaction (step 6a), while an open circle indicates that the leap occurred with one 
critical reaction firing once (step 6b). 

Fig. 4.  Showing, for four sets of 510  simulation runs of reactions (6) from the initial state 

1 2 3( , , )x x x  = (9,20000,0)  to time 0.1, using the exact SSA and the three tau-leaping 

methods, histograms of the final distributions of the 1S  population.  The three tau-leaping 
methods all used 0.03ε = , and the modified Poisson tau-leaping method also used 

c 10n = .  (The final state distributions of the 2S  and 3S  populations for the four 
simulation methods were practically indistinguishable.) 
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 Reaction channel Reaction rate 

R1 PLac + RNAP  �  PLacRNAP 0.17 

R2 PLacRNAP  �  PLac + RNAP 10 

R3 PLacRNAP  �  TrLacZl 1 

R4 TrLacZl  �  RbsLacZ + PLac + TrLacZ2 1 

R5 TrLacZ2  �  TrLacYl 0.015 

R6 TrLacYl  �  RbsLacY + TrLacY2 1 

R7 TrLacY2  �  RNAP 0.36 

R8 Ribosome + RbsLacZ  �  RbsRibosomeLacZ 0.17 

R9 Ribosome + RbsLacY  �  RbsRibosomeLacY 0.17 

R10 RbsRibosomeLacZ  �  Ribosome + RbsLacZ 0.45 

R11 RbsRibosomeLacY  �  Ribosome + RbsLacY 0.45 

R12 RbsRibosomeLacZ  �  TrRbsLacZ + RbsLacZ 0.4 

R13 RbsRibosomeLacY  �  TrRbsLacY + RbsLacY 0.4 

R14 TrRbsLacZ  �  LacZ 0.015 

R15 TrRbsLacY  �  LacY 0.036 

R16 LacZ  �  dgrLacZ 6.42×10−5 

R17 LacY  �  dgrLacY 6.42×10−5 

R18 RbsLacZ  �  dgrRbsLacZ 0.3 

R19 RbsLacY  �  dgrRbsLacY 0.3 

R20 LacZ + lactose  �  LacZlactose 9.52×10−5 

R21 LacZlactose  �  product + LacZ 431 

R22 LacY  �  lactose + LacY 14 

Table 1:  Reaction channels and rates for the LacZ/LacY model of Kierzek6. 
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 Original Poisson Binomial Mod. Poisson c( 10)n =  

ε  Time (s) Leaps Rejects Time (s) Leaps Time (s) Leaps 

0.03 57 55.15 10×  10493 89 57.75 10×  72 56.31 10×  

0.05 36 53.20 10×  21968 85 57.73 10×  47 54.13 10×  

Table 2:  CPU time and total number of leaps taken for one simulation run of the 
LacY/LacZ model over a common time interval from a common initial condition, using 
three different tau-leaping methods and two different values of the error control parameter 
ε .  Also shown for the original Poisson tau-leaping run is the number of times during the 
run that the selected value of τ  had to be rejected because it produced a negative 
population; such leaps were undone and repeated with τ  reduced by a factor of ½.  The 
corresponding exact SSA run required 3938 s of CPU time, and took 91.66 10×  steps 
(individual reactions). 
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 SSA Original Poisson Binomial Modified Poisson 

Total CPU Time (s) 35.3 4.5 4.1 10.2 

Avg Steps Per Run 204.7 2.0 2.0 6.7 

Avg. Rejects Per Run 0 0.13 0 0 

Table 3:  Total CPU time, average number of steps per run, and average number of step 
rejections per run, for sets of 510  simulations from time 0 to time 0.1 of the model (6) 
using the SSA, original Poisson tau-leaping, binomial tau-leaping, and modified Poisson 
tau-leaping. 
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