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Abstract

The existing tau-selection strategy, which was designed for explicit tau-leaping, is here

modified to apply to implicit tau-leaping, allowing for longer steps when the system is stiff.

Further, an adaptive strategy is proposed that identifies stiffness and automatically chooses

between the explicit and the (new) implicit tau-selection methods to achieve better efficiency.

Numerical testing demonstrates the advantages of the adaptive method for stiff systems.
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1 Introduction

In recent years, concerns over stochastic effects resulting from the small numbers of certain

reactant molecules in microscopic systems1–4 have called for accurate and efficient stochastic

simulation methods. The fundamental simulation method is Gillespie’s Stochastic Simula-

tion Algorithm (SSA).5,6 Although progress7,8 has been made to improve the efficiency of

implementations of the SSA, as an exact procedure that simulates every reaction, it is nec-

essarily inefficient for most realistic problems. The tau-leaping method9 has been proposed

to improve the efficiency. By using a Poisson approximation, the tau-leaping method can

”leap over” many fast reactions and approximate the stochastic behavior of the system very

well. The tau-leaping method makes a natural connection between the SSA in the discrete

stochastic regime and the explicit Euler method applied to the chemical Langevin equation in

the continuous stochastic regime and to the reaction rate equation (RRE) in the continuous

deterministic regime. In this sense, the tau-leaping method is ideal for multiscale stochastic

simulation.

Stiffness reflects the presence of multiple timescales, the fastest of which are stable. Stiff-

ness is a well-known challenge in the deterministic simulation of chemically reacting systems.

For stiff systems, the stepsize of explicit methods must be restricted to maintain numerical

stability. In the case of discrete stochastic simulation using the explicit tau-leaping method,

which limits to the explicit Euler method as the population of each chemical species becomes

very large, the stepsize must be similarly restricted to maintain numerical stability.10 Implicit

tau-leaping methods have been proposed to solve this problem, in particular the implicit tau

method11 and the trapezoidal tau method.12 Convergence and stability properties for fixed

stepsizes of the explicit and implicit tau methods have been studied.13 Real-world applica-

tions will require the adaptive selection of the stepsize τ . This has been studied recently

in Cao et. al.14 Although these strategies have led to practical and efficient τ -selection for

nonstiff discrete stochastic systems, when applied to stiff problems they result in unneces-

sarily small τ values. A τ -selection formula that reflects the enhanced stability of implicit

methods is thus needed.

Another approach to dealing with stiffness in the accelerated simulation of discrete stochas-
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tic systems is to make use of a stochastic version of the quasi steady state or partial equi-

librium assumptions.15–17 In the deterministic case, the quasi steady state approximation

assumes that on the time scale of interest, the instantaneous rates of change for some in-

termediate species are approximately equal to zero. The partial equilibrium approximation

assumes that some fast reactions are always in equilibrium. In many cases these two as-

sumptions are equivalent. The quasi-steady state approximation focuses on the state, while

the partial equilibrium approximation concentrates on the reactions. The quasi steady state

approximation was extended to the stochastic quasi steady state approximation (SQSSA),18

while the partial equilibrium approximation was extended to the slow-scale SSA method.19

Both were shown to be very useful in accelerating stochastic simulation. Since they are

very similar, we will focus on the partial equilibrium approximation. When a system is in

a partial equilibrium state, the system dynamics is determined mainly by the slow reaction

channels. This observation leads to the slow-scale SSA method.19 In the present work, we

will apply this observation to the implementation of implicit tau-leaping methods to yield

an efficient τ -selection formula for stiff systems.

A complex system may not always remain in a partial equilibrium state. When the

system is not in partial equilibrium, it is necessary to simulate the fast reaction channels

accurately to reflect the corresponding dynamical change. However, when the fast reaction

channels reach the partial equilibrium state, it is more efficient to focus on the slow-scale

reaction channels. This can be achieved by keeping dynamic lists of fast and slow reaction

channels and verifying equilibrium conditions during the simulation. However, the frequent

house-keeping operations can be computationally expensive and can impact the simulation

efficiency. Moreover, when the system exhibits modes between the fast and slow ones, the

partial equilibrium method is not applicable. Here we propose a somewhat less rigorous, but

more practical method. By comparing the stepsizes given by the implicit τ -selection formula

and the explicit τ -selection formula, our method dynamically switches between implicit and

explicit tau-leaping methods without explicitly distinguishing the fast and slow scales. This

switching strategy of comparing the stepsizes given by the explicit and implicit methods

has been successful in the numerical solution of ODEs. Interested readers are referred to

L. Petzold,20 which outlines the strategy for the automatic explicit/implicit code LSODA21
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that is available in Mathematica.

The outline of this paper is as follows. In Section 2 we briefly review the SSA method

and tau-leaping methods. In Section 3 we introduce the tau-selection formula for stiff sys-

tems. In section 4 the adaptive explicit-implicit tau-leaping method is described. Numerical

experiments are presented in Section 5.

2 Simulation Algorithms for Chemical Kinetics

2.1 SSA and Tau-leaping Methods

Suppose the system involves N molecular species {S1, . . ., SN}. The state vector is denoted

by X(t) = (X1(t), . . . , XN(t)), where Xi(t) is the number of molecules of species Si at time

t. M reaction channels {R1, . . . , RM} are involved in the system. Assume that the system is

well-stirred and in thermal equilibrium. The dynamics of reaction channel Rj is characterized

by the propensity function aj and by the state change vector νj = (ν1j , . . . , νNj): aj(x)dt gives

the probability that one Rj reaction will occur in the next infinitesimal time interval [t, t+dt),

and νij gives the change in the Si molecular population induced by one Rj reaction.

The dynamics of the system can be simulated by the SSA method.5,6 With X(t) = x, let

a0(x) =
∑M

j=1 aj(x). On each step, SSA generates two random numbers r1 and r2 in U(0, 1),

the uniform distribution on the interval (0, 1). The time for the next reaction to occur is

given by t + τ , where τ is given by

τ =
1

a0(x)
log(

1

r1
). (1)

The index j for the next reaction is given by the smallest integer satisfying

j
∑

l=1

al(x) > r2a0(x). (2)

The system states are updated by X(t + τ) = x + νj. The simulation proceeds to the next

occurring time, until it reaches the final time.

In principle, the SSA could be used to simulate all of the chemical species and reactions.

But because it must proceed one reaction at a time, it is much too slow for most practical
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problems. Gillespie9 has proposed a scheme called tau-leaping to accelerate the SSA. The

basic idea of the tau-leaping method is to ask the question: How many times does each

reaction channel fire in each subinterval? In each step, the tau-leaping method can proceed

with many reactions. This is achieved at the cost of some accuracy. Define

Kj(τ ; x, t) = the number of times, given X(t) = x, that reaction channel Rj

will fire in the time interval [t, t + τ) (j = 1, . . . , M).
(3)

Tau-leaping assumes the Leap Condition: For the current state x, require τ to be small

enough that the change in the state during [t, t+τ) will be so small that no propensity function

will suffer an appreciable change in its value. Kj(τ ; x, t) is then well approximated by the

Poisson random variable with mean and variance aj(x)τ .

Kj(τ ; x, t) = P (aj(x)τ) (j = 1, . . . , M). (4)

The basic tau-leaping method proceeds as follows: Choose a value for τ that satisfies the

Leap Condition. Generate for each j = 1, . . . , M a sample value kj of the Poisson random

variable P (aj(x)τ), and update the state by

X(t + τ) = x +

M
∑

j=1

kjνj. (5)

If the populations of all reactant species are sufficiently large, the Poisson random variable

P (aj(x)τ) can be approximated by its mean aj(x)τ , and the basic (explicit) tau-leaping

formula becomes the explicit Euler formula for the deterministic reaction rate equation. But

the explicit Euler formula is known to be inefficient when applied to stiff problems. The

explicit tau-leaping formula has the same difficulty. The implicit tau formula11 has been

proposed to handle the stiffness, and is given by

X̂(it)(t + τ) = x +

M
∑

j=1

νj

[

P (aj(x)τ)− τaj(x) + τaj

(

X̂(it)(t + τ)
)]

. (6)

Newton’s method is used to solve (6) for X (it)(t + τ). Note that here the X (it)(t + τ) are

floating point values. In the simulation, we change them to integers by rounding the quantity

in brackets on the right side of (6) to the nearest integer. But to simplify the analysis, here

we will use (6) as written. It has been demonstrated11 that the implicit tau formula allows
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much larger stepsizes than the explicit tau formula, when applied to stiff stochastic systems.

A trapezoidal tau formula has also been proposed12 as follows:

X̂(tr)(t + τ) = x +

M
∑

j=1

νj

[

P (aj(x)τ)−
τ

2
aj(x) +

τ

2
aj

(

X̂(tr)(t + τ)
)]

. (7)

The difference between (6) and (7) is only the coefficients of the aj(x) and aj(X̂) terms. But

(7) has better accuracy when applied to some stiff problems.12 Implementation details are

similar.

2.2 Nonnegative Poisson Tau-Leaping and Tau Selection Formulas

It has been found in the simulation of certain systems in which some consumed reactant

species are present in small numbers that the original Poisson tau-leaping method may

drive some reactant populations negative. Several strategies have been proposed to get

around this problem. Tian and Burrage,22 and independently Chatterjee et al.,23 proposed

approximating the unbounded Poisson random numbers Kj with bounded binomial random

numbers. But it turns out that it is usually not the unboundedness of the Poisson kj’s that

produces negative populations, but rather the lack of coordination in tau-leaping between

different reaction channels that separately decrease the population of a common species. An

improvement24 to the binomial tau-leaping has been proposed to use multinomial random

numbers to generate Kj values. To solve the same problem using the original Poisson tau-

leaping, Cao et al.25 have proposed a different approach that resolves this difficulty and also

establishes a smooth connection with the SSA.

The Nonnegative Poisson tau-leaping algorithm25 is based on the fact that negative popu-

lations typically arise from multiple firings of reactions that are only a few firings away from

consuming all the molecules of one of their reactants. To focus on those reaction channels,

the modified tau-leaping algorithm introduces a second control parameter nc, a positive in-

teger that is usually set somewhere between 5 and 20. Any reaction channel with a positive

propensity function that is currently within nc firings of exhausting one of its reactants is

then classified as a critical reaction. The modified algorithm chooses τ in such a way that

no more than one firing of all the critical reactions can occur during the leap. Essentially,
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the algorithm simulates the critical reactions using an adapted (and thus not quite exact)

version of the SSA, and the remaining non-critical reactions using the previously described

Poisson tau-leaping method. Since no more than one firing of a critical reaction can occur

during a leap, the probability of producing a negative population is reduced to nearly zero.

On those rare occasions when a negative population does arise (from firings of some non-

critical reaction), the leap can simply be rejected and repeated with τ reduced by half, or

else the simulation can be started over using a larger value for nc. The reasoning, examples

and implementation details can be found in Ref.25

In order for tau-leaping to be practical, we need to have a procedure for quickly determin-

ing the largest value of τ that is compatible with the Leap Condition. Gillespie9 originally

proposed that the Leap Condition could be considered satisfied if the expected change in

each propensity function aj(x) during the leap were bounded by εa0(x), where ε is an error

control parameter (0 < ε� 1). Later, Gillespie and Petzold26 showed that the largest value

of τ that satisfies this requirement can be estimated by requiring that the mean and standard

deviation of the expected change in aj(x) in the time period τ be bounded by εa0(x) for all j.

In a more recent work, Cao et al.14 proposed an improvement of this tau selection formula.

The new tau-selection formula is given by

τ = min
i∈Irs

{

max{εxi/gi, 1}

|µi(x)|
,
max{εxi/gi, 1}

2

σ2
i (x)

}

, (8)

where Irs is the set of indices of all reactant species, gi is given by a formula which guarantees

that bounding the relative change of states is sufficient for bounding the relative change of

propensity functions, and µi, σi are given by

µi(x) ,
∑

j∈Jncr

νijaj(x), ∀i ∈ Irs, (9a)

σ2
i (x) ,

∑

j∈Jncr

ν2
ijaj(x), ∀i ∈ Irs, (9b)

where Jncr is the set of indices of all non-critical reactions.
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3 Tau Selection Formula for Stiff Systems

For a stiff problem solved with an implicit tau method, the tau selection formula (8) can

generate unnecessarily small stepsizes. For example, suppose we have a system that consists

of three reactions as follows:

S1

c1


c2

S2
c3−→ S3, (10)

where the propensities are given by a1(x) = c1x1, a2(x) = c2x2, a3(x) = c3x2 and c1, c2 >> c3.

Thus the first two reactions are much faster than the third. We also assume that the first two

reaction channels are near equilibrium, which is represented mathematically by c1x1 ≈ c2x2.

According to the slow-scale SSA,19 the dynamics of this system can be approximated by the

reduced system:

Ŝt
ĉ3−→ S3, (11)

where the population of the virtual species St is given by Xt = X1+X2, and the reaction rate

is determined by ĉ3 = c3c1
c1+c2

. If one has to apply a tau-leaping method to the reduced system,

the τ -selection formula (8) generates a stepsize τ̂ = ε
ĉ3

. However, for the original system,

the same τ -selection formula generates a stepsize close to τorig = ε2

max{c2
1, c

2
2}

. It is easy to

verify that τorig is much smaller than τ̂ . The smaller stepsize τorig is actually appropriate

for explicit tau-leaping methods, where the stepsize of such a system will be limited by the

stability requirement of the explicit method. However, properly chosen implicit tau-leaping

methods do not have such a stability limitation, and the much larger τ̂ is the appropriate

stepsize.

The reason that τorig is much smaller than τ̂ is due to the fact that the τ -selection formula

(8) is based on the criteria that the relative change of each propensity function be bounded

by ε, which can be formulated as:

|∆aj(x)| ≤ εaj(x), j = 1, . . . , M. (12)

However, if the fast reaction channels are near a partial equilibrium state, as pointed out

in the slow-scale SSA theory, it is the average values of the propensities of the fast reaction

channels that affect the dynamics of the slow reaction channels. The relative change of the

propensities for those equilibrium reaction channels may be large, but that only affects the
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accuracy of the variance for the fast variables. The dynamics of the system is determined

mainly by those reaction channels that are not in equilibrium. Thus in the stepsize control,

we can ignore those reaction channels that are in partial equilibrium. One consequence of

this relaxed requirement is that the variance of those species populations that get changed

by the equilibrium reactions may not be accurate. For instance, if we require only that the

relative change of the propensities (or state variables) resulting from R3 be bounded in the

above example, the τ value will be given by τnew = ε
c3

. Note that τnew is still smaller than τ̂

(because ĉ3 < c3), but it is much larger than τorig.

3.1 Partial Equilibrium Condition

To handle the simulation for a general model, we need an algorithm. The first important

question is: How should we determine whether or not some reaction channels are in partial

equilibrium? This question is complicated in general. Here we focus only on reversible

reaction pairs (Note that in many biochemical systems, partial equilibrium is reached in

reversible reaction pairs based on the detailed balance assumption. The general situation

will be a topic for future research.). Let us consider a pair of reversible reaction channels

R+ and R− to be in partial equilibrium if the corresponding propensities a+(x) and a−(x)

are relatively close to each other. Because of the fluctuation in the system, they will not be

exactly equal to each other. But their difference should be much smaller than each of them.

We formulate this condition as:

|a+(x)− a−(x)| ≤ δ min{a+(x), a−(x)}, (13)

where δ is a small positive number. This is a natural generalization from the concept of

equilibrium in a deterministic system. In practice we usually choose δ to be around 0.05.

Our experience indicates that it gives reasonably good results. Another way is to use the

formula (11) in Samant and Vlachos,27 in which an extra term was introduced to account

for randomness of propensities due to the fluctuation. Currently, for simplicity we only use

(13).

Note that the equilibrium criteria (13) may fail when some reactants in the reversible re-

action channels are present with a very small population. In that situation, due to stochastic
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fluctuation, the population of these reactants may drop to zero, which makes the propensi-

ties a+(x) or a−(x) suddenly become zero. (13) will not be satisfied in that situation. But

when the population of the corresponding reactant becomes nonzero, (13) will be satisfied

then. This will lead to frequent switches for this pair of reversible reaction channels between

equilibrium and non-equilibrium states and is not desired in the simulation. We are working

to develop more robust criteria for identifying quasi-equilibrium situations.

3.2 Tau Selection Formula for Implicit Methods

If all reaction channels in a system are in equilibrium, the system should remain in equilib-

rium because there is no other reaction channel to drive it away from the equilibrium state.

Thus, once the system reaches equilibrium, the stepsize τ can be chosen to be very large.

In this case, the inherent randomness may lead to relatively large changes for the propen-

sities. But the implicit method will keep the simulation trajectory close to the equilibrium

manifold. A reasonable stepsize control strategy doesn’t have to consider the correspond-

ing fluctuations. Similarly, when only some of the reaction channels are in equilibrium, the

dynamics of the system will be driven by the reaction channels that are not in equilibrium.

Thus the stepsize control for stiff system should limit the relative changes resulting from the

nonequilibrium reaction channels to within ε.

The original τ -selection formula (8) restricts the relative change of the state variables

due to all reaction channels. To find the proper τ value for the implicit methods in the

presence of partial equilibrium subsystems, we need only further restrict the index set used

in the τ -selection formula (8). The original index set is given by Jncr, the set of indices of all

non-critical reactions. Let Jne denote the set of indices of the reaction channels that are not

in partial equilibrium. Then Jnecr = Jne ∩ Jncr represents the set of indices of all reaction

channels that are neither critical nor in partial equilibrium. The τ -selection formula for the

implicit methods is then given by

τ (im) = min
i∈Irs

{

max{εxi/gi, 1}

|µ
(im)
i (x)|

,
max{εxi/gi, 1}

2

[σ
(im)
i (x)]2

}

, (14)

10



where µ
(im)
i , σ

(im)
i are given by

µ
(im)
i (x) ,

∑

j∈Jnecr

νijaj(x), ∀i ∈ Irs, (15a)

[σ
(im)
i (x)]2 ,

∑

j∈Jnecr

ν2
ijaj(x), ∀i ∈ Irs. (15b)

For a system where all reaction channels are in equilibrium, the above formula (14) will give

τ =∞. Of course in practice the stepsize will always have an upper limit, for example, the

simulation end time T .

Note that here we do not verify whether the fast reactions are MUCH faster than the

other reactions. This is different from the slow-scale SSA method. In the slow-scale SSA,

the difference between the time scales is very important. This is because in the slow-scale

SSA method, fast reaction channels are represented by their behavior at t = ∞ in the

virtual fast process. Their dynamical changes will not be simulated by the slow-scale SSA

simulation. However, implicit tau-leaping methods generate the number of reactions Kj

for all reaction channels. The dynamical changes resulting from those reaction channels in

equilibrium are still simulated. They only get ignored when estimating the stepsize τ in

formula (14). Thus if some reaction channels in equilibrium are not much faster than some

non-equilibrium reaction channels, with the stepsize calculated from only the non-equilibrium

reaction channels, the fluctuation resulting from those reaction channels that are slow but

in equilibrium, will still be well simulated in the implicit tau-leaping method.

4 Adaptive Tau-Leaping Method

If a problem is known to be stiff, the implicit tau-leaping methods can be applied along

with the stiff τ -selection formula (14). If a problem is nonstiff, it is better to use explicit

tau-leaping because it is cheaper per step. What if we do not have this knowledge before

the simulation? Or what if the system presents dynamical behavior such that in one time

period it is stiff but in another time period it is nonstiff? How do we judge whether or not

a system is stiff in a simulation? With the two τ -selection formulas, we can easily construct

an adaptive simulation strategy to automatically switch between explicit and implicit tau-

leaping methods: If the τ (in the following it is denoted by τ (ex) since it is used for explicit
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tau-leaping method) calculated from formula (8) is much smaller than τ (im) calculated from

formula (14), we consider the system to be stiff and use an implicit tau-leaping method with

stepsize τ (im). Otherwise, it is more efficient to use the explicit tau-leaping method with

stepsize τ (ex). Combining this strategy with the nonnegative tau-leaping method, we have

the new algorithm as follows:

Adaptive Tau-Leaping Algorithm:

1. In state x at time t, identify the currently critical reactions. This is done by first estimating

for each reaction Rj with aj(x) > 0 the maximum number of times Lj that Rj can fire

before exhausting one of its reactants:22,23

Lj = min
i∈[1,N ]; νij<0

[

xi

|νij|

]

. (16)

Here the minimum is taken over only those index values i for which νij < 0, and the

brackets denote “greatest-integer-in”. Any reaction Rj with aj(x) > 0 is deemed critical

if Lj < nc. (We will normally take nc = 10.)

2. With a value chosen for ε (we normally take ε in the range 0.03 to 0.05), compute the

candidate time leaps τ (ex) by using the explicit tau-selection formula (8) and τ (im) by using

the implicit tau-selection formula (14). To calculate (14), formula (13) is applied to select

partial equilibrium reaction channels.

3. If τ (im) is larger than Nstiff ∗ τ (ex), the system is considered to be stiff. An implicit tau

method such as implicit tau-leaping or trapezoidal tau-leaping is chosen and τ1 = τ (im).

Otherwise, an explicit tau-leaping is chosen and τ1 = τ (ex). Usually we choose Nstiff =

100.

4. If τ1 is less than some small multiple (which we usually take to be 10) of 1/a0(x), abandon

tau-leaping temporarily, execute some modest number (which we usually set as 100 if the

previous step uses the SSA or the explicit tau-leaping method, or 10 if the previous step

uses the implicit tau-leaping methods) of single-reaction SSA steps, and return to step 1.

Otherwise, proceed to step 5.
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5. Compute the sum ac
0(x) of the propensity functions of all the critical reactions. Generate

a second candidate time leap τ2 as a sample of the exponential random variable with mean

1/ac
0(x). As thus computed, τ2 tentatively estimates the time to the next critical reaction.

6. Choose τ and set the number of firings kj of each reaction Rj accordingly:

(a) If τ2 > τ1, take τ = τ1. For all critical reactions Rj set kj = 0 (no critical reactions will

fire during this leap). For all non-critical reactions Rj, generate kj using the tau-leaping

method chosen in step 3 with stepsize τ .

(b) If τ2 ≤ τ1, take τ = τ2. Generate jc as a sample of the integer random variable

with point probabilities aj(x)/ac
0(x), where j runs over the index values of the critical

reactions only. (The value of jc identifies the next critical reaction, the only critical

reaction that will fire in this leap.) Set kjc
= 1, and for all other critical reactions Rj set

kj = 0. For all the non-critical reactions Rj, if the explicit method was chosen in step

3, or if the implicit method was chosen in step 3 but τ2 ≤ τ (ex), use the explicit tau-

leaping method, generating kj as a sample of the Poisson random variable with mean

aj(x)τ ; otherwise generate kj using the implicit tau-leaping method with stepsize τ .

7. If there is a negative component in x +
∑

j kjνj, reduce τ1 by half, and return to step 4.

Otherwise, leap by replacing t ← t + τ and x ← x +
∑

j kjνj; then return to step 1, or

else stop.

This method can efficiently switch among the SSA, the explicit tau-leaping method and

the implicit tau-leaping method. However, note that it cannot efficiently handle situations

in which some species are present with a very small population but are involved in some very

fast reaction channels. Since we treat the corresponding reaction channel as critical, it will

be handled by an SSA type simulation. This is a drawback of this algorithm, as compared

to slow-scale SSA. Further improvement is still under research.

5 Numerical Examples

We tested our method on two examples.
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5.1 Stiff Decaying Dimerization Example

The stiff decaying dimerization model was originally proposed in Ref.9 and modified in

Ref.11 The stiff decaying dimerization model consists of three species S1, S2 and S3 and four

reaction channels:

S1
c1→ 0

S1 + S1

c3


c2

S2

S2
c4→ S3.

(17)

This reaction was studied with nonstiff reaction rates9 and stiff reaction rates.11 In Rathinam

et. al.,11 the stiff reaction rates were chosen as c1 = 1, c2 = 10, c3 = 1000, c4 = 0.1, and

initial condition was set as x1(0) = 400, x2(0) = 798 and x3(0) = 0. This initial condition

was chosen so that the reversible reaction pair

S1 + S1

c3


c2

S2 (18)

is close to partial equilibrium. Here we have used the initial condition x1(0) = 10, 000,

x2(0) = 0 and x3(0) = 0 so that initially the above reversible reaction pair is not in par-

tial equilibrium. We simulated the system using the adaptive explicit-implicit tau-leaping

method from t0 = 0 to Tf = 4 with ε = 0.05, and obtained the results shown in Figure 1. We

focus here on the behavior of the stepsizes. In the beginning, the adaptive method chooses

SSA for a very short time as shown in Figure 2. We call this short time interval the ”SSA

regime”. Then explicit tau-leaping is chosen to simulate the fast reaction channel accurately

(as shown in Figure 3). We call this time interval the ”explicit tau regime”. Most of the

simulation is performed in the so-called ”stiff regime” during which τ (im) is used and the

trapezoidal tau-leaping method is applied. The tau values over the whole time interval are

shown in Figure 4. We can see a ”jump” between the explicit and implicit methods. That

is due to the switch process. We choose the implicit method when it can use a stepsize 100

times larger than that allowed by the explicit tau-leaping method. When it cannot maintain

such a high efficiency, we switch back to the explicit tau-leaping method. Another interesting

behavior is that after t ≈ 0.8, the τ value is almost fixed at τ = 0.05. We note that in this

simulation, ε = 0.05, c1 = 1, and R1 is a simple decay process. Applying the τ -selection
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formula on this reaction channel yields τ = 0.05. Thus as shown in Figure 4, the stepsizes

are eventually limited by one of the slow-scale reaction channels.

For this example, 10, 000 runs took 139, 817 seconds CPU time using the exact SSA

throughout, 2, 461 seconds CPU time using the explicit tau-leaping method throughout

with ε = 0.05, and 112 seconds for the adaptive explicit-implicit tau-leaping method with

ε = 0.05. We also ran the two tau-leaping simulations with the error tolerance reduced by

one-half. 10, 000 runs took 11, 710 seconds CPU time for the explicit tau-leaping method

with ε = 0.025, but only 72 seconds CPU time for the adaptive explicit-implicit tau-leaping

method with ε = 0.025. Table 1 shows the accuracy of the mean and deviation for each

variable calculated from the ensembles. Note that the standard deviation of X1 (a fast

variable) is not accurate for the adaptive explicit-implicit tau-leaping method. This can be

improved by the down-shifting strategy.11,28 When applying this strategy, we applied the

adaptive switch mechanism until very close to the final time. Then we stopped the switch

mechanism and used only the explicit tau-leaping. In particular we used the criteria

t + τ (im) < Tf − 100(τ (ex) + 1/a0) (19)

to decide whether or not to turn on the switch mechanism. This condition is to make sure that

at least 100 steps of explicit tau-leaping or SSA will be applied before the output of states. If

condition (19) is satisfied, we turn on the switch mechanism; otherwise, we turn it off and the

system will switch between the explicit tau-leaping and SSA. Since this turning-off occurs for

only a relatively short time, it has little effect on the simulation efficiency. When we apply

the down-shifting strategy, 10, 000 runs took 133 seconds CPU time for the adaptive explicit-

implicit tau-leaping method with ε = 0.05. and 106 seconds CPU time with ε = 0.025. The

tau values over the whole time interval, when down-shifting strategy is applied, are shown

in Figure 5. We can see that the tau values jump when the simulation is close to the

end. That is due to the turning-off of the adaptive switch mechanism. The accuracy of

the mean and standard deviation for each variable is also shown in Table 1. We can see

that the accuracy of the standard deviation is much improved for X1. We also compared

the histogram distance29 between the SSA ensemble and the ensembles generated by the

adaptive explicit-implicit tau-leaping method (ε = 0.025) with or without the down-shifting
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strategy (Figure 6). The histogram distance between the SSA ensemble and the ensemble

generated by the adaptive method with down-shifting (both 10,000 runs) is 0.1208, which

is around the self-noise29 due to the stochastic fluctuation. Thus the ensemble generated

by the the adaptive method (ε = 0.025) with down-shifting strategy is considered accurate

enough.

5.2 A Simple Gene Expression Example

This model was originally proposed in Bundschuh et. al.30 It describes a simple negative

feedback in gene expression. The model is given as

D∗
c1−→ D + M + R

M
c2−→ M + P

M
c3−→ ∅

P
c1−→ ∅

(20)

with three pairs of fast reversible reactions.

D + R
c−5



c5

D∗ (21)

P + P
c−6



c6

P2 (22)

D + P2

c−7



c7

Q (23)

where D and D∗ denotes DNA in activated or inactivated state, M denotes mRNA, R denotes

RNA polymerase, P denotes the protein and P2 denotes the dimer of P . The parameters

are given in Table 2. The initial condition is set as xD∗ = 1 and all the rest are zero. The

problem time interval is from t = 0 to T = 50, 000. Note that the populations of D and D∗

switch between 0 and 1. The two pairs (21) and (23) are considered always near equilibrium.

But since the population is low, they are also critical reactions. Our algorithm cannot handle

this situation efficiently right now. Thus we use slow-scale SSA19 to treat these two pairs and

model them via the Michaelis-Menten kinetics.31–33 Only the reaction pair (22) is subject to

the equilibrium check.

In the numerical comparison, we apply slow-scale SSA to treat (21) and (23), and use the

explicit tau-leaping method for the rest. The selection mechanism will always select SSA
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because the automatically generated stepsize for explicit tau-leaping is too small. However,

the situation changes when the adaptive explicit-implicit tau-leaping is applied. When the

pair (22) reaches partial equilibrium, the code chooses the implicit tau-leaping method with a

much larger stepsize. Otherwise, it chooses SSA. In our experiments, the CPU time for 10000

simulation runs using SSA is 49,641 seconds; the CPU time for 10,000 simulation runs using

adaptive explicit tau-leaping (with ε = 0.015) is 51,487 seconds, while the time for 10,000

simulation runs using adaptive (explicit-implicit) tau-leaping method is 1,876 seconds with

error tolerance ε = 0.015 (down-shifting is applied). The slight increase of CPU time from

SSA to the adaptive explicit tau-leaping is due to the overhead of the selection mechanism

since SSA is always chosen. The probability distributions of P corresponding to the runs

with the two methods (SSA and adaptive implicit-explicit tau-leaping) are shown in Figure

7. We can see that the results given by the adaptive tau-leaping method is very accurate.

However, the simulation is about twenty-five times faster for this simple case.

To capture more details in the simulation, we collected simulation data in a typical simu-

lation trajectory. Among the total 66,030 simulation steps, the implicit tau-leaping method

was chosen in only 3,241 steps. However, in the total problem time interval of 50, 000 sec-

onds the implicit tau-leaping method was used for 48, 152 seconds problem time. Only 1, 848

seconds of problem time was simulated by the 62,789 SSA steps. The average stepsize taken

by the implicit tau-leaping method is 14.86 seconds, while the average stepsize taken by SSA

is only 0.03 seconds. The implicit tau-leaping method is much more efficient than the SSA.

6 Discussion and Conclusion

In this paper we proposed a tau-selection formula for implicit tau-leaping methods to simulate

stiff systems. Combined with the previously proposed tau-selection formula for explicit

methods, we presented the adaptive explicit-implicit tau-leaping method. Through two

simple examples, We demonstrate that the new method appears much more efficient than

the explicit tau-leaping method for stiff systems.

This new method may lead to a multiscale stochastic simulation method for general

biochemical systems. But there are still some issues to be resolved for the most realistic and
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efficient implementation. The most important is the accuracy for ’fast’ variables. According

to our numerical experiments, the new method generates accurate distributions for the slow

variables. It may generate errors in the variance of the fast variables. This is known for

the implicit tau-leaping method11 and the multiscale SSA method.28 As we have seen in

the numerical experiments, the ”down-shifting” strategy11,28 can be used to improve that.

However, rigorous analysis is still needed with regard to the implementation details. Another

issue concerns the equilibrium condition. In this paper we have presented a simple test for

whether a subsystem (mostly a pair of reversible reaction channels) is in equilibrium. We

are aware that the corresponding theory requires further development. Also more numerical

tests on complex systems need to be done to verify and improve the current algorithm. We

plan to address these problems in our future research.
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List of Figure Captions

Figure 1: The dynamics of the stiff decaying dimerization model (17) in one SSA simula-

tion. S1 decreases and S2 increases quickly in the transient period before t = 0.125. After

that all species change slowly in the stiff regime.

Figure 2: The tau values in the ”SSA regime” for the stiff decaying dimerization model

(17) simulated by the adaptive algorithm (ε = 0.05). Due to the low population of S2 in this

time interval, the simulation used SSA.

Figure 3: The tau values in the ”explicit tau regime” for the stiff decaying dimerization

model (17) simulated by the adaptive algorithm (ε = 0.05). The population of S2 is large

enough for the explicit tau-leaping method. But the implicit tau-leaping method is not

efficient enough, yet.

Figure 4: The tau values in the whole time interval [0, 4] for the stiff decaying dimerization

model (17) simulated by the adaptive algorithm without the down-shifting strategy (ε =

0.05). ’o’ denotes that the corresponding simulation is done by implicit tau-leaping while ’*’

denotes that the corresponding simulation is done by explicit tau-leaping. The SSA regime

is too short to be seen. The ”jump” after t = 0.125 shows the switch from the explicit

tau-leaping method to the implicit tau-leaping method.

Figure 5: The tau values in the whole time interval [0, 4] for the stiff decaying dimerization

model (17) simulated by the adaptive algorithm with the down-shifting strategy (ε = 0.05).

’o’ denotes that the corresponding simulation is done by implicit tau-leaping while ’*’ denotes

that the corresponding simulation is done by explicit tau-leaping. Compared to Figure 4, we

can see a ”jump back” near the final time, which shows a turning-off of the switch mechanism

by the down-shifting strategy.

Figure 6: The histogram distance generated from ensembles (10,000 runs) by SSA (de-

noted by line) and by the adaptive explicit-implicit tau-leaping method with (denoted by

’o’) and without (denoted by ’*’) the downshifting strategy (both for ε = 0.025) for the

population of species S1 at the final time Tf = 4 in the stiff decaying dimerization model

(17). The histogram obtained with the downshifting strategy is much closer to the SSA

histogram than the one without the strategy.

Figure 7: The histogram distance generated from ensembles (10,000 runs) by SSA (solid
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line with ’o’) and by the adaptive explicit-implicit tau-leaping method (dashed line with

’+’) with the downshifting strategy (for ε = 0.015) for the population of protein (P ) at the

final time Tf = 50, 000 in the negative feedback gene expression model (20). The histogram

distance is within the self-distance.
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List of Tables

Method error tolerance Mean Standard Deviation

x1 x2 x3 x1 x2 x3

SSA 617.1 1904.7 1230.2 24.43 31.99 29.48

Explicit Tau 0.05 617.3 1905.3 1230.0 30.08 33.60 29.73

0.025 617.1 1904.9 1230.8 25.33 32.63 30.44

Adaptive Method 0.05 616.7 1901.0 1235.2 11.58 30.49 29.58

without down-shifting 0.025 617.0 1902.1 1232.0 12.12 30.97 29.50

Adaptive Method 0.05 616.1 1901.2 1234.7 30.07 33.64 29.64

with down-shifting 0.025 616.5 1902.7 1231.9 25.77 32.87 29.45

Table 1: Accuracy comparison for different methods and error tolerances.

Parameter Value Parameter Value

c1 0.0078 c2 0.043

c3 0.0039 c4 0.0007

c5 0.038 c−5 0.3

c6 0.05 c−6 0.5

c7 0.012 c−7 0.9

Table 2: The parameter values in the gene expression model. These parameters are obtained from

Bundschuh2003 et. al.30 (except that c6 is restored to 0.05 as in Arkin et. al.2

).
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