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 Abstract:  The slow-scale stochastic simulation algorithm (ssSSA) proposed in [J. 

Chem. Phys. 122, 014116 (2005)] and the nested stochastic simulation algorithm (nSSA) 

proposed in [J. Chem. Phys. 123,194107 (2005)] are closely related approximate 

simulation procedures aimed at speeding up the stochastic simulation of stiff chemical 

systems, i.e., systems that evolve through fast and slow dynamical modes with the fast 

mode being stable.  This Comment aims to clarify some misconceptions that have arisen 

over the relationship between the ssSSA and the nSSA as regards both their theoretical 

foundations and their practical implementations. 
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 Nearly a dozen papers have been published over the past five years aimed at 

approximately speeding up the exact stochastic simulation algorithm (SSA) for chemical 

systems that evolve on widely different time scales.  Such systems are termed stiff, a term 

whose meaning in a stochastic context was recently elucidated in Rathinam, et al.
1
  Here 

we focus on just two of these papers, namely Ref. 2 by the present authors, which 

introduced the slow-scale stochastic simulation algorithm (ssSSA), and Ref. 3 by E, Liu 

and Vanden-Eijnden, which was published almost a year later and introduced the nested 

stochastic simulation algorithm (nSSA).  We first correct an incorrect claim that was 

made in Ref. 3 concerning the ssSSA.  We then show that the misunderstanding that led 

the authors of Ref. 3 to make that incorrect claim also prevented them from seeing that, 

although there are indeed differences in how the ssSSA and the nSSA are implemented, 

those two algorithms share a common theoretical foundation – one that was fully 

established in Ref. 2. 

 The incorrect claim in Ref. 3 occurred in its discussion of how to speed up the 

simulation of the model reaction set 
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when the outer rate constants ( 1c , 2c , 5c  and 6c ) are very much larger than the inner rate 

constants ( 3c  and 4c ).  The authors of Ref. 3 noted that since all four species get changed 

by at least one of the fast reactions ( 1R , 2R , 5R  and 6R ), then this system has no slow 

species.  From that they concluded, wrongly, that the ssSSA “would not result in any 

changes over the straightforward SSA.”  In fact, the ssSSA does not require that there be 

any slow species in order to be applicable or efficacious.  And for this particular problem, 

the speedup over the SSA provided by the ssSSA is substantially greater than the speedup 

provided by the nSSA, as we shall now demonstrate. 

 Figure 1a shows the results of an exact SSA run of reactions (1) for the rate 

constants 

  4
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The species populations here were plotted out after the occurrence of each slow reaction 

( 3R  or 4R ).  A total of 82.16 10×  reaction events were simulated in the time span shown, 

but only 1,771 of those corresponded to a slow reaction. 

 A simulation run of these same reactions using the ssSSA
2
, a procedure that 

explicitly simulates only the slow reactions, produced trajectories that are statistically 

indistinguishable from those shown in Fig. 1a (to save space we do not show them).  By 

“statistically indistinguishable,” we mean that like-plotted results of repeated independent 

runs of the SSA and the ssSSA could not be told apart.  But the ssSSA run was 

accomplished 42.7 10×∼  times faster (comparing actual run times) than the SSA run. 

 Simulating these reactions using the nSSA
3
 requires one to choose a value for a 

certain control parameter, fT .  Larger values for fT  will make the simulation more 

accurate, but also cause it to run longer.  Reference 3 gives little practical guidance for 

choosing fT .  We found that taking 5
f 1.1 10T −= × , a value which for reasons explained 
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below should give acceptable results, indeed caused the nSSA to produce trajectories that 

were likewise statistically indistinguishable from the SSA trajectories in Fig. 1a.  That 

nSSA run was accomplished 150∼  times faster than the SSA run, but 180∼  times 

slower than the ssSSA run.  A second nSSA run, this one made with fT  smaller by a 

factor of 0.1, sped things up:  it was 31.5 10×∼  times faster than the SSA run, and 18∼  

times slower than the ssSSA run, and it produced the trajectories shown in Fig. 1b.  The 

difference in the statistical textures of these trajectories compared to the exact SSA 

trajectories in Fig. 1a shows that this value for fT  is too small. 

 The fact that the authors of Ref. 3 believed the ssSSA was inapplicable to this 

problem suggests that our exposition in Ref. 2 was less than clear.  We shall therefore 

give a brief recapitulation of the ssSSA and its underlying logic, and then describe how 

we think the nSSA fits into that picture. 

 The ssSSA proceeds in a series of steps.
2
  The first step is to make a provisional 

partitioning of the reactions into fast and slow subsets.  The criteria for making this 

partitioning is that the propensity functions (or stochastic rates) f ( )ja x  of each fast 

reaction f
jR  should usually be very much larger than the propensity function s ( )ja x  of any 

slow reaction s
jR .  The qualifier “usually” is needed because the value of a propensity 

function generally depends on the species population vector x , and a propensity function 

might be very large in some regions of state space and very small in other regions.  It is 

therefore impossible to know whether a propensity function will be large or small most of 

the time unless we already have a good idea about how the system behaves.  But this 

partitioning is only provisional; it will later be subjected to a test that will determine 

whether or not it is acceptable. 

 Like the ssSSA, the nSSA of Ref. 3 also aims to evolve the system by simulating 

only the slow reactions, so it too begins by partitioning the reactions into fast and slow 

subsets.  But the discussion of this task given in Ref. 3 glosses over the practical 

difficulties just described, and leaves the impression that deciding whether any reaction is 

fast or slow can always be done easily and confidently.  This will not always be so, 

especially in the commonly occurring situation of a system that is only borderline-stiff.  

As presented in Ref. 3, the nSSA does not provide an acceptance criterion to assure the 

legitimacy of a fast/slow partitioning.  This is problematic, because the strategy of 

skipping over the fast reactions and simulating only the slow ones will be sound only if 

the fast reactions are in some sense “less important” than the slow ones.  There are 

chemical systems (detonation reactions for instance) in which the fast reactions are not 

less important than the slow ones; their simulation cannot be accelerated by either the 

ssSSA or the nSSA.  The partitioning acceptance test of the ssSSA, to be described 

shortly, provides a way of determining whether or not it should be okay to skip over the 

fast reactions. 

 With the reactions provisionally partitioned, the second step in the ssSSA is to 

partition the species into fast and slow subsets.  The criterion for doing this is simple
2
:  

Any species whose population gets changed by at least one fast reaction is classified as 

fast, and all other species are classified as slow.  This leads to a partitioning of the state 
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vector into fast and slow components, ( )f s( ) ( ), ( )t t t=X X X .  Points to note:  a fast 

species population can get changed by a slow reaction but a slow species population 

cannot get changed by a fast reaction; a fast species population need not be large; and the 

set of slow species might be empty. 

 The third step in the ssSSA is to define the virtual fast process fˆ ( )tX  as the fast 

species populations evolving under only the fast reactions.
2
  Thus, fˆ ( )tX  is f ( )tX  with 

all the slow reactions switched off.  fˆ ( )tX  is a fictitious process, in contrast to the “real” 

fast process f ( )tX  which consists of the same fast variables evolving under all the 

reactions.  fˆ ( )tX  will always be more tractable than f ( )tX . 

 The initial partitioning of the reactions is now deemed acceptable if and only if two 

conditions are satisfied:
2
  First, fˆ ( )tX  must be stable in the technical sense of stochastic 

process theory; i.e., the limit fˆ ( )∞X  of fˆ ( )tX  as t→∞  must exist as a well-behaved 

random variable, or equivalently, the initially-conditioned probability that fˆ ( )tX  has a 

given value y  must become independent of t  as t→∞ .  Second, fˆ ( )tX  must effectively 

reach this limit fˆ ( )∞X  in a time that is small compared to the expected time to the next 

slow reaction.  In effect, these two conditions require that ( )tX  be stiff; i.e., it should 

have fast and slow dynamical modes, and the fast mode should be stable.  Systems that do 

not satisfy these two conditions will typically be those for which the fast reactions are no 

less important than the slow ones, and hence should not be skipped over.  Verifying the 

satisfaction of these two stochastic stiffness conditions can be a challenging task, but it 

has been successfully done for several simple systems.
 2,4

 

 The logical basis for the ssSSA, and we contend the nSSA too, is the slow-scale 

approximation lemma
2
:  With the system in state f s( , )x x  at time t , let s∆  be a time that 

is very large compared to the time it takes fˆ ( )tX  to relax to fˆ ( )∞X , yet very small 

compared to the expected time to the next slow reaction.  (The existence of such a s∆  is 

guaranteed by the two stiffness conditions.)  Then the probability that the slow reaction 
s
jR  will fire in the time interval s[ , )t t ∆+  can be well approximated by s f s

s( , )ja ∆x x , 

where 

  
f

s f s f f s s f sˆ( , ) ( , | , ) ( , )j ja P a∞∑
y

x x y x x y x� , (3) 

with f f sˆ( , | , )P ∞y x x  being the probability that f fˆ ( )∞ =X y  given the initial state f s( , )x x . 

 The import of this lemma can be appreciated by recalling that the definition of s
jR ’s 

real propensity function s f s( , )ja x x  is that, with the system is in state f s( , )x x  at time t , 

s f s( , )ja dtx x  gives the probability that s
jR  will fire in the next infinitesimal interval 

[ , )t t dt+ .  Since s∆  is an “approximate infinitesimal” on the time scale of the slow 
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reactions, then the lemma implies that s f s( , )ja x x  defined in (3) can approximately be 

regarded as s
jR ’s propensity function on the time scale of the slow reactions. 

 The slow-scale approximation lemma can be proved as follows:
2
  Let [ , )t t dt′ ′ ′+  be 

an infinitesimal subinterval of s[ , )t t ∆+ .  The probability that s
jR  will fire in [ , )t t dt′ ′ ′+  

is 

  ( ) ( )s f s s f sˆ( ), ( ) ( ),j ja t t dt a t dt′ ′ ′ ′ ′≈X X X x . (4) 

The last step follows because it is very unlikely that any slow reaction will fire anywhere 

in the interval s[ , )t t ∆+ , so f ( )t′X  can be well approximated there by fˆ ( )t′X , and s( )t′X  

can be well approximated by sx .  Since there is a negligibly small probability of more 

than one s
jR  reaction firing in s[ , )t t ∆+ , we can invoke the addition law of probability for 

mutually exclusive events to compute 

  { } ( )ss s f s
s

ˆProb  in [ , ) ( ),
t

j j
t

R t t a t dt
∆

∆
+

′ ′+ ≈ ∫ X x , (5a) 

  ( )s s f s
s

s

1 ˆ ( ),
t

j
t

a t dt
∆

∆
∆

+ 
′ ′≈  

 
∫ X x , (5b) 

  
f

f f s s f s
s

ˆ( , | , ) ( , )jP a ∆
  

≈ ∞ 
  
∑
y

y x x y x . (5c) 

The quantity in braces in (5b) is, since s∆  is “very large” on the time scale of the fast 

reactions, the temporal average of ( )s f sˆ ( ),ja t′X x .  In proceeding to (5c), we are choosing 

to evaluate that temporal average as the ensemble average ( )s f sˆ ( ),ja ∞X x , a tactic that 

is ubiquitously employed in ergodic systems.
5
  This proves the lemma.  (The reader is 

invited to compare this proof to the one outlined in the Reply to this Comment.) 

 The strategy of the ssSSA is to simulate only the slow reactions, using the SSA with 

the slow-scale propensity functions (3), and generating the populations of the fast species 

by sampling the probability function f f sˆ( , | , )P ∞y x x .  In the case of reactions (1), the 

virtual fast process consists of the two uncoupled reaction pairs 1

2
1 2

c

c
S S���⇀↽���  and 

5

6
3 4

c

c
S S���⇀↽��� .  The asymptotic properties of the reversible isomerization reaction are 

exactly calculable.
2
  For the initial state 1 4( , , )x x… , 1

ˆ ( )X ∞  and 3
ˆ ( )X ∞  turn out to be the 

independent binomial random variables, 

  62
1 1 2 3 3 4

1 2 5 6

ˆ ˆ( ) Bin , , ( ) Bin ,
cc

X x x X x x
c c c c

  
∞ = + ∞ = +  + +   

. (6a) 

The other two state variables can be computed from 
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  2 1 2 1
ˆ ˆ( ) ( )X x x X∞ = + − ∞ ,   4 3 4 3

ˆ ˆ( ) ( )X x x X∞ = + − ∞ . (6b) 

With fˆ ( )∞X  thus specified, the slow-scale propensity functions for the two slow 

reactions 3R  and 4R  are easily computed: 

  3 1 1 2 4 6 3 4
3 3 2 4 4 3

1 2 5 6

( ) ( )ˆ ˆ( ) ( ) , ( ) ( )
c c x x c c x x

a c X a c X
c c c c

+ +
= ∞ = = ∞ =

+ +
x x . (7) 

As was noted in the Appendix of Ref. 2, the relaxation times of the two reversible 

isomerizations are 1
1 2( )c c −+  and 1

5 6( )c c −+ , so the relaxation time of the virtual fast 

process here will be the larger of those two times.  The average time to the next slow 

reaction can be estimated as the reciprocal of 3 4( ) ( )a a+x x .  It can be verified that, for 

the values in (2), the relaxation time of the virtual fast process is orders of magnitude 

smaller than the average time to the next slow reaction, so the stiffness conditions are 

satisfied.  The ssSSA then proceeds by using the SSA to simulate the two slow reactions 

3R  and 4R  using the propensity functions (7).  Whenever a slow reaction fires, the 

species populations 1 4( , , )x x…  are changed appropriately, and then the fast species 

populations (which in this case are all the populations) are “relaxed” by replacing them 

with random samples from Eqs. (6).  The resulting trajectories are statistically 

indistinguishable from the SSA trajectories in Fig. 1a. 

 In the context of the slow-scale approximation lemma, the nSSA
3
 can be understood 

simply as proceeding from the temporal average in Eq. (5b) instead of the ensemble 

average in Eq. (5c).  That is, in the nSSA, the slow-scale propensity functions  are 

estimated by simulating the virtual fast process over a sufficiently long time fT  and then 

computing from that simulation data the temporal averages 

  ( )fs f s s f s

f

1 ˆ( , ) ( ),
t T

j j
t

a a t dt
T

+
′ ′≈ ∫x x X x , (8) 

as prescribed by Eq. (5b).  The required random samples of fˆ ( )∞X  are taken to be the 

values found at the end of that simulation: 

  f f
f

ˆ ˆ( ) ( )t T∞ ≈ +X X . (9) 

But the approximations (8) and (9) will be good only if fT  is “sufficiently large”.  As was 

noted earlier, the relaxation time for the virtual fast process for reactions (1) is 

{ }1 1 5
1 2 5 6max ( ) , ( ) 1.1 10c c c c− −+ + = × .  This is the value for fT  that we used in the nSSA 

simulation run that replicated the exact trajectories in Fig. 1a.  But taking fT  to be one-

tenth of the relaxation time produced the overly correlated trajectories shown in Fig. 1b. 

 We do not dispute the correctness or the usefulness of the nSSA; indeed, we 

commend its use when the ensemble averages required by the ssSSA cannot be 

conveniently and accurately estimated analytically.  But clearly, the nSSA and the ssSSA 

share the same theoretical foundation:  Both require partitioning the reactions and the 

species into fast and slow subsets, since only by doing that can we identify the virtual fast 

process.  And both require the two stiffness conditions to be satisfied, so that the slow-
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scale approximation lemma will apply in either its temporal average form (5a) or its 

ensemble average form (5b). 

 We regret that several issues continue to separate us from the authors of Ref. 3.  We 

disagree with their claim that the slow-scale approximation lemma was proved prior to 

Ref. 2 in Refs. 6 and 7; because, neither of those earlier papers identified the virtual fast 

process fˆ ( )tX , or required it to reach a well defined form fˆ ( )∞X  in a time that is small 

compared to the expected time to the next slow reaction, as hypothesized by the lemma.  

We contend that the same is true of the four papers newly cited in the Reply which go 

back three decades before Ref. 7, and which are all being claimed to have (apparently 

redundantly) proved the lemma.  Second, it seems to us that the authors of Ref. 3 do not 

appreciate the crucial fact that, even if one can determine the slow-scale propensity 

functions exactly, as we did for reactions (1) in Eqs. (7), inaccuracies will still arise if the 

relaxation time of the virtual fast process is not sufficiently small compared to the 

expected time to the next slow reaction.  Lastly, we do not agree that their generalized 

“slow variables” are the key “to understand[ing] how and why the [nSSA] works.”
3
  

Those variables are simply quantities that are conserved by the virtual fast process – 

1 2x x+  and 3 4x x+  in the case of reactions (1) – and the exploitation of such conserved 

quantities in the asymptotic analysis of Markov processes is commonplace, e.g., in 

deriving our Eqs. (6) and (7).  We suggest that an understanding of how and why the 

nSSA works is provided not by the conservation relations obeyed by the virtual fast 

process, but rather by the slow-scale approximation lemma of Ref. 2 that provides a 

context and rationale for that process. 
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  FIGURE CAPTION 

Fig. 1.  (a)  An exact SSA simulation of reactions (1) for the parameter values (2).  X1 is 

the molecular population of species 1S , etc.  The populations were plotted after the 

occurrence of each slow reaction, 3R  or 4R ; these slow reactions comprised one out of 

every 51.2 10×  reactions that were simulated to get this plot.  Simulations using the 

ssSSA
2
 and the nSSA

3
, the latter with parameter 5

f 1.1 10T −= × , produced plotted 

trajectories that were statistically indistinguishable from these.  Compared to the SSA 

run, the ssSSA run was 42.7 10×∼  times faster, and the nSSA run was 21.5 10×∼  times 

faster.  (b)  A simulation run of the nSSA with 6
f 1.1 10T −= × .  Differences in the textures 

of the trajectories from the exact run in (a) are apparent with this smaller fT ; yet this 

nSSA run was 18∼  times slower than the ssSSA run. 
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